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Seismic body wave and normal mode analyses have revealed that the inner core is solid, strongly 
anisotropic, and characterized by dramatic quasi-hemispherical differences in elastic structure and 
attenuation. Yet, despite these discoveries, the highly heterogeneous and incomplete data coverage of the 
inner core has impeded the development of tomographic models even at the longest wavelengths. Here, 
we use a probabilistic and transdimensional tomographic approach (TBI) on a newly expanded dataset of 
P-wave travel-times sensitive to the upper 120 km of the inner core. The TBI approach yields a ensemble 
of parsimonious models that simultaneously capture both the dominant hemispheric dichotomy and 
laterally abrupt velocity variations. Analysis of the model ensemble allows us to determine the locations 
of the hemisphere boundaries and rule out the presence of hemispheric dichotomy in anisotropy. Instead, 
we robustly map regional variations in anisotropy beneath Africa and the eastern Pacific, and detect 
variations at high latitudes suggesting that cylindrical anisotropy may not be adequate for describing the 
uppermost inner core.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The structure of Earth’s inner core has wide-ranging implica-
tions for our understanding of Earth’s thermal history, core dy-
namics, and magnetic field generation. Its seismic characteristics 
inform us about its composition (Antonangeli et al., 2010; Geballe 
et al., 2013; Romanowicz et al., 2016) and bear the signature of 
the dynamical mechanisms of formation and evolution (Aubert et 
al., 2008; Monnereau et al., 2010; Alboussiére et al., 2010; Lasbleis 
et al., 2017). Inner core seismic velocity structure is dominated by 
a distinct hemispherical dichotomy, comprising a slow west hemi-
sphere, and a fast east hemisphere (e.g. Tanaka and Hamaguchi, 
1997; Niu and Wen, 2001; Cao and Romanowicz, 2004; Deuss 
et al., 2010; Waszek et al., 2011). Cylindrical velocity anisotropy 
is observed to be oriented with the fast direction aligned to 
Earth’s rotation axis (Morelli et al., 1986; Woodhouse et al., 1986;
Creager, 1992), stronger in the western hemisphere, and with com-
plex radial variation (Song and Helmberger, 1995; Creager, 1999;
Deuss et al., 2010; Waszek and Deuss, 2011). The properties of 
these characteristics are debated, and unanswered questions re-
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main regarding regional velocity variations, strength of anisotropy, 
relationship between velocity and attenuation, and location and 
sharpness of hemisphere boundaries (Tkalĉić, 2015). As a result, 
detailed observational studies are essential to orient future geody-
namic and mineral physics work (Lasbleis et al., 2017).

Most seismic studies of the inner core concern themselves 
with describing the hemispheric dichotomy, which represents a 
spherical harmonic degree-one structure. Reported differences be-
tween the hemispheres for isotropic velocity range between 0.5 
and 1.5% in VP (Tanaka and Hamaguchi, 1997; Niu and Wen, 2001;
Waszek and Deuss, 2011), although a recent study argued that this 
hemispheric isotropic difference can be attributed to anisotropic 
variations in certain regions (Irving and Deuss, 2015). Lateral vari-
ations in the strength of anisotropy are also usually discussed 
by hemisphere. The western hemisphere displays a 50–100 km 
thick isotropic upper layer (Garcia and Souriau, 2000; Waszek and 
Deuss, 2011); beneath, anisotropy increases radially, from values 
of around 3% potentially up to 8% at greater depths (Song and 
Helmberger, 1995; Irving and Deuss, 2011). In contrast, the east-
ern hemisphere is negligibly anisotropic (less than 0.5%) (Niu and 
Wen, 2001; Yu and Wen, 2007). Regional variations in properties 
combined with different sampling geometries may explain much 
of the deviations between studies.

The location and sharpness of boundaries between the two 
hemispheres have been used to place limits on inner core super-
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rotation (e.g. Waszek et al., 2011) and convection (e.g. Geballe 
et al., 2013). The boundaries are situated approximately beneath 
Africa and the Pacific Ocean; estimates of their locations vary 
from 10–60◦ and 150–180◦ (e.g. Tanaka and Hamaguchi, 1997;
Creager, 1999; Garcia and Souriau, 2000; Niu and Wen, 2001;
Yu and Wen, 2007; Irving and Deuss, 2011). Recent body wave 
studies agree that they are relatively sharp, on the order of hun-
dreds of kilometers (Waszek et al., 2011; Irving and Deuss, 2015;
Yu et al., 2017; Godwin et al., 2018). The disagreement in location 
may be attributed to paucity of data sampling (Tkalĉić, 2015), or 
radial and/or lateral variation (Deuss et al., 2010; Irving and Deuss, 
2011; Irving, 2016; Yu et al., 2017; Godwin et al., 2018).

The strongest observational evidence for consistent regional 
structure within the hemispheres comes from normal mode stud-
ies, since they provide global coverage, albeit at low resolution. 
Deuss et al. (2010) reported significant variation in anisotropy 
around a hemispherical average. Regional body wave studies agree, 
finding localized features beneath the Pacific Ocean (Cormier et 
al., 2011; Irving and Deuss, 2015; Yu et al., 2017; Godwin et al., 
2018), as well as beneath Africa (Yu and Wen, 2007; Irving, 2016), 
and Central America (Blom et al., 2015). However, some of the 
strong regional anisotropy inferred from body wave data has been 
attributed to unmodeled effects from the lowermost mantle, par-
ticularly beneath the middle western hemisphere (Tkalĉić, 2015).

