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S U M M A R Y
Inversion of surface wave data for crustal and upper-mantle structure is a staple of passive
seismology, particularly since the advent of techniques enabling surface wave dispersion
(SWD) and Rayleigh wave ellipticity measurements from ambient noise. Recent development
and application of transdimensional Bayesian (TB) seismic inversion offers an approach to
quantify model parameter uncertainties and trade-offs with fewer assumptions than traditional
methods. Using synthetic tests, we investigate choices in the implementation of TB for the
inversion of SWD and Rayleigh wave ellipticity to constrain the structure of Earth’s continental
lithosphere. We focus on three aspects of the inversion: limitation of data sensitivity, assumed
scaling among parameters (compressional wave speed, Vp, shear wave speed, Vs, density and
radial anisotropy) and parametrization choices. We show that while surface wave data provide
relatively strong constraints on the posterior distribution of Vs and, to a lesser extent, Vp,
common parametrization choices can potentially bias structure estimates. This is particularly
the case for radial anisotropy (ξ ), due to the inability to distinguish variations of Vp and density
from those of ξ . Inferred results therefore depend substantially on the parametrization and
scaling choices. We illustrate how layered parametrizations can, in the TB framework, recover
smoothly varying profiles, and quantify the number of layers recoverable at different levels
of measurement uncertainty. Finally, we propose two types of model parametrization for TB
inversion involving multiple types of parameters. We demonstrate that by implementing an
independent parametrization for different physical quantities, we can avoid imposing identical
model geometry across multiple types of model parameters, and obtain better model estimates
with reduced trade-offs. We advocate for such a parametrization in TB inversion of radial
anisotropy using surface wave data, and when targeting disparate Vp and Vs structures such as
those associated with α-β quartz transtion.

Key words: Inverse theory; Crustal imaging; Seismic anisotropy; Surface waves and free
oscillations.

1 I N T RO D U C T I O N

Seismic surface waves are strongly excited by shallow earthquakes, and more easily recorded at large epicentral distances compared to body
waves due to lesser geometrical spreading. Because their sensitivity to structure depends on frequency, their propagation velocity does as
well. Therefore, measurements of surface wave dispersion (SWD) provide constraints on crustal and upper-mantle structure with excellent
global coverage and high lateral resolution (e.g. Romanowicz 2002). Indeed, seismic tomography based on SWD has been widely used to
constrain the 3-D shear wave velocity in crust and upper mantle both on a global scale (Montagner & Tanimoto 1991; Trampert & Woodhouse
1996; Shapiro & Ritzwoller 2002; Ekstrom 2014; Pasyanos et al. 2014) and regional scale (e.g. Simons et al. 2002; Huang et al. 2003; Yao
et al. 2006, 2008; Lin et al. 2008; Wagner et al. 2012). Differences between the dispersion of Rayleigh and Love waves led to the discovery
of radial anisotropy in the upper mantle (Anderson 1961; Aki 1968), and are now routinely used to constrain profiles and lateral variations of
radial anisotropy of Earth’s crust and upper mantle (Panning & Romanowicz 2004; Kustowski et al. 2008; Ferreira et al. 2010). The particle
motion of fundamental mode Rayleigh wave is elliptical. The measurement of the ratio of the vertical to horizontal amplitude of particle
motion (ZH ratio) can be shown to be sensitive to elastic properties and density in the crust, and has also been used to constrain shallow Earth
structure (Boore & Toksoz 1969; Tanimoto & Rivera 2008; Yano et al. 2009; Lin et al. 2014).

Inferring Earth properties from seismic data is a non-unique inverse problem because seismic observables provide only limited constraints
(Franklin 1970). Love and Rayleigh waves depend on density and 13 independent elastic parameters (e.g. Chen & Tromp 2007), which can
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vary laterally and with depth. Therefore, inversions of SWD and ZH ratio data inherently involve significant non-uniqueness due to trade-offs
among model parameters; when linearized and posed in terms of matrix inversion, the large number of model parameters yields singular
matrices requiring regularization for a solution to be obtained. To best represent the Earth’s structure given the available seismic observation,
certain assumptions are often made to simplify the model. For example, the structure may be assumed to be layered or to vary smoothly
with depth (e.g. Constable et al. 1987). Within each layer, the elastic properties might be assumed to be isotropic, so that they can be
described with just three parameters: density (ρ), shear (VS) and compressional (VP) wave speed. Another common assumption is that of
radial anisotropy (transverse isotropy), which involves three additional parameters: the squares of the ratios of wave speeds of horizontally and
vertically-polarized waves, ξ = (VSH/VSV)2 and ϕ = (VPV/VPH)2, respectively, as well as a parameter, η, describing wave speeds at intermediate
directions.

Even with these simplifying assumptions, constraints provided by SWD data are insufficient to reliably infer all the model parameters,
particularly those to which the seismic observables are weakly sensitive—such as Vp, ϕ, η and ρ. Based on empirical trends, variations in
these parameters are often scaled to variations in better-resolved parameters such as Vs (e.g. Brocker 2005) and ξ (e.g. Montagner & Anderson
1989). Indeed, ϕ and η are assumed and remain a workhorse of structural seismology. Recently, global tomographic models in which the
scaling relationships are allowed to vary with depth or laterally have also been performed (e.g. Simmons et al. 2009; Moulik & Ekstrom
2016).

Standard inversion approaches are ill-suited for studying how parametrization choices and scaling assumptions affect the accuracy of
seismic structures inferred from surface wave data. To start with, a certain amount of regularization—in the form of smoothing, damping, or a
priori covariance among parameters—must be imposed to obtain a solution in the first place. Uncertainty analysis developed for linear(izable)
problems can be applied (e.g. Backus & Gilbert 1967; Tarantola & Valette 1982) to study the trade-offs between inferences of Vs, Vp and
density. However, SWD and ZH ratios depend on elastic properties in a non-linear way; their sensitivity to a parameter of interest can depend
on the value of that and other parameters. Therefore, these linear approaches may not be appropriate. Even if they were appropriate, the analysis
may depend on the parametrization—for example, for different choices of number and thickness of layers—limiting their generalizability. On
the other hand, model space search methods do not require an inversion to be performed, and offer the potential to quantify the uncertainty
of inferences even in highly non-linear problems (Mosegaard 1998). Yet, application of these approaches to overparametrized problems is
stymied by the curse of dimensionality (e.g. Tarantola. 2005), and has, until recently, required the parametrization to be chosen prior to
inversion.

To better represent the uncertainties from seismic imaging results and to incorporate complementary seismic observables with increasingly
available measurements, seismic transdimensional Bayesian (TB) inversion has been developed (Malinverno 2002; Bodin & Sambridge 2009;
Agostinetti & Malinverno 2010; Bodin et al. 2012). Under a Bayesian framework, all information is described in terms of probabilities. This
allows for data uncertainties as well as prior assumptions about model parameters to be explicitly accounted for. Furthermore, since Bayesian
inversion seeks an ensemble solution instead of a single best-fitting model, quantification of uncertainties of inferred model parameters
and correlations between them is relatively straightforward. In contrast to traditional inversion methods, which treat the number of model
parameters as a constant chosen prior to inversion, transdimensional inversion includes it as an unknown determined by the data (Sambridge
et al. 2013). With a more flexible model parametrization, transdimensional inversion also more easily accommodates multiple data types with
different, and therefore complementary, sensitivities to the seismic structure.

The TB method offers a new opportunity to quantify effects of parametrization choices and assumptions of scaling among parameters,
enabling a reassessment of uncertainties in SWD and insight into outstanding questions, such as the origin of the relatively poor agreement
among radially anisotropic global shear velocity models (Chang et al. 2015). Under a TB framework, we can eliminate scaling assumptions as
well as assumptions concerning the number and thickness of structural layers, while simultaneously constraining multiple model parameters
to various degrees.

In this paper, we use TB inversion to systematically explore the ability of SWD and ZH ratios to constrain profiles of Vs, Vp, ρ and ξ

beneath a seismic station, under various model parametrization choices. Synthetic data of these two observables are inverted individually and
jointly to investigate the complementarity of data sensitivity, the consequences of parametrization choices, and the influence of assumptions
about scaling relationships between physical quantities.

2 M E T H O D

2.1 Seismic Bayesian inversion

Bayes’ theorem (Bayes & Price 1763) relates the probability (p) of a model (m) conditional on a data set (d), written as p(m|d), to the
probability of observing the data set given a model, i.e. p(d|m):

p (m|d) = p (d|m) × p (m)

p (d)
(1)

Here, the model is represented by a vector quantity that includes all the model parameters of interest. Similarly, all observed data
comprise a vector d. The aim of Bayesian inference is to quantify the posterior probability density p(m|d), which is the probability density of
the model parameter given the observed data (Smith 1991). The term p(d) is called the evidence. Note that p(d) is not a function of m, and
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should remain constant as we vary the model parameter under the same setting, allowing us to write:

p (m|d) ∝ p (d|m) × p (m) (2)

Seismic inversion is the procedure of using the measurements made on seismic records (i.e. data, d) to infer a model (m) that quantitatively
describes the Earth’s, typically inaccessible, interior. In such case, the posterior is the probability of certain seismic structure given the
observation and the prior. It is therefore proportional to the product of likelihood—the probability of observing the data given a seismic
structure—and the prior probability on the model parameters. While the forward problem of predicting the outcome of some measurements
given a complete description of the physical system has a unique solution, the inverse problem does not. This non-uniqueness arises both
from data measurement errors and the insufficiency of information contained in the data. Unlike many common approaches to solving such
inverse problems, which seek to reduce the non-uniqueness by introducing prior information in the form of smoothing or damping operators
(e.g. Constable et al. 1987; Menke 2012), the Bayesian approach embraces the non-uniqueness and represents it in probabilistic terms.

2.1.1 The prior

In the Bayesian framework, the prior information p(m) is used to describe our knowledge about the parameters that describe the model prior
to introducing data (Sivia & Skilling 2006).

If the parameters that we are interested in inferring correspond to an unknown number n of physically non-overlapping regions, the prior
can be separated into two terms:

p (m) = p (me, n) = p (me|n) × p(n) (3)

Here, me stands for the parameters describing the seismic structure (Vp, Vs, density and the physical location of the regions). We use a
uniform distribution for n over the interval I = {n ∈ N | nmin < n ≤ nmax}. Hence,

p(n) =
{

1
�n if n ∈ I
0 otherwise

(4)

where �n = (nmax − nmin).
In this study, the target model is parametrized in depth using Voronoi nuclei (Aurenhammer 1991); the region nearest to a given Voronoi

nucleus is defines a layer of constant elastic parameters specified for that Voronoi nucleus. The boundary between adjacent layers is defined
as the midpoint between two Voronoi nuclei (see Fig. 1). Since we are interested in the profiles of multiple types of parameters, we propose
two different parametrization schemes, illustrated in Fig. 1.

For the first type of parametrization, we allow each Voronoi nucleus to specify all types of parameters. We call this type of parametrization
‘attached’. Given a number of cells n, the probability distributions for the 4 × n parameters, 1-D Voronoi nucleus position (z), shear velocity
(Vs), compressional velocity (Vp) and density (ρ) are assumed to be independent from each other, and so can be written as:

p (me|n) = p (z|n) × p (vs |n) × p
(
vp|n

) × p (ρ|n) (5)

To minimize the amount of prior information introduced, we assume uniform distributions over specific intervals. For example, if we
define Js = {vs,i ∈ R | Vmin < vi < Vmax}, we have:

p(vs,i |n) =
{

1
�vs

if vs,i ∈ Js

0 otherwise
(6)

where �v = (Vmax − Vmin). Since the shear velocity in each Voronoi nucleus is assumed to be independent (i.e. no smoothing is imposed),

p (vs |n) =
n∏

i=1

p(vs,i |n) (7)

Similarly, we can write:

p
(
vp|n

) =
n∏

i=1

p(vp,i |n) (8)

p (ρ|n) =
n∏

i=1

p(ρi |n) (9)

For a 1-D-layered model, the possible positions of the Voronoi nuclei are distributed along depth. If we assume that there are N
possible positions for n Voronoi nuclei, there are then N !

n!(N−n)! possible configurations. Again, we assign an equal probability to each of the
configurations, and can then write:

p (z|n) =
[

N !

n! (N − n)!

]−1

(10)
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Figure 1. Two schemes for using Voronoi nuclei (squares) to characterize a 1-D isotropic seismic velocity model (Vs—blue, Vp—dashed and ρ—black). In the
‘attached’ scheme (left-hand panel), each Voronoi nucleus carries all three parameters (Vs, Vp and density). In the ‘independent’ scheme (right-hand panel),
the three types of parameters are carried by independent sets of Voronoi nuclei. The second Voronoi nucleus is labelled in both panels to illustrate differences
between the two parametrization schemes. The model shown in left-hand panel is the target model used to generate synthetic data inverted in later sections.

Combining together eqs (3)–(10), the full prior probability density function (PDF) can be written as:

p (m) =
{

n!(N−n)!

N !(�vs )n(�vp)n
(�ρ)n�n

i f
(
n ∈ I and ∀i ∈ [1, n] , vsi ∈ Js, vpi ∈ Jp, ρi ∈ Jρ

)
0 otherwise

(11)

For the second type of parametrization, we assign independent sets of Voronoi nuclei to each type of parameter. Hence, we call this type
of parametrization ‘independent’. In this case, we have

p (me|n) =
3∏

j=1

p
(
z|n j

) × p
(
me, j |n j

)
(12)

Here, me, j stands for the elastic parameters (Vs, Vp, and ρ) the Voronoi nuclei carry. Unlike the first scheme, the number and the
position of the Voronoi nuclei are independent from each other for different elastic parameters. In this way, we do not force all type of elastic
parameters to be attached to a single Voronoi nucleus, which ideally will allow a more flexible parametrization. Similarly, we have

p
(
me, j

) = n j !
(
N − n j

)
!

N !
(
�me, j

)n j
�n j

i f
(
n j ∈ I and ∀i ∈ [

1, n j

]
, me, j ∈ J

)
(13)

Each of the two types of parametrization has certain advantages for particular problems; we will further explore this in this paper in
the joint inversion of SWD and ZH ratios in the discussion section. Bodin et al. (2016) described an alternative type of parametrization
where additional parameters constraining anisotropy are proposed on existing isotropic shear velocity structures, and such proposed model
is accepted based on the constraints from data only. Since all the anisotropic parameters are proposed attaching to the velocity layers, the

Downloaded from https://academic.oup.com/gji/article-abstract/215/2/1037/5061122
by University of Maryland user
on 01 September 2018



Parametrization in surface wave inversion 1041

geometry of the anisotropic structure will depend on the velocity structure to some degree. This kind of parametrization appears to lie between
the two we proposed in terms of the dependence among different types of parameters.

2.1.2 Likelihood function

The likelihood p(d|m) quantifies how likely we would be to observe the data if the actual structure were described by the set of parameters
in vector m. We use a least-squares misfit function to describe the consistency between the predicted and observed data:

	 (m) =
∥∥∥∥∥ g (m) − d

σd

2
∥∥∥∥∥ (14)

where g(m) is the predicted data and σ 2
d is the estimated variance describing the data uncertainties. This misfit function is appropriate for data

with normally-distributed errors, and yields the following likelihood:

p (d|m) ∝ exp

(−	 (m)

2

)
(15)

In the rest of this paper, we do not explicitly contaminate our synthetic data with noise because our likelihood function takes into account
the effect of noise if we assume it to be uncorrelated across different periods, as is commonly done in the literature.

2.2 Transdimensional sampling

Bayes’ theorem quantifies how the posterior distribution is affected by the choice of the prior. The assumptions we make in formulating the
inversion influence the outcome. In seismic inversion, assumptions about number of parameters are often made to fit the linearized inverse
problem and to reduce non-uniqueness. These assumptions are often motivated by previous knowledge about the studied region. The risk in
making these assumptions is that they could be biased or incorrect. The geophysical inversion literature abounds in examples in which the
choice of the parametrization affects the inversion to different extents due to different degrees of correlation among model parameters. As
an example, Trampert & Snieder (1996) showed how truncated expansions of basis functions could bias seismic tomography models. The
motivation for applying a transdimensional sampling method into the inversion is to allow flexibility that does not require, but can nevertheless
accommodate, strong prior assumptions about the model parametrization.

Allowing a flexible parametrization without any regulation may lead to another problem, where the model will contain complexities
arising from attempting to fit details of the data as closely as possible. Since the data we measure contains error due to both instrumental and
environmental noise sources, fitting the detailed data is ill-advised. The Bayesian formulation of model selection is naturally parsimonious
(Malinverno 2000; Sivia & Skilling 2006); Malinverno (2002) showed that this is also the case with TB inversion. This means that if we
have two competing models with different numbers of parameters that both fit the data equally well, the Bayesian formulation will favour
the simpler model. Combining the transdimensional sampling method and the Bayesian framework, TB inversion therefore allows a more
flexible parametrization with fewer assumptions made.

2.3 Reversible-jump Markov Chain Monte Carlo for multiparameter seismic structure

We apply a reversible-jump Markov Chain Monte Carlo (rjMCMC) algorithm to carry out the TB inversion. The MCMC is an iterative
algorithm that draws random steps from a desired distribution; with sufficient number of iterations, the models are sampled proportional to
their posterior probability, p(m|d). The rjMCMC algorithm consists of two stages, proposing a new model (m’) by perturbing the current
model (m) and deciding accepting or rejecting it.

In a case of transdimensional sampling, the acceptance probability is:

α = min

[
1,

p (m ′) p (d|m ′) q (n, m|n′, m ′)
p (m) p (d|m) q (n′, m ′|n, m)

|J |
]

(16)

Note that here the proposal ratio is different than in the fixed parametrization case. J is the Jacobian matrix of the transformation from
m to m’. It is needed to account for the scale change only when there is a dimension change during the sampling process (Green 2003). In
our case of discrete Voronoi positions, |J| equals to one (Bodin & Sambridge 2009). Therefore, the Jacobian is unity for each case of the
rjMCMC sampling process and can be ignored.

An important part of designing an rjMCMC is choosing how to perturb the current model m into m’ with some randomness, i.e. how to
efficiently sample the parameter space. A schematic representation of our rjMCMC algorithm is shown in Fig. 2. Following the approach of
Bodin & Sambridge (2009), we perturb the current model by randomly choosing one the four options with equal probability. However, since
we propose two parametrization schemes for dealing with the multiparameter seismic structure, the Markov Chain could behave differently,
especially when dimension changes are involved. We derive the relevant expressions in the Appendix A.
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Figure 2. A schematic overview of the reversible-jump Markov Chain Monte Carlo algorithm used for inversion. Every 100th model is saved to the ensemble
solution to increase the independence of sampled models.

2.4 Target model and forward problem

To test the performance of the TB joint inversion, we choose a realistic isotropic, layered target model (left-hand panel of Fig. 1) for the
synthetic tests. The target model has a 3 km thick sedimentary layer, underlain by a two-layer crystalline crust with Moho at 31 km depth.
The upper mantle shallower than 70 km is represented by three layers with increasing velocity. The velocities remain constant below 70 km.
In the target model, Vs, Vp and density follow the empirical relations from Brocker (2005). The target model is designed in this way for
the convenience of later discussion of scaling relationship effects. To predict SWD and ZH ratios, we use the reflectivity method (Hisada
1994; Aki & Richard 2002) to solve the eigenvalue problem for both Rayleigh wave and Love wave in an elastic, vertically heterogeneous
medium, based on the implementation of Lai & Rix (1998). Later in the discussion about TB inversion of radial anisotropy, we modify the
forward code to compute the SWD given elastic parameter A, C, N, L and F according to Harkrider & Anderson (1962) and Bhattacharya &
Arora (1997). The code also takes into account the sphericity of the Earth based on the formulation of Bhattacharya (1996). We validate our
implementation by comparing our predictions to those from MINEOS (Masters et al. 2011) for the upper 200 km of the Preliminary reference
Earth model (PREM) (Dziewonski & Anderson 1981). Given the same period range, our implementation costs around 0.1 s to predict SWD,
which is much faster than MINEOS. All of the software is written in MATLAB.

3 R E S U LT S

3.1 TB inversion of SWD

We perform TB inversion of both Rayleigh and Love wave dispersion data computed from synthetic input structures in the 5–100 s period
range. This period range covers both the ambient noise data range and part of the teleseismic data range. For teleseismic earthquake data,
the SWD data are usually measured between approximately 30 and 250 s (Laske & Masters 1996; Ekstrom et al. 1997; van Heijst &
Woodhouse 1999; Boschi & Ekstrom 2002; Trampert & Woodhouse 2003; Ekstrom 2011; Ma et al. 2014). The dispersion data below 25 s
period are relatively difficult to measure from teleseismic data due to scattering and potential for cycle skipping. Dispersion measurements
made on ambient noise correlations are typically in the ∼5–40s range (e.g. Ekstrom 2014). The combination of these two period ranges
comprehensively constrains Vs in the crust and upper mantle. We choose to not include dispersion data at periods larger than 100 s, because
their primary sensitivity is below the depth range of interest in this manuscript (upper 70 km). The uncertainty of SWD measurements can
be affected by data quality (e.g. signal-to-noise ratio), data coverage (e.g. distribution of earthquakes and stations), and measurement method
(e.g. whether or not the smoothness of the dispersion curves is exploited). We assign a realistic 3 per cent uncertainty to the dispersion
measurements at each period, and assume that measurements at different frequencies are uncorrelated. It should be noted that the assumption
of uncorrelated data uncertainty, while ubiquitous in the literature, warrants further investigation.

In this test, we only invert for Vs due to the limited constraints SWD data have for Vp and density. We assign an uniform prior between
2.5 and 5.5 km s−1 for Vs. Bodin & Sambridge (2009) suggested that when the data constraints are strong enough, the choice of the broad prior
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Figure 3. Left: Vs depth distributions retrieved using transdimensional Bayesian inversion of synthetic surface wave dispersion data. The ensemble solutions
are displayed as probability density functions at each depth, with warmer colours corresponding to higher posterior probabilities, and the solid red line denoting
the 5 per cent trimmed mean of the posterior. The target model (black dashed lines) is used to generate synthetic data. Synthetic data (red) with specified 1σ

uncertainties for Rayleigh (right top) and Love (right bottom) waves; data predicted by the ensemble solution plotted as probability density functions.

has little effect on the posterior. Our synthetic tests with different priors for Vs support such conclusion. Meanwhile, the choice of prior range
for weakly constrained model parameters such as density during SWD inversion could significantly affect the posterior. For example, when
inverting for Vs and density using SWD with independent parametrization, we find that broadening the prior range twice for density would
resulting the preferred number of layer from the posterior to change from 5 to 3, while broadening the Vs prior range does not change the
preferred number of layer from the posterior. During the inversion, the Vp and density are calculated using the empirical relations according to
Brocker (2005), as used in the synthetic model (see Section 2.4 and Fig. 1). We want to point out that assuming a scaling relationship imposes
additional prior information, requiring fewer model parameters to be inverted for. When the scaling relation is properly chosen, it will help
reduce the variation in the posterior yielding tighter constraints on parameters of interest. Theoretically, an incorrect scaling relation on Vp and
Vs will bias the estimates of both parameters. However, our synthetic tests suggest that for typical Vp/Vs ranges for crustal studies, imposing
incorrect Vp/Vs only biases Vp estimates, while the Vs estimates remain indistinguishable from the posterior obtained with the correct Vp/Vs.
We find this to be the case even when only Rayleigh wave dispersion is used in the inversion. We attribute this behaviour to the much greater
sensitivity of Vs compared to Vp for SWD data. On the other hand, not assuming a scaling relation corresponds to a less informative prior;
due to the naturally parsimonious nature of Bayesian inference, given the same observation, this will lead to a more simplified posterior. In
later sections, we introduce more data types in joint inversions, allowing us to release Vp and density from the empirical scaling relations and
allow them to vary independently.

The rjMCMC starts with a random initial structure. After a burn-in period during which the convergence is achieved, we save the
accepted models into the ensemble solution, for a total of 5 million iterations. Due to the nature of the Markov Chain, each time we perturb
the current model, only a small part of the proposed model is different from the current model. Therefore, consecutive models are highly
correlated, even when the acceptance rate is optimal. To increase the independence of the model ensemble, we choose to save every 100th
sampled model. We primarily rely on two approaches to assess the progress of the rjMCMC chain and to estimate the number of iterations
needed to achieve convergence. First, we monitor how misfit evolves with iterations, making sure that it remains low. Second, we run several
chains with different starting models and compare the statistical properties of the ensemble solutions obtained from each. For each chain’s
ensemble solution, we calculate the root-mean-square deviation (rmsd) to ensure that they are indistinguishable from one another after the
burn-in period (see Figs B1 and B2).

The posterior model density plot is shown in Fig. 3. At every 1 km, we evaluate all the seismic velocities from the ensemble and
normalize them to compute the PDF. The PDF is represented so that warm colours correspond to higher probability and cool colours indicate
lower probability. We want to point out that in such PDF plots, the absolute value of the probability is a function of the bin size used in
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Figure 4. Left: Vs profile retrieved from transdimensional Bayesian inversion using synthetic ZH ratio data. The ensemble solutions are displayed as probability
density functions at each depth, with warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed
mean of the posterior. The target model (black dashed lines) is used to generate synthetic data. Right: data fit of ZH ratio inversion. The red stars with their
associated uncertainties (1σ error bars) are the synthetic data used as an input of the TBI, while the colour tracks the probability density of the data predicted
by the ensemble.

plotting. Therefore, in some cases, low absolute probability density does not necessarily represent poor resolution. The target model is plotted
as a black dashed line for reference. It can be seen that we are able to resolve absolute Vs at different levels along the depth range allowed
in the inversion. We find that Vs is constrained better at shallow compared to deeper depths in terms of posterior variance, mainly due to the
sharper sensitivity kernel for shallow Vs structure from short-period SWD. It can also been seen that while the SWD is able to constrain the
absolute value of Vs, it tends to retrieve the sharp velocity jump in the target model as a smooth transition. This is expected from the fact
that SWD measurements depend on the integral of elastic properties across a range of depths. The uncertainties of Vs below 50 km seem to
decrease with depth; we interpret this as a result of the fact that the period range of SWD we use here (up to 100 second) still has substantial
sensitivity between 50 and 70 km and only one single layer is preferred by the TBI at this depth range.

3.2 TB inversion of ZH ratios

Having explored the ability of SWD constraining shear velocity structures, we turn our attention to ZH ratios, and perform a TB inversion of
ZH ratios computed for the same synthetic model described in Section 2.4 (and shown in Fig. 1). Due to difficulty of reliably measuring ZH
ratios at long periods (Ferreira & Woodhouse 2007), we restrict our attention to the 5–40 s period range, and assign 1 per cent uncorrelated
uncertainty to the observation at each period. In reality, depending on whether standard deviation of the repeat measurements or the standard
deviation of the mean of the repeated measurement is used, the measurement error for ZH ratios could be as large as 3–10 per cent (see Lin
et al. 2012 and Lin et al. 2014); however, to illustrate the ability of ZH ratios to constrain elastic properties, we choose a relatively small value
of uncertainty that might be achieved under ideal circumstances.

Our initial tests show that, compared to SWD, ZH ratios have limited potential for constraining elastic properties deeper than 20 km.
When we invert for Vs, Vp and density using an attached-type parametrization, without assuming scaling relationship among parameters,
the retrieved seismic structure shows large variations along depth and absolute Vp, Vs and density values are systematically biased at most
depths. Even when we restrict the parameter space to the upper 25 km, the ensemble solutions show that we are unable to resolve the profiles
of Vs, Vp and density simultaneously. Motivated by this finding, we invert only for Vs, and use empirical relations of Brocker (2005) to scale
to Vp and density.

As with the SWD inversion, the total number of rjMCMC iterations is 5 million, of which the first 2.5 million are the burn-in period,
in all ZH ratio individual inversions in this section. The convergence rate of ZH ratios individual inversion is similar to the SWD inversion.
With different starting models, the Markov Chain is considered to have converged after about ∼2 × 105 iterations. Therefore, we consider
2.5 million iteration to be a safe choice for burn-in period. As is shown in Fig. 4, the retrieved seismic structure is well constrained in terms
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Figure 5. Vs (left), Vp (middle) and density (right) retrieved from transdimensional Bayesian joint inversion using synthetic SWD and ZH ratio data. In this
test, all three types of parameters have independent parametrization. The ensemble solutions are displayed as probability density functions at each depth, with
warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target model
(black dash lines) is used to generate synthetic data.

of Vs, and fit to data is excellent.
The TBI tests using ZH ratios are very informative. First, they show that compared to SWD, ZH ratios have limited ability to resolve

structure below the crust. The shallow sensitivity of ZH ratios is well documented in the literature, with investigators usually using this data
to constrain structure in the uppermost crust (e.g. Lin et al. 2012). Second, even though a strength of ZH ratios is their sensitivity to Vp, Vs
and density, allowing a unconstrained inversion with all three types of parameters perturbed achieves very little resolution of structure due to
nearly total trade-offs among parameters. When we reduce the number of parameters by fixing scaling relationships among them, we achieve
better outcomes. Therefore, we should keep in mind that without additional constraints, it might not be practical to resolve an accurate and
precise seismic structure from ZH ratios alone. These additional constraints could come either from the prior, such as by imposing scaling
relationships among parameters appropriate for the geological setting of the inversion, or from the inclusion of other seismic observables to
perform a joint inversion, such as SWD, which is the next topic we turn our attention to.

3.3 TB joint inversion of SWD and ZH ratios

In the previous sections, we showed that TB inversion is able to retrieve seismic structures with an adaptive parametrization using seismic
observables one at a time. Here, we conduct a TB joint inversion by combining the Rayleigh wave dispersion, Love wave dispersion and ZH
ratios. The motivation for doing joint inversion is to combine the strengths of different seismic data types to invert for a more comprehensive
structure. The expected improvement in the ability to retrieve Vp and density structure also makes joint inversion a good example to illustrating
the differences between the two types of parametrization proposed in this study.

We first invert for Vp, Vs and density using the independent-type parametrization. To better illustrate the data sensitivity, we do not
impose any scaling factors between Vs, Vp and density. We want to point out that throughout this study, when Vp is inverted, it is actually
parametrized as Vp/Vs ratio. Inverting Vs and Vp/Vs ratio is equivalent to inverting Vs and Vp if given the same prior. As is shown in Fig. 5,
both Vs and Vp are well constrained above 20 km in terms of absolute value and variance compared to either of the individual inversion.
When it comes to deeper structure, the variance of Vp increases significantly. Our calculation of normalized root-mean-square error (rmse)
for Vs and Vp ensemble (Fig. C1) also shows that Vs is better constrained than Vp at most of the depths. The behaviour of the joint inversion
is consistent with our expectations: SWD is able to constrain Vs in crust and upper mantle (with some sensitivity to Vp), while ZH ratios
are able to constrain Vp and Vs in the crust. The preferred model from the density ensemble has two layers, while the Vs and Vp structures
favour a five-layer model. This is because the much weaker data constraints on density yield density structures that are simpler than the actual
target model or the retrieved Vp and Vs structures when inverted using an independent parametrization, in accordance with the lesser ability
to resolve this parameter.

The attached-type parametrization is much more common in the seismic literature on the inversion of surface wave data than is the
independent-type parametrization discussed above (e.g. Shapiro & Ritzwoller 2002; Yao et al. 2008; Chai et al. 2015; Shen & Ritzwoller
2016). In Fig. 6, we show the retrieved structures using an attached-type parametrization. The density ensemble shows a better fit to the
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Figure 6. Vs (left), Vp (middle) and density (right) retrieved from transdimensional Bayesian joint inversion using synthetic SWD and ZH ratio data. In this
test, all three types of parameters share the same geometry. The ensemble solutions are displayed as probability density functions at each depth, with warmer
colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target model (black
dash lines) is used to generate synthetic data.

true model, and contains more detailed structure. We should keep in mind that by using an attached-type parametrization, we impose a
more informative prior that all types of parameters share the same geometry. When such prior information is valid, we could expect a
better-resolved structure. This also suggests that prior assumptions about co-variance of parameters should be justified before being applied
to actual inversion because their effects are significant, particularly for ill-resolved parameters like density. To illustrate the potential pitfalls
of using attached-type parametrization, we show an example where synthetic data in computed for a structure in which the density does not
share the same geometry with Vs and Vp. When we use the attached-type parametrization to perform a TB inversion of this data, the retrieved
density structure exhibits artefacts that reflect the major features of Vs structure. This leads to a biased and misleading estimate of density
(see Fig. D1).

4 D I S C U S S I O N

4.1 Transdimensional versus fixed-parametrization inversion

In Section 3.1, we showed that TB inversion can recover a Vs profile from SWD measurements while treating the number of model parameters
as an unknown. However, inversion of SWD data is most frequently done with a fixed parametrization (e.g. Hermann 2013). To gain insight
into the relative advantages and disadvantages of a transdimensional inversion, we perform a Bayesian inversion with a fixed parametrization
and compare our results to those obtained in Section 3.1. Using a starting model with the correct geometry, we only perturb the shear velocity
during the MCMC. The retrieved ensemble structure is showed in Fig. 7. Like the transdimensional inversion, the fixed-parametrization
inversion is able to recover the Vs. However, while both the absolute value and variance of Vs are well constrained at shallow depths
(< 31 km), the variance at deeper depths increases significantly. We calculