Oxidation of pyrite during extraction of carbonate associated sulfate

Pedro J. Marenco a,⁎, Frank A. Corsetti a, Douglas E. Hammond a, Alan J. Kaufman b, David J. Bottjer a

a Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089-0740, USA
b Department of Geology, University of Maryland, College Park, MD, 20742-4211, USA

Received 27 February 2007; received in revised form 10 October 2007; accepted 13 October 2007

Editor: D. Rickard

Abstract

The sulfur isotopic composition of carbonate associated sulfate (CAS) has been used to investigate the geochemistry of ancient seawater sulfate. However, few studies have quantified the reliability of δ34S of CAS as a seawater sulfate proxy, especially with respect to later diagenetic overprinting. Pyrite, which typically has depleted δ34S values due to authigenic fractionation associated with bacterial sulfate reduction, is a common constituent of marine sedimentary rocks. The oxidation of pyrite, whether during diagenesis or sample preparation, could thus adversely influence the sulfur isotopic composition of CAS. Here, we report the results of CAS extractions using HCl and acetic acid with samples spiked with varying amounts of pyrite. The results show a very strong linear relationship between the abundance of fine-grained pyrite added to the sample and the resultant abundance and δ34S value of CAS. This data represents the first unequivocal evidence that pyrite is oxidized during the CAS extraction process. Our mixing models indicate that in samples with much less than 1 wt.% pyrite and relatively high δ34Spyrite values, the isotopic offset imparted by oxidation of pyrite should be much less than −4‰. A wealth of literature exists on the oxidation of pyrite by Fe³⁺ and we believe this mechanism drives the oxidation of pyrite during CAS extraction, during which the oxygen used to form sulfate is taken from H₂O, not O₂. Consequently, extracting CAS under anaerobic conditions would only slow, but not halt, the oxidation of pyrite. Future studies of CAS should attempt to quantify pyrite abundance and isotopic composition.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Carbonate associated sulfate; CAS; δ34S; Pyrite

1. Introduction

The sulfur isotopic composition of seawater sulfate is an important geochemical indicator of changing global redox conditions. In order to investigate the changing oxidation state of surface environments, sulfate-bearing evaporite minerals have traditionally been used to construct broadly-defined δ34S age curves (e.g., Claypool et al., 1980; Holser, 1984; Canfield, 1998). However, evaporites are less than ideal insofar as they 1) often form in restricted settings, 2) are uncommon in Precambrian rocks, and 3) lack the age diagnostic fossils necessary for precise correlation. The drawbacks to evaporite chemostratigraphy can be overcome by analyzing trace amounts of sulfate oxidation state of surface environments, sulfate-bearing evaporite minerals have traditionally been used to construct broadly-defined δ34S age curves (e.g., Claypool et al., 1980; Holser, 1984; Canfield, 1998). However, evaporites are less than ideal insofar as they 1) often form in restricted settings, 2) are uncommon in Precambrian rocks, and 3) lack the age diagnostic fossils necessary for precise correlation. The drawbacks to evaporite chemostratigraphy can be overcome by analyzing trace amounts of sulfate
incorporated into the calcium-carbonate lattice of carbonate minerals (carbonate associated sulfate, CAS) at the time of precipitation (Kaplan et al., 1963; Mekhtiyeva, 1974; Burdett et al., 1989). Carbonates are more ideal than evaporites because they commonly form in normal marine settings, have a broader distribution in time and space, and contain fossils that can be used for precise correlation. CAS has been used to construct $\delta^{34}S$ profiles for the Phanerozoic (Kampschulte and Strauss, 2004) as well as for a number of higher-resolution studies focused on specific transitions in Earth history (Kaiho et al., 2001; Hurtgen et al., 2002; Kah et al., 2004; Newton et al., 2004; Gellatly and Lyons, 2005; Kaiho et al., 2006; Riccardi et al., 2006; Marenco, 2007).

Although the use of CAS has become more widespread, few investigations of the reliability of the method have been published (Lyons et al., 2004; Marenco, 2007). One particular concern regarding the use of CAS is the possibility that pyrite present in whole rock samples would be oxidized to sulfate during the CAS extraction process. To date, a systematic controlled investigation of pyrite oxidation during CAS extraction has not been available. Here, we present unambiguous data that demonstrates the oxidation of pyrite during CAS extraction, using both strong (HCl) and weak (acetic) acids.

2. Methods and material studied

2.1. Geologic setting and previous work

The limestone sample used in this study was collected from the Virgin Limestone Member of the Moenkopi Formation near Lost Cabin Springs in southern Nevada, USA. The Virgin Limestone Member at Lost Cabin Springs was deposited under subtidal marine conditions on a distally-steepened carbonate ramp (Blakey, 1974) during the Spathian Stage of the Early Triassic (McKee, 1954). Isotopic analyses of Spathian evaporites from more onshore facies of the Moenkopi Formation have yielded $\delta^{34}S$ values approaching $+30\%$ CDT (Wilgus, 1981; Marenco, 2007) whereas CAS studies have reported values as high as $+38\%$ (Marenco, 2007).

2.2. CAS extraction using hydrochloric and acetic acid

The limestone sample for isotopic analysis was first prepared by trimming obvious diagenetic phases (e.g., large veins and weathering rinds) and was subsequently powdered using a Rock Labs standard split-discus mill. The homogenized powdered sample was split into eight sub-samples ranging from 135 to 150 g (Table 1), four to be used for CAS extraction using HCl, and four to be used for CAS extraction using CH$_3$COOH. The samples were then combined with granular pyrite (FeS$_2$ distributed by EMD, guaranteed 85% pure through 50 mesh) to make a total of 150 g using approximately 0, 1.5, 7.5, and 15 g of pyrite. One set of samples containing 0, 1, 5 and 10% pyrite was used for CAS extraction with HCl and the other set was used for CAS extraction using CH$_3$COOH.

CAS was extracted via a method modified from Burdett et al. (1989). Samples were subjected to two consecutive eight-hour washes in 1 l of 18.2 MΩ distilled water to dissolve any soluble sulfur phases. After each wash, the fluid was removed. The samples were then washed for eight hours in a solution consisting of 52.5 ml of 6% NaOCl added to 947.5 ml of DDI water to dissolve organic sulfur phases. After removing the fluid from the previous step, the samples were then subjected to two additional washes with DDI water to dilute and remove residual bleach as well as to remove non-CAS-bound sulfur not removed during the previous steps.

Once the sample powders were free of water-soluble sulfur phases, they were dissolved using 3 M HCl or 3 M CH$_3$COOH. The reaction stoichiometry requires one liter of HCl or CH$_3$COOH per 150 g of sample, assuming no insolubles and no mass lost during the wash steps. The samples were allowed to dissolve for

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock (g)</th>
<th>$M_{pyrite}$ (g)</th>
<th>Total (g)</th>
<th>Wt.% pyrite</th>
<th>Insolubles (g)</th>
<th>$M_{insol}$ (g)</th>
<th>$\delta^{34}S_{app}$ %o VCDT</th>
<th>[CAS]$_{app}$ (ppm)</th>
<th>[SO$<em>4$]$</em>{pyrite}$/[CAS]$_{app}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HClA</td>
<td>150.13</td>
<td>0</td>
<td>150.13</td>
<td>0</td>
<td>18.7</td>
<td>131</td>
<td>34.39</td>
<td>564</td>
<td>0</td>
</tr>
<tr>
<td>HClB</td>
<td>148.58</td>
<td>1.54</td>
<td>150.12</td>
<td>1.03</td>
<td>20.3</td>
<td>130</td>
<td>33.33</td>
<td>634</td>
<td>0.100</td>
</tr>
<tr>
<td>HClC</td>
<td>142.58</td>
<td>7.52</td>
<td>150.10</td>
<td>5.01</td>
<td>24.7</td>
<td>125</td>
<td>29.90</td>
<td>755</td>
<td>0.208</td>
</tr>
<tr>
<td>HClD</td>
<td>135.16</td>
<td>15.01</td>
<td>150.17</td>
<td>10.0</td>
<td>31.1</td>
<td>119</td>
<td>27.58</td>
<td>864</td>
<td>0.266</td>
</tr>
<tr>
<td>AceticA</td>
<td>150.05</td>
<td>0</td>
<td>150.05</td>
<td>0</td>
<td>27.8</td>
<td>122</td>
<td>34.98</td>
<td>539</td>
<td>0</td>
</tr>
<tr>
<td>AceticB</td>
<td>148.50</td>
<td>1.54</td>
<td>150.04</td>
<td>1.03</td>
<td>28.3</td>
<td>122</td>
<td>33.68</td>
<td>609</td>
<td>0.103</td>
</tr>
<tr>
<td>AceticC</td>
<td>142.53</td>
<td>7.53</td>
<td>150.06</td>
<td>5.02</td>
<td>31.0</td>
<td>119</td>
<td>29.55</td>
<td>761</td>
<td>0.246</td>
</tr>
<tr>
<td>AceticD</td>
<td>135.02</td>
<td>15.01</td>
<td>150.03</td>
<td>10.0</td>
<td>34.4</td>
<td>116</td>
<td>26.80</td>
<td>890</td>
<td>0.316</td>
</tr>
</tbody>
</table>
eight hours, and then filtered through a membrane filter (0.45 μm) to remove insoluble particulate matter.

An aliquot of 50 ml of a 30% BaCl₂ solution (300 g of anhydrous BaCl₂ powder dissolved into 1000 ml of DDI) was then added to each sample after heating to sub-boiling to precipitate BaSO₄. The samples were left for three days to ensure complete precipitation. The barite was then collected by filtration on a membrane filter (0.45 μm), which was then dried and weighed.

Filters containing insolubles were rinsed with multiple volumes of DDI before drying and weighing to remove residual acid. The starting sample mass less the mass of insolubles was used along with the mass of barite precipitated to determine CAS concentration.

2.3. Isotopic analysis of sulfur

A Eurovector elemental analyzer (EA) was used for on-line combustion of barite or pyrite and the separation of SO₂, interfaced with a Micromass Isoprime mass spectrometer for δ³⁴S/³²S analyses. The effluent from the EA is introduced in a flow of He (80–120 ml/min) to the IRMS through a SGE splitter valve that controls the variable open split. Timed pulses of SO₂ reference gas (99.9% purity, ~3 nA) are introduced at the beginning of the run using an injector connected to the IRMS with a fixed open ratio split. The isotope ratios of reference and sample peaks are determined by monitoring ion beam intensities relative to background values.

Prepared samples (~100 μgrams for barite, ~50 μgrams for pyrite) are accurately weighed in duplicate and folded into small tin cups that are sequentially dropped with a pulsed O₂ purge of 12 ml into a catalytic combustion furnace operating at 1030 °C. The frosted quartz reaction tube is packed with granular tungstic oxide on alumina (WO₃ + Al₂O₃) and high purity reduced copper wire for quantitative oxidation and O₂ resorption. Water is removed from the combustion products with a 10-cm magnesium perchlorate column, and the SO₂ is separated from other gases with a 0.8-m PTFE GC column packed with Porapak 50–80 mesh heated to 90 °C. The cycle time for these analyses was 210 s with reference gas injection as a 30-s pulse beginning at 20 s. Sample SO₂ pulses begin at 110 s and return to baseline values between 150 and 180 s, depending on sample size and column conditions. Isotope ratios are determined by comparing integrated peak areas of m/z 66 and 64 for the reference and sample SO₂ pulses, relative to the baseline of ~1 × 10⁻¹¹ A. Isotopic results are expressed in the δ notation as per mil (‰) deviations from the VCDT standard (isotopic results from previous studies that were reported relative to the equivalent CDT standard, the original Canyon Diablo Troilite, are herein reported relative to CDT.) Uncertainties of these measurements (better than ±0.3‰) were determined by multiple analysis of a standard barite (NBS 127) interspersed with the samples.

3. Results

The pyrite used in this study yielded a δ³⁴S value of +9.39 ‰ (this value will be referred to as δ³⁴S_pyrite). For the following discussion, sulfate resulting from the CAS extraction process will be referred to as ‘apparent CAS’; its isotopic composition will be called δ³⁴S_app and its concentration will be [CAS]app. The average apparent CAS concentration of the two unspiked samples are taken to represent the actual sulfate concentration in the original limestone sample ([SO₄]lime=552 ppm). The two unspiked samples exhibit a standard deviation of 18 ppm, thus we regard the uncertainty in the [CAS]app measurements to be ~3%. Although the samples extracted using acetic acid resulted in a greater abundance of insolubles (18% of total starting mass vs. 12% for HCL), the [CAS]app values were similar to those extracted using HCl (Table 1), implying that the additional insolubles were un-reacted limestone. The isotopic compositions of the two unspiked samples are assumed to be that of the original limestone sample (δ³⁴Slime). The average δ³⁴S value of the unspiked samples is +34.7 ‰ (standard deviation=0.4‰, n=4 including one replicate for each).

For the following discussion, the mass of pyrite (Mpyrite) relative to the starting sample mass will be referred to as ‘weight percent pyrite’ whereas the mass of pyrite relative to the mass of limestone dissolved (Mlime the starting sample mass minus insolubles) will be referred to as ‘normalized fraction pyrite’. This distinction is made to facilitate the discussion of two-component mixing (see below), which assumes that only pyrite and limestone (not insolubles) contributed to the amount of sulfate extracted from the starting sample. The data reveal a positive correlation between apparent CAS concentration and weight percent pyrite (Fig. 1) for both acid treatments. Likewise, there is a distinct negative relationship between weight percent pyrite and δ³⁴S_app (Fig. 2). The correlations in Figs. 1 and 2 appear to be gently curved, but both correlations can be approximated via linear regression with high R² values (Figs. 1–2).

The apparent CAS concentration can be modeled according to the linear equation:

\[
[CAS]_{app} = [SO₄]_{lime} + [SO₄]_{pyrite}
\]
\[ [\text{SO}_4]_{\text{pyrite}} = \frac{w M_{\text{pyrite}}}{M_{\text{lime}}} \]

where \( w \) represents the ppm sulfate formed per gram pyrite, assuming that the amount of sulfate oxidized from pyrite is significant enough to affect \([\text{CAS}]_{\text{app}}\) but is insignificant compared to the mass of insolubles. The linear equation then becomes:

\[ [\text{CAS}]_{\text{app}} = [\text{SO}_4]_{\text{lime}} + w \left( \frac{M_{\text{pyrite}}}{M_{\text{lime}}} \right) \]

so that on a plot of \([\text{CAS}]_{\text{app}} \) vs normalized mass pyrite, \( w \) can be determined from the slope of the line (Fig. 3).

---

Fig. 1. Plot of sulfate concentration from CAS extraction versus weight percent pyrite. Long-dashed line is a linear regression through the HCl data with an \( R^2 \) of 0.9716. The short-dashed line is a linear regression through the acetic data with an \( R^2 \) of 0.9783.

Fig. 2. Plot of \( \delta^{34}\text{S} \) results from CAS extraction versus weight percent pyrite. The long-dashed line is a linear regression through the HCl data with an \( R^2 \) of 0.9736. The short-dashed line is a linear regression through the acetic data with an \( R^2 \) of 0.9727.
A linear regression through the entire data set gives a slope of 1679±205 ppm ($R^2 = 0.9129$).

Likewise, the isotopic composition of apparent CAS can be modeled by treating it as a mixture of two components:

$$\delta^{34}S_{\text{app}} = \left( 1 - \frac{[\text{SO}_4]_{\text{pyrite}}}{[\text{CAS}]_{\text{app}}} \right) \delta^{34}S_{\text{lime}} + \left( \frac{[\text{SO}_4]_{\text{pyrite}}}{[\text{CAS}]_{\text{app}}} \right) \delta^{34}S_{\text{pyrite}}$$

which can be simplified to:

$$\delta^{34}S_{\text{app}} = \left( \delta^{34}S_{\text{pyrite}} - \delta^{34}S_{\text{lime}} \right) \left( \frac{[\text{SO}_4]_{\text{pyrite}}}{[\text{CAS}]_{\text{app}}} \right) + \delta^{34}S_{\text{lime}}$$

Fig. 4 shows the plot of $\delta^{34}S_{\text{app}}$ versus $[\text{SO}_4]_{\text{pyrite}}/[\text{CAS}]_{\text{app}}$ for the samples in this study. A linear regression fit through the entire data set has an intercept that yields $\delta^{34}S_{\text{pyrite}} = +8.9\%$, quite similar to the measured $\delta^{34}S$ composition of the pyrite used in this study (+9.4\%), suggesting that little to no fractionation of sulfur occurred during the chemical oxidation of pyrite. The slope of the regression should yield $\delta^{34}S_{\text{pyrite}} - \delta^{34}S_{\text{lime}}$. The observed result is $-25.7 \pm 2.4 \%$ ($R^2 = 0.9494$), quite similar to the result expected from the end-member compositions ($+34.7 - 9.4 = 25.3\%$).

### 4. Pyrite sulfide oxidation mechanisms

A number of studies have investigated the dissolution of pyrite in acidic solutions (e.g., Garrels and Thompson, 1960; Smith and Shumate, 1970; Hamilton and Woods, 1980; Nordstrom, 1982; Wiersma and Rimstidt, 1984; McKibben and Barnes, 1986; Buckley and Woods, 1987; Luther, 1987; Moses et al., 1987; Luther, 1990; Rimstidt and Newcomb, 1993; Sasaki, 1994; Sasaki et al., 1995; Rickard and Morse, 2005). Dissolution of pyrite can occur via oxidation by dissolved O$_2$ or by Fe$^{3+}$ via the following overall reactions through a series of intermediate steps (e.g., Luther, 1987; Moses et al., 1987; Luther, 1990):

$$\text{FeS}_2(s) + \frac{7}{2} \text{O}_2(aq) + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+$$ (1)

$$\text{FeS}_2(s) + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+$$ (2)

Moses et al. (1987) empirically determined that the rate of reaction for equation 2 is at least two orders of magnitude faster than that of reaction 1 at low pH, and one order of magnitude faster at high pH. Luther (1987, 1990) has discussed the reasons for the higher rates of reaction between pyrite and Fe$^{3+}$ based on frontier-molecular-orbital theory. Because the rate of reaction 2 is considerably higher than that of reaction 1, it is likely that reaction 2 is the dominant mechanism for dissolving pyrite during CAS extraction. However a controlled analysis of O$_2$, H$_2$O and CAS $\delta^{18}$O is needed to quantify the relative contribution of Fe$^{3+}$ and O$_2$ pyrite oxidation, as some experiments have shown that pyrite oxidation by O$_2$ can be a significant component in certain systems (e.g., acid mine drainage, Earnest, 2002).
Dissolution of pyrite by Fe$^{3+}$ has significant implications for the study of CAS. Carbonates are likely to contain significant amounts of detrital material that may contain reactive iron, most likely in the form of clay minerals and iron oxides. For example, the limestone used in this study came from the Virgin Limestone Member at Beyond Lost Cabin, where limestones have been reported to contain between 1200 and 3100 ppm Fe (Marenco, 2007). When CAS samples are acidified with HCl, reactive Fe may be liberated from clay minerals or iron oxides and subsequently react with FeS$_2$. Because the oxygen used to form the final SO$_4^{2-}$ in reaction 2 is derived from H$_2$O, not from dissolved O$_2$, CAS extraction under anaerobic conditions might not prevent the oxidation of pyrite sulfide. However, Fe$^{3+}$ can be re-supplied to the system via the reaction:

$$\text{Fe}^{2+} + \frac{1}{4} \text{O}_2(\text{aq}) + \text{H}^+ \rightarrow \text{Fe}^{3+} + \frac{1}{2} \text{H}_2\text{O} \quad (3)$$

which is known to limit the rate of pyrite dissolution at low pH (Moses et al., 1987). Therefore, extraction of CAS under anaerobic conditions may slow down but not prevent the dissolution of pyrite. A further implication of this process is that, because the oxygen in SO$_4^{2-}$ in reaction 2 is derived from the water, not from the atmosphere, studies of $\delta^{18}$O$_{\text{CAS}}$ might be compromised, even if performed under anaerobic conditions.

The large difference between the rates of reactions 1 and 2 may explain the slight yet distinct curvature observed in Figs. 1–3. The Fe$^{3+}$ supply to reaction 2 is sourced from the powdered limestone sample. However, in order to increase weight percent pyrite in our samples, the amount of limestone powder in a sample was decreased as the mass of pyrite was increased. Consequently, the samples with higher weight percent pyrite had less Fe$^{3+}$ to begin with, and as such, dissolution by O$_2$ may have had an increased effect relative to dissolution by Fe$^{3+}$, leading to a slight but noticeable decrease in the percentage of pyrite oxidized to sulfate (Fig. 1).

Luther (1987, 1990) and Luther et al. (1997) have discussed the production of intermediate sulfur phases such as thiosulfate before the ultimate production of sulfate. However, at low pH, Moses et al. (1987) found no measurable sulfur intermediates when Fe$^{3+}$ was used as an oxidant, but found that intermediates were significant when O$_2$ was the oxidant. The lack of observable intermediates in those studies was likely due to the reactivity of sulfur intermediates with H$^+$ and Fe$^{3+}$ at low pH values (Williamson and Rimstidt, 1993; Luther et al., 1997).

The majority of the observed increase in sulfate during the Moses et al. (1987) experiment occurred during the first two hours. During CAS extraction, samples are commonly left dissolving for multiple hours (e.g., this study) to allow for the complete dissolution of CaCO$_3$, although this procedural variable is often omitted from published methods. After the dissolution step, a series of filtration steps, culminating in a 0.45 $\mu$m filtration, are performed in order to remove insolubles. Depending on the amount of insolubles, the combined filtration steps may add multiple hours to the amount of time that Fe$^{3+}$ has to react with pyrite before the mineral
is isolated from the solution. Decreasing the amount of
time for the initial acidification step, combined with
techniques to speed up the filtrations (such as
centrifuging the particulates down before filtering),
may help to reduce the effect of pyrite dissolution on the
resultant CAS data.

We have observed that many CAS samples exhibit a
yellow fluid color after the acidification step, especially
in samples with high amounts of insolubles. The yellow
color, which does not disappear upon filtration through a
0.45 μm membrane, is likely due to the presence of
dissolved or colloidal ferric iron released from the treated
sample (Hurtgen et al., 2002). If this interpretation is
correct, then a preliminary dissolution of a smaller
sample size may be useful to determine if the sample
contains abundant reactive Fe. Quantifying total Fe and
pyrite abundance is crucial to determine which samples
are susceptible to pyrite oxidation. The insoluble residue
from a small sample could be subjected to a bulk sulfur
analysis to assess its pyrite content.

5. Implications for future CAS studies

The results reported here provide conclusive evidence
that pyrite is oxidized by either hydrochloric or acetic
acid during the extraction of CAS. Our findings have
significant implications for the future use of CAS to
study ancient seawater sulfate. As a minimum, studies of
CAS should include some attempt to quantify pyrite
abundance and Fe abundance in samples. With only 1% pyrite with a δ34S composition of +9 ‰, an isotopic
depletion of >1% was observed relative to the true value
of CAS in the sample of ~+38‰. Because pyrite in
sedimentary rocks can exhibit much lower δ34S values
down to −50‰ or greater, (Hoeft, 1997), the isotopic
influence of pyrite in this study are small compared to the
range of possible values. Using the slope of the line in
Fig. 3, we can predict the effects of pyrite with different
δ34S compositions on [CAS]app and δ34Sapp. Fig. 5
shows a plot of [CAS]app and δ34Sapp−δ34Slime at various compositions of δ34Spyrite (shown as Δδ=δ34
Slime−δ34Spyrite) versus the mass fraction pyrite. Even at
low pyrite to limestone ratios, the oxidation of pyrite can
have significant effects on the δ34S of apparent CAS if
the δ34S composition of the pyrite is much less than that
of the limestone. Realistically, limestones are unlikely to
have more than 1 wt.% pyrite (e.g., Riccardi et al., 2006).
Therefore it should be noted that with a large Δδ (e.g.,
Δδ=70 in Fig. 5), a sample with a normalized fraction
pyrite of 1% or less exhibits a maximum isotopic offset
of about −4‰, and a [CAS]app offset of about 17 ppm.
Consequently, in samples with much less than 1 wt.% pyrite and Δδ values much lower than 70, it can be
argued that the isotopic effect of any pyrite oxidized
would be much less than −4‰. However, naturally-
occuring pyrite is likely to be much finer-grained than
the pyrite used in this study. Because rates of pyrite
dissolution increase as grain size decreases (e.g., Sasaki,
1994), the isotopic offsets from naturally-occurring
pyrite might be larger than those reported here. Likewise,
in samples with much lower [CAS], the effect of pyrite
oxidation would be much larger.

![Graph](image-url)

Fig. 5. Results of modeling using the slope of the line in Fig. 3 with a hypothetical $[SO_4]_{lime}$ of 300 ppm and different δ34Spyrite values. The left-hand axis shows the difference between the δ34S of apparent CAS and limestone, assuming that the difference between the δ34S of limestone and pyrite (Δδ) are either 10, 30, 50, or 70 ‰. The right-hand axis shows the concentration of apparent CAS. Both plots are given relative to $M_{pyrite}/M_{lime}$.
There is a possibility that sedimentary pyrite may be oxidized during diagenesis via the mechanisms discussed here (e.g., Riccardi et al., 2006). However, the diagenetic incorporation of sulfate into limestones is poorly understood and warrants further investigation. Therefore, we would recommend that samples with abundant pyrite or pyrite pseudomorphs should be avoided for CAS analysis. Based on our results and mixing models, and assuming highly depleted $\delta^{34}\text{S}$ values and smaller grain sizes for natural pyrite, even samples with 1 wt.% pyrite or less can be influenced by up to a few permil. If pyrite is present, it is likely that the availability of reactive Fe is the dominant control on whether it is oxidized during CAS extraction.

Acknowledgements

This project was supported by NSF (EAR 0447019) to Corsetti, Bottjer and Kaufman. Marenco was additionally supported with graduate student grants from the Geological Society of America, the American Association of Petroleum Geologists, the Paleontological Society, and USC Earth Sciences Department. The authors wish to express their gratitude to Tim Lyons and David Rickard for reviews that contributed significantly to the final version of this manuscript.

References


Newton, R., Pevitt, P., Wignall, P.B., Bottrell, S., 2004. Large shifts in the isotopic composition of seawater sulfate across the Permo-


Smith, E.E., Shumate, K.S., 1970. Sulfide to sulfate reaction mechanism; a study of the sulfide to sulfate reaction mechanism as it relates to the formation of acid mine waters. 115 pp.