There are two primary hypotheses to explain the inner core 
hemispherical structure. In the first, hemispheres are frozen into 
the inner core structure as it solidifies from the liquid outer core. 
The hemispheres are generated by an asymmetry in heat loss and 
thus freezing rates (Aubert et al., 2008), resulting from thermo-
chemical coupling of the inner core to the core-mantle boundary. 
Higher heat flux in the eastern hemisphere produces faster solid-
ification, and the resultant difference in crystal size and orienta-
tion accounts for the seismic properties. The second hypothesis 
invokes degree one convection to generate the hemispheric di-
chotomy: a lateral translation eastward, driven by melting of the 
east hemisphere and freezing in the west (Alboussiére et al., 2010;
Monnereau et al., 2010). This produces a hemispherical difference 
in material age, whereby the east hemisphere is older. Age is corre-
lated to domain size of crystals (Bergman et al., 2010), and seismic 
properties (Geballe et al., 2013). Note that recent estimates of in-
ner core conductivity may preclude this convective mode (Pozzo 
et al., 2012), although it may be driven compositionally (Deguen 
et al., 2013).

Both hypotheses have difficulty explaining the seismic prop-
erties beyond the basic east-west dichotomy. In particular, the 
presence of laterally and radially varying anisotropy has not been 
incorporated into geodynamical models. The models struggle to ex-
plain the sharp transition in seismic properties at the boundaries; 
Geballe et al. (2013) found that sufficiently abrupt boundaries may 
be generated by inner core translation only for very specific min-
eral compositions. Regional-scale variations in velocity, which are 
suggested to arise from lateral discrepancies in heat flux across 
the inner core boundary (Gubbins et al., 2011), are not explic-
itly modeled. The fundamental issue impeding the study of small-
scale variations is that seismic constraints are poor (Lasbleis et al., 
2017). Higher-resolution seismic models are therefore crucial for 
motivating and testing geodynamical simulations.

In this study we use a large dataset of PKiKP–PKIKP differen-
tial travel times (Waszek and Deuss, 2013) to constrain hetero-
geneity in the uppermost inner core. PKIKP traverses the upper-
most ∼100 km of the inner core, and is measured against the 
reference phase PKiKP, which reflects from the inner core bound-
ary. Although this is a common technique to explore the seismic 
properties of the uppermost inner core (e.g. Niu and Wen, 2001;
Cao and Romanowicz, 2004; Waszek et al., 2011), numerous po-
tential complications in the geometry of this problem can intro-
duce trade-offs between regional isotropic variations, anisotropy, 
and heterogeneity in the mantle and outer core.

First, PKIKP paths sampling the upper inner core have a narrow 
range of epicentral distances (∼130–143◦), limiting the potential 
number of data. In particular, the polar regions are poorly instru-
mented and have few earthquakes suitable for inner core studies, 
leading to few polar paths. Second, the sparsity of paths, combined 
with the short distance that the PKIKP phase travels through the 
upper inner core (<30◦) means that few regions are covered by 
crossing and overlapping paths. Finally, although PKiKP and PKIKP
take similar paths through the bulk of the mantle, it is possible 
that strong, small-scale heterogeneity in the D” region, and lat-
eral velocity variations in the uppermost and lowermost outer core 
may introduce errors, a significant problem considering the small 
differential PKiKP–PKIKP time (1 – 2 s) accumulated in the inner 
core.

These difficulties have hindered efforts to recover inner core 
structure with standard approaches to seismic tomography. Invert-
ing only for hemispheres or fixed large-scale grids can underesti-
mate regional heterogeneity or misplace major boundaries, while 
damped least-squares inversions run the risk of over-fitting spa-
tially biased data or smearing out sharp gradients. By employing 
an adaptive parameterization and avoiding damping, Transdimen-
sional Bayesian Inference (TBI) (e.g. Burdick and Lekić, 2017) offers 
one potential way to circumvent these issues.

Recent TBI developments have focused on using reversible-
jump Markov Chain Monte Carlo (Green, 1995; Sambridge et al., 
2006) to estimate the posterior probability of geophysical prop-
erties. Chains of models are created by varying one parameter at 
a time. Each new model is accepted or rejected based on how 
well it fits the data and prior information, and, after a sufficient 
number of iterations, models appear in the chain proportional to 
their probability. Application to global and teleseismic problems 
have featured applications to surface wave tomography (e.g. Bodin 
and Sambridge, 2009; Bodin et al., 2012; Olugboji et al., 2017) and 
receiver function surveys (e.g. Agostinetti and Malinverno, 2010). 
Due to the more computationally demanding forward problem, 
body wave applications have been more limited, and recent studies 
have focused on local earthquake tomography (Piana Agostinetti et 
al., 2015) or on recovering a single layer of heterogeneity (Young 
et al., 2013; Tkalcic et al., 2015). By performing forward computa-
tions on an underlying unchanging grid, Burdick and Lekić (2017)
recently applied TBI to continent-scale tomography in three spatial 
dimensions.

Regardless of application, TBI methods offer three primary ad-
vantages over traditional approaches. First, they yield an ensemble 
of models which can be analyzed to quantify model uncertainty 
and trade-offs between parameters. Second, they estimate the vari-
ance of data errors alongside the geophysical properties, enabling 
optimal weights across different data types (Bodin et al., 2012). 
Third, the number, position, and geometry of parameters is al-
lowed to vary ensuring flexible yet parsimonious parameterization 
(Malinverno, 2002). These aspects render the TBI approach well-
suited to the problem of inner core tomography—flexibility in the 
position and orientation of model domains allows for the esti-
mation of hemisphere boundary locations, and the parsimonious 
parametrization ensures that sub-hemispheric variations are in-
serted only where necessary.

In this study, we extend the method of Burdick and Lekić
(2017) to constrain isotropic and anisotropic P-wave velocities in 
the uppermost 120 km of the inner core with PKiKP–PKIKP differ-
ential travel times. From the ensemble models, we are able to esti-
mate hemispheric and regional compressional velocity (VP ) varia-
tions and their uncertainty, the trade-off between isotropic VP and 
cylindrical anisotropy, and location uncertainty of the hemispheric 
boundaries beneath Africa and the Pacific. In order to quantify the 
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Fig. 1. Map of inner core paths of PKIKP phases used in this study. Color shows 
PKiKP–PKIKP differential travel time residuals, calculated with respect to AK135. 
Blue indicates a faster travel through the inner core.

contribution of mantle heterogeneity, we also compare inner core 
models based on ray paths and differential travel times calculated 
in several different Earth models.

2. Methodology

2.1. Data and processing

Our study benefits from a large dataset of PKiKP–PKIKP differ-
ential travel time residuals (Waszek and Deuss, 2013), augmented 
with additional residuals from events up to May 2016. We choose 
station–event pairs with epicentral distances between 129◦ and 
144◦ degrees, for which PKIKP turns within the upper 120 km of 
the inner core. The data were measured using cross-correlation 
and hand-picking techniques at corner frequencies of 0.7 – 2.0 
Hz and compared to theoretical travel times derived from AK135 
(Kennett et al., 1995). A detailed description of the processing and 
picking methods may be found in Waszek et al. (2011), Waszek 
and Deuss (2011). The full dataset of 5075 differential travel time 
residuals is shown in Fig. 1, projected onto their respective PKIKP
paths through the inner core.

Data coverage is clearly dominated by a high density of stations 
in the northern hemisphere, especially the US. Large swaths of the 
Southern hemisphere are sparsely sampled, and ray paths are al-
most completely absent in the South Atlantic, as pointed out by 
Pejić et al. (2017). Due to the geometry of PKIKP in our chosen 
range, rays travel almost entirely in the equatorial direction near 
the poles (e.g. Tkalcic et al., 2015), which will lead to a high de-
gree of uncertainty in anisotropy away from the equator.

2.2. Tomographic problem

The tomography method we use in this study is two-fold. 
In this section, we describe the forward problem relating the 
anisotropic variations in inner core velocity to differential travel 
times, and in the following section we describe the solution to the 
inverse problem using Transdimensional Bayesian Inference.

For each station–event pair, we trace PKIKP and PKiKP ray-
paths through the inner core and compute the expected differen-
tial travel time, dT . In order to estimate the potential effects of 3D 
mantle heterogeneity on the differential travel times, we calculate 
rays and travel times in three mantle tomographic models—the 1D 
reference Earth model AK135, and two 3D P-wave models, ME2016 
(Moulik and Ekstrom, 2016) and LLNL-G3Dv3 (Simmons et al., 
2012). Ray tracing was performed with the TauP toolkit (Crotwell 
et al., 1999) for AK135 and with LLNL-Earth3D (Simmons et al., 
2012) for the 3D models.
We seek models of anisotropic VP that minimize the difference 
between the observed differential travel times and those predicted 
by the reference Earth model:

�T = dTobs − dT pred. (1)

We follow Burdick and Lekić (2017) and define our forward prob-
lem on a static underlying model grid with dimensions 0.7◦ × 0.7◦
× 120 km in depth. This parameterization is appropriate for our 
dataset, since it is not suited for mapping the depth-dependence 
of seismic properties within the inner core. Within each of the 
grid volumes, the length of each ray is calculated. As we wish to 
test the hypothesis that the inner core is anisotropic with the fast 
axis aligned with the Earth’s rotational axis (hereafter referred to 
as axial anisotropy), we also retain the angle ζ between each ray 
segment and the rotational axis.

Finally, we follow Creager (1999) and set up a linear forward 
problem relating residual travel times to the anisotropic VP in each 
grid volume:

�T

T
= dVP

VP
+ b cos2ζ + c cos4ζ, (2)

where dVP is P-wave velocity perturbation, VP is the mean layer 
velocity, and b and c are two terms describing axial anisotropy. 
The total anisotropy, b + c represents the difference in velocity be-
tween waves traveling along axial and equatorial paths. A positive 
value for b + c indicates that waves travel faster in the direction of 
the rotational axis. For clarity, we report model values as percent 
perturbation in P-wave velocity (% dVP /VP ).

To confirm the accuracy of our forward problem and provide a 
point of comparison with the TBI results, we performed a damped 
least squares inversion of the residual travel times relative to 
AK135. The resulting model is shown in the Supplementary Ma-
terials (Fig. S1).

2.3. Transdimensional Bayesian inference

Motivated by the sparse and uneven coverage of inner core ray 
paths and the desire to, where possible, constrain regional struc-
ture in addition to average properties of the hemispheres, we apply 
Transdimensional Bayesian Inference to the inner core tomogra-
phy problem. Bayes’ Theorem states that the posterior probability 
assigned to a model is proportional to the likelihood that model 
explains the observed data and the extent to which it agrees with 
all prior information. We seek to estimate the posterior probability 
distribution of anisotropic models given the PKiKP – PKIKP travel 
time dataset.

We proceed by applying a reversible-jump Markov chain Monte 
Carlo algorithm (Green, 1995) to generate an ensemble of models 
sampling the posterior distribution. Each starting model is param-
eterized based on three sets of randomized Voronoi nuclei (Okabe 
et al., 1992), one for each velocity term (VP , b, and c). Using inde-
pendent sets of parameters can be advantageous when one term 
(in our case, VP ) is much better constrained than the others (Gao 
and Lekic, 2018). We cluster together underlying grid volumes into 
parameters of constant value according to their nearest Voronoi 
nucleus. Fig. 2 shows an schematic of our approach. Differential 
travel times predicted by each model can then be calculated by 
computationally fast matrix multiplication.

The models are randomly updated in succession by changing 
one Voronoi nucleus at a time. At each step, a new model is pro-
posed based on one of four operations:

1. Change velocity assigned to a Voronoi nucleus by an amount 
drawn from normal distribution about its current value (σ =
0.14% dVP /VP ).
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Fig. 2. An overview of the model parameterization. Left: The inner core is split up 
into a set of Voronoi cells defined by nuclei (black dots). Right: Underlying 0.7◦ ×
0.7◦ × 120 km grid volumes on which sensitivity kernels are defined are clustered 
together according to nearest nuclei.

2. Move one nucleus along a great circle path in random direc-
tion. The distance is drawn from a normal distribution (σ =
120 km).

3. Add a new nucleus in a random location with velocity value 
drawn from the prior.

4. Remove a nucleus.

Once proposed, each new model is accepted or rejected based 
on how much more probable it is than the last according to the 
Metropolis Hastings algorithm (Metropolis et al., 1953). The prob-
ability here depends on how well the predicted data fits the ob-
served data, how well the model agrees with the prior, and the 
number of Voronoi volumes used. In this study, the velocity values 
for new volumes are drawn from the prior, a normal distribution 
about zero with σ = 1.4% dVP /VP . We choose our prior to be in 
line with previous body wave and normal mode studies of the out-
ermost inner core. For this approach, the acceptance criteria for 
increasing or decreasing the number of cells simplify to (N + 1)/N
for removing a cell and (N + 1)/(N + 2) for adding a cell (Kolb and 
Lekic, 2014).

Each model undergoes a chain of updates, and, after a burn-in 
period during which the models depend on their starting value, the 
current model is saved to an ensemble solution at regular intervals. 
At the end of the process, the frequency with which a model value 
appears in the ensemble is proportional to its posterior probability. 
From the ensemble we obtain a probability density function (pdf) 
from which statistical values—like the mean and standard devia-
tion of velocity, as well as the probability that a location contains 
a hemispheric boundary—can be derived.

2.4. Background assumptions

It is vital to note that the posterior probability distributions we 
find in this study and the conclusions drawn from them are depen-
dent on a set of background assumptions. To some extent, each of 
these assumptions is commonly held in body wave studies of the 
inner core. The merits of some of the assumptions are discussed 
below, and the rest will serve as the basis for future study.

First, we assume that the data errors can be considered inde-
pendent and normally distributed. Since the residual travel times 
are determined by cross-correlation, the data error may admit to a 
more complicated formulation. We also assume that the sensitiv-
ity of the differential travel times to inner core structure to PKIKP
can be adequately represented by ray theory, i.e. finite frequency 
effects are minimal. Second, with respect to parameterization, we 
assume that the underlying grid is adequate to recover the scale of 
heterogeneity and location of hemispheric boundaries. We assume 
that heterogeneity in the top 120 km of the inner core can be 
modeled as a single layer. While this may represent an oversimpli-
fication, it is dictated by limited data coverage, and is consistent 
with other regional inner core studies (Irving and Deuss, 2015;
Irving, 2016). We also assume that anisotropy is cylindrical with 
the c-axis aligned with the Earth’s rotational axis. Finally, although 
we attempt to test the effect of velocity variations in the mantle, 
we make assumptions about other outside effects on the observa-
tions. We assume that the mantle models we test adequately rep-
resent the scale and strength of mantle heterogeneity, in particular 
near the core-mantle boundary (CMB). Furthermore, we assume 
that neither potential outer core heterogeneity nor topography on 
the CMB and inner core boundary (ICB) affect the differential travel 
times.

3. Results

3.1. Quasi-hemispheric TBI model

For an initial TBI inversion, we constrain each term of aniso-
tropic velocity to two quasi-hemispheres with constant velocity 
apiece and allow the longitude of the two boundaries and velocity 
within the hemispheres to vary. For this inversion, data residuals 
are recomputed relative to LLNL-G3Dv3. We run 10 chains for one 
million iterations each, saving every 100th model after a burn-in 
period of 10,000 iterations. The resulting mean model and uncer-
tainty are shown in Fig. 3.

The location and isotropic velocities of the hemispheres (Fig. 3a) 
are well-constrained, with mean values of 0.35% dV/V in the east-
ern hemisphere and −0.7% dV/V in the western. Fig. 3c shows the 
standard deviation of the isotropic model. Within each hemisphere, 
the standard deviation of the isotropic model is ∼0.1% dV/V, 
but increases up to 0.5% dV/V at the hemisphere boundaries. 
This high standard deviation is likely due to uncertainty in 
the location of the boundaries (e.g. Burdick and Lekić, 2017;
Olugboji et al., 2017). Since the boundaries of quasi-hemispheres 
are allowed to move around, leading to a bimodal posterior dis-
tribution and a larger error bar. Here, we estimate that the Pacific 
boundary is at 192◦ ± 3◦ . The African side is more uncertain, with 
the boundaries falling between 5–28◦ and a peak value at 24◦ .

In contrast, there is no agreement on the location of the 
anisotropic hemispheres (Fig. 3b). Although the mean model places 
b + c between 0.4 and 0.55% dV/V at all longitudes, the location 
of the boundaries varies greatly in the ensemble, defining hemi-
spheres with no relation to those in the isotropic part, often of 
mismatched size. The standard deviation of b + c (Fig. 3d) is higher 
than the isotropic part, ranging from 0.15 beneath the Pacific to 0.4
beneath the Atlantic and Africa. The higher values are likely due to 
disagreement over the location of the hemispheres and lack of ray 
paths constraining anisotropy in the region. Taken together, these 
results suggest that a quasi-hemispheric model is inadequate for 
describing the lateral variations of inner core anisotropy.

3.2. 2D TBI model

We allow the number and location of the model parameters to 
vary and represent lateral variations of inner core structure. We 
cap at 100 the number of possible Voronoi nuclei for each type of 
model parameter. The positions of the nuclei were allowed to vary 
from 120 km below the ICB to 500 km above, which we found 
to be an efficient way to define smaller-scale regions within our 
model domain.

We performed equivalent inversions for residuals calculated in 
each of the three reference models. For each ensemble, we ran 
60 rj-MCMC chains for 500,000 iterations. After a burn-in period 
of 50,000 iterations – after which the statistical properties of the 
chains appeared to converge – we saved every 100th model to an 
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Fig. 3. Summary of TBI model ensemble with anisotropic quasi-hemispheres. (a) Mean isotropic VP . (b) Standard deviation of isotropic VP . (c) Mean b + c anisotropy. (d) 
Standard deviation of b + c terms. (e) Posterior correlation between lateral variations of isotropic VP and b + c.

Fig. 4. Summary of TBI model ensemble. (a) Mean isotropic VP . (b) Standard deviation of isotropic VP . (c) Mean b + c anisotropy. (d) Standard deviation of b + c. (e) Posterior 
correlation between lateral variations in isotropic VP and b + c. Labeled points in (a) give the location of histograms in Fig. 6.
ensemble, for a total of 27,000 models per ensemble. In each in-
version, the algorithm fit the isotropic part of the velocity with 
∼20 Voronoi cells, while the b and c, which demonstrate stronger 
regional variation were fit with ∼100 parameters each. In this sec-
tion, we present our preferred inner core model, which uses data 
residuals calculated using the LLNL-G3Dv3 mantle model. We pre-
fer this result because the 3D mantle corrections and final inner 
core model display the greatest variance reduction of the three. A 
full comparison of the results can be found in Section 4.1.

The resulting preferred model properties are shown in Fig. 4. 
The mean isotropic model (Fig. 4a) exhibits clear isotropic hemi-
spheres, with average values of 0.4% dV/V in the eastern hemi-
sphere and −0.6% dV/V in the western hemisphere. Regional vari-
ations are more prevalent in the western hemisphere, with local 
low velocities adjacent to the hemispheric boundaries and beneath 
the central Atlantic. Resolution tests (see Supplementary Materi-
als, Figs. S6, S8) indicate that the data are capable of constraining 
intra-hemisphere variations of this scale and amplitude. The uncer-
tainty in isotropic variations (as defined by the standard deviation 
of the ensemble models) is ∼0.15% dV/V in the well determined 
areas of the hemispheres ranging up to 0.2% dV/V in parts of 
the eastern hemisphere. Beneath the southern Atlantic the uncer-
tainty reaches a maximum of 0.75% dV/V and moderate uncer-
tainty (0.4–0.5) arises beneath South America. It is unlikely that 
isotropic variations can be trusted in these regions. To better as-
sess the significance of velocity variations compared to the model 
uncertainty, Fig. 5 shows cross-sections through the model proba-
bility density function at constant latitudes.

High posterior uncertainties also appear at the edges of the 
hemispheres due to uncertainty in boundary location. Ambiguity 
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Fig. 5. Probability density functions for isotropic velocity (left) and b + c (right) along constant latitude slices. Note the different scaling in velocity value. Locations for the 
slices are indicated by grid lines in Fig. 4. The mean model values are given by the cyan lines. Colors show relative probability, with darker colors indicating values more 
common in the ensemble.
Fig. 6. Example of model distribution across a hemisphere boundary. Points A, B and 
C are indicated on Fig. 4 (a). Histograms at points A and C show single peaks of high 
and low velocity in the eastern and western hemispheres, respectively. At point B, 
the ensemble places some models in the East and some in the West, indicating a 
degree of uncertainty in the location of the boundary.

about whether the large standard deviations are due to uncertainty 
in the data or the boundaries can be resolved by examining the 
posterior pdf (e.g. Fig. 5). Fig. 6 gives another example of this. 
Histogram A shows the model values at point A in the eastern 
hemisphere and the Histogram C shows values for point C in the 
western hemisphere. Each is a roughly normal distribution around 
the mean value for that hemisphere. At the hemisphere boundary, 
Histogram B has a peak at each value, suggesting that the ensem-
ble disagrees about which hemisphere point B is within.

The ensemble solution allows us to estimate the likelihood of 
finding a boundary transition at a given location. Fig. 7 shows 
the mean magnitude of the longitudinal gradient in the ensem-
ble models, focusing on the two boundary locations. The Pacific 
boundary sits at 194◦E above 30◦N, but appears to bifurcate to 
Fig. 7. Mean of absolute value of the longitudinal rate of change of isotropic VP

in the TBI model ensemble, centered on interpreted hemisphere boundaries. High 
values indicate locations of high longitudinal gradients in isotropic VP .

the south. Towards the south, the boundary veers to ∼182◦ , while 
the other peak represents the addition of the lower velocity re-
gion within the western hemisphere. The boundary beneath Africa 
is centered around 28◦E, but its uncertainty is greater and its lo-
cation becomes very poorly constrained away from the equator.

The 2D TBI model favors regional variations in anisotropy that 
do not exhibit a hemispheric or global signature (Fig. 4b). Reso-
lution tests suggest that, if present, our study would be able to 
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Fig. 8. Left: Histograms of PKiKP-PKIKP residuals in background (top) and preferred TBI model (bottom). Right: Residuals plotted with respect to turning point depth and 
longitude in the background model (top) and TBI model (bottom). TBI models produce an average of 58.9% variance reduction.
detect hemispheric variations in anisotropy (Figs. S12, S10). At high 
latitudes, the posterior distribution of the anisotropic terms is as 
broad as the proposal distribution, suggesting that available data 
does not improve estimates of axial anisotropy in those regions, 
reflecting the fact that rays travel almost entirely in the equatorial 
direction near the poles. Elsewhere in the model, the anisotropic 
variations rarely exceed 2σ . The most robustly determined region 
of anisotropy is beneath Africa, where b + c reaches a maximum of 
2.2% dV/V.

Fig. 4e visualizes the correlation between the isotropic per-
turbations and b + c. The model generally co-varies negatively 
throughout the inner core—when the isotropic velocity increases, 
b + c decreases. This is due to the ray geometry and the geometry 
of anisotropy. In the absence of variation in ζ of raypaths in a re-
gion, there is a linear trade-off between dV, b, and c. The strongest 
correlation is around the hemisphere boundaries, suggesting there 
is also a trade-off between boundary location and the strength of 
anisotropy. Synthetic tests (Figs. S2, S6) suggest that this corre-
lation could give rise to artificial structure in b + c, though at a 
significantly lower amplitude than the structure we recover here.

The ensemble models reduce the variance in the differential 
travel time residuals by an average of 58.9%, an improvement over 
the simpler quasi-hemisphere model (50.8% reduction). The residu-
als before and after the inversion are shown in Fig. 8. The coherent 
hemispheric pattern seen in the raw data has been removed, but 
a strong, un-modeled depth variation persists in the eastern hemi-
sphere.

4. Discussion

4.1. Effect of 3D mantle structure

In order to estimate the effects of 3D mantle heterogeneity on 
the inferred inner core structure, we calculate rays and travel times 
in three Earth models: the 1D reference Earth model, AK135, and 
two 3D P-wave models. The first, the P-wave velocity model of 
Moulik and Ekstrom (2016) (ME2016), constrained in the lower 
mantle primarily by normal modes and low-frequency body wave 
travel-times, exhibits strong (±4%), long wavelength heterogene-
ity near the CMB. The second model, LLNL-G3Dv3 (Simmons et al., 
2012) was created incorporating high-frequency body wave travel 
times and has shorter wavelength variations with smaller ampli-
tudes (±2% near CMB). These differences could potentially affect 
the retrieval of inner core structure, by, for example, changing 
the calculated turning depth of PKIKP in the inner core. We find 
changes of turning depth on the order of 1 km due to 3D man-
tle heterogeneity, but the effect of geoidal versus spherical models 
is larger. For LLNL-G3Dv3, rays were traced in an oblate spheroidal 
Earth, resulting in a ∼3 km difference in the radius of the ICB be-
tween the poles and equator. This difference has a minor effect 
on the length of inner core ray paths, but a pronounced effect on 
turning point (±6 km depth below ICB). Since we calculate struc-
ture across a single layer this does not have consequences for our 
results presented here. However, this finding has implications for 
the proposed lateral shift in hemisphere boundaries with depth in 
the inner core (Waszek et al., 2011), as well as any other depth-
varying structure (e.g. anisotropy).

Fig. 9 shows the effect of 3D mantle models on the predicted 
PKiKP–PKIKP times. The maps show the difference between dif-
ferential times calculated in 3D (dT3D ) and 1D, AK135 (dT1D ) 
models, projected onto the core paths; the differences are sum-
marized in histograms below. In the map, red indicates where the 
predicted differential travel times are smaller in the 3D models, 
which would lead to an interpretation of faster velocity in the in-
ner core. Overall, effect of propagation through ME2016 is ±0.1 s, 
and increases variance by ∼1%. Propagation through LLNL-G3Dv3 
results in a median decrease of 0.18 s to the predicted times due 
to the fact that its uppermost inner core velocity is ∼0.4% lower 
than in AK135. Correcting for this, effects of the mantle struc-
ture are ±0.12 s and decrease variance by ∼6%. LLNL-G3Dv3 likely 
generates a larger effect than ME2016 due to shorter lengthscale 
variations in velocity.

Since observed residuals fall between ±1.2 s, it is clear that 
mantle heterogeneity is not responsible for the majority of varia-
tions in the differential travel times. Indeed, 3D mantle structure 
choices do not manifest in any broad regional patterns, except 
around the large low shear velocity provinces beneath Africa and 
the Pacific Ocean. Even there, the estimated corrections have a to-
tal range of only 0.25 s, which falls within the scatter of the data, 
and consequently have limited effect on the features detected. This 
insensitivity to mantle structure is attributed to the close ray paths 
of PKIKP and PKiKP in the mantle. Mantle corrections will become 
more important for deeper-turning PKIKP rays (used in combina-
tion with PKPab or PKPbc, or absolute PKIKP measurements with 
no reference phase).

A comparison of the results using the three different mantle 
models is given in Fig. 10. Apart from minor details, the character 
of the mean models and their uncertainty for both isotropic and 
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Fig. 9. Core paths (top) and histograms (bottom) of differential PKiKP-PKIKP times accrued in the mantle as predicted by two different mantle tomographic models, ME2016
and LLNL-E3D. Higher values translate into higher interpreted inner core velocity.

Fig. 10. Comparison of 2-D TBI ensemble models obtained using different background mantle models. Left: ak135, Middle: ME2016, Right: LLNL-G3D. (Row 1) Mean isotropic 
VP . (Row 2) Standard deviation of isotropic VP . (Row 3) Mean b + c anisotropy. (Row 4) Standard deviation of b + c terms. (Row 5) Posterior correlation between lateral 
variations of isotropic VP and b + c.
anisotropic variations is essentially identical. The variance reduc-
tion in the three models is also similar. The AK135 model reduced 
variance by 58.5%, the ME3D model by 57.6% and the LLNL-G3Dv3 
model by 58.9% (compared to predictions in AK135). The most 
visible difference between the models is the low isotropic pertur-
bation present in the AK135 model below the southern Atlantic, 
is less prevalent in the other two. It also features slightly higher 
isotropic values in the Eastern hemisphere and a stronger b + c
anomaly beneath Siberia.
4.2. Regional-scale structure

Our tomographic model reveals evidence for regional variations 
in inner core velocity and anisotropy (Fig. 4). These variations are 
especially prominent in the pattern of anisotropy. By comparing 
regional variations against a range of potential model values – as 
shown in Fig. 5 – we can assess their robustness, accounting for 
both geographical and angular coverage. For example, like Pejić et 
al. (2017), we find that the sparse ray paths beneath South Amer-
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ica and the Southern Atlantic Ocean preclude interpretations of 
model values in this region.

Regions of high positive velocity anisotropy beneath Africa and 
the Pacific Ocean (Fig. 4b, bc3) contrast with negative anisotropy 
detected beneath Siberia (bc1) and the North Atlantic Ocean (bc2). 
Regional anisotropy variations have previously been detected in 
body waves, particularly beneath the Pacific Ocean (Cormier et 
al., 2011; Irving and Deuss, 2015; Yu et al., 2017; Godwin et al., 
2018), Africa (Yu and Wen, 2007; Irving, 2016), and Central Amer-
ica (Blom et al., 2015).

The regional scale structure does not display significant cor-
relation with the hemispherical dichotomy, ruling out large-scale 
mechanisms as the source of anisotropy. While this precludes a 
better understanding of the origin of the hemispheres, it also in-
dicates that there are likely multiple geodynamic processes which 
generate the inner core structures. For example, regional melting 
and freezing of the inner core boundary (Gubbins et al., 2011)
could generate the observed regional structures. More rapid freez-
ing would result in an increased lighter element content, which 
increases seismic velocity via a density decrease (Antonangeli et 
al., 2010). Melting would remove this light element content, with 
a corresponding velocity reduction. Other regional-scale processes 
include alignment to heat flow or magnetic field stresses (Karato, 
1993; Bergman, 1997; Karato, 1999).

Despite the lack of hemispheric dichotomy in the anisotropic 
structure, we note that the extrema in anisotropic values are 
smaller for the western hemisphere. This may result from averag-
ing over the isotropic upper layer here, which has previously been 
estimated with this dataset to extend to approximately 60 km be-
low the inner core boundary (Waszek and Deuss, 2011). At present, 
our dataset and parametrization unable to constrain the poten-
tial effects of depth variation in anisotropy. The regional nature of 
the anisotropy also rules out a translation-induced mechanism for 
anisotropy in the inner core, whereby annealing during eastward 
translation produces weaker anisotropy in the eastern hemisphere 
(Bergman et al., 2010). Local maxima in anisotropy are located be-
neath Central and northern South America (Fig. 4b, bc4), which 
corresponds to data from the South Sandwich Islands generally 
used to infer strong anisotropy in the western hemisphere (Tkalĉić, 
2015; Blom et al., 2015). Our observations indicate that this re-
gion is in fact not representative of the upper western hemisphere 
structure.

4.3. Location and uncertainty of hemisphere boundaries

We find a trade-off between the location of hemisphere bound-
aries and the strength of anisotropy. This is particularly true for 
the boundary beneath Africa. The addition of cylindrical anisotropy 
moved the boundary location from 11◦ to 14◦ in the quasi-
hemisphere model, while the 2D inversion further moved the av-
erage boundary longitude to ∼24◦ . These locations are within the 
bounds of those found by simple travel time analysis (Waszek et 
al., 2011). Recent regional work by Irving and Deuss (2015), Irving
(2016) examining the boundary regions found similarly that the 
isotropic and anisotropic boundaries do not coincide, consistent 
with the interpretation that the hemispherical dichotomy charac-
terizes isotropic velocity only.

For the isotropic hemisphere boundaries, the latitudinal varia-
tion we detect has been noted in recent studies (Irving and Deuss, 
2015; Irving, 2016; Yu et al., 2017; Godwin et al., 2018), and our 
observations (Fig. 7) here are generally in excellent agreement. 
Some of the latitude variation (and uncertainty) in the location 
of boundaries may be due to depth dependent changes caused by 
the rotation of the inner core as it solidifies (Aubert et al., 2008;
Waszek et al., 2011). Our tomographic inversion treats the upper-
most inner core as a single layer and cannot constrain the variation 
of boundary location with depth. However, Lasbleis et al. (2017)
argues that such a depth shift cannot be constrained within errors 
for body waves, leading us to conclude that this effect is small in 
our models.

4.4. Trade-offs between isotropic and anisotropic variations

In the tomographic inversion presented here, regional-scale 
anisotropic variations tend to be larger in amplitude than the 
isotropic variations. This admits at least two different explana-
tions: Processes that cause anisotropy indeed dominate the inner 
core, such as regional-scale heat flow or stresses (e.g. Karato, 1993;
Bergman, 1997; Karato, 1999) which are stronger than the large-
scale hemispherical growth processes (e.g. Aubert et al., 2008;
Alboussiére et al., 2010; Monnereau et al., 2010); Alternatively, 
axial anisotropy is not adequate for explaining the observed direc-
tional dependence of the travel times (Lythgoe and Deuss, 2015). 
Previously, Cormier et al. (2011) proposed that faster solidifica-
tion in the east hemisphere could generate radial anisotropy, while 
slower freezing in the west hemisphere resulted in orientations 
parallel to the inner core boundary. A combination of these pro-
cesses, with regional variation in the direction of the anisotropy 
parallel to the inner core boundary, could account for variations 
revealed by our tomographic model.

Our tomographic models shows that corrections for 3D man-
tle structure and geoid shape do not entirely account for the di-
rectional dependence of differential travel time observed in high 
latitude regions such as Siberia. Near the poles, PKIKP phases tra-
verse the uppermost inner core travel almost entirely in the equa-
torial direction. When strong directional dependence is detected 
at high latitudes, it can only be explained by dubiously large 
(though mineralogically admissible) amounts of axial anisotropy 
(see Romanowicz et al., 2016 for table of compiled mineral physics 
values). A more parsimonious explanation for the observations 
might be azimuthal anisotropy or an axis of anisotropy titled away 
from the rotational axis, as proposed in some regional studies 
(Creager, 1992; McSweeney et al., 1997). A full exploration of these 
possibilities could form the foundation for future studies.

5. Conclusions

We present a new tomographic study of both global and 
regional-scale structure of the uppermost inner core, including 
both isotropic and anisotropic velocity variations. The probabilistic 
and naturally parsimonious approach we use is well suited to inner 
core tomography, enabling us to retrieve hemisphere-size varia-
tions simultaneously with strong lateral jumps in isotropic velocity 
and small-scale structure where required by the data. By analyzing 
the properties of the resulting model ensembles, we come to the 
following notable conclusions:

• We find robust isotropic hemispheres (averages of 0.4% dV/V
and −0.6% dV/V in the eastern and western hemispheres), 
with stronger regional variations in the western hemisphere 
(±0.3% dV/V) than in the east. Isotropic velocity has a stan-
dard deviation of σ ≈ 0.2% dV/V in well-resolved parts of the 
hemispheres, with larger uncertainty around South America 
and the Atlantic. Large standard deviations around the hemi-
sphere boundaries are due to uncertainty in boundary location.

• We detect no corresponding hemispheric dichotomy in cylin-
drical anisotropy, assuming that its fast axis is aligned with 
the Earth’s rotational axis. Robust detection of anisotropy is 
confined to areas where adequate crossing paths exist (be-
neath Africa and the eastern Pacific), and the uncertainty is 
everywhere higher than σ = 0.6% dV/V. Limited ray paths in 
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the axial direction lead to near-complete lack of constraint on 
anisotropy at latitudes greater than 45◦ .

• Analysis of the changeover between high and low isotropic 
velocity regions allows us to estimate the locations and uncer-
tainty of hemisphere boundaries. We find the Pacific boundary 
varies by about 15◦ from north to south. Although the African 
boundary shows less variation, it is only constrained from 60◦S 
to 30◦N, beyond which there is little agreement in the model 
ensemble.

• We estimate that the effects of 3D mantle heterogeneity on 
our model of the inner core is minimal. Results found us-
ing 1D versus 3D reference models show little difference in 
anisotropic properties and their uncertainty, with minor dif-
ferences to the isotropic velocity in the southern Atlantic. The 
deflection of the turning depth based on ray tracing in a refer-
ence geoid vs. a spherical Earth model may have implications 
that are not captured in our single-layer model.

• Regions of negative b + c at high latitudes contradict miner-
alogical constraints on seismic anisotropy, suggesting cylindri-
cal anisotropy may not be adequate for explaining body wave 
observations sensitive to the uppermost inner core.
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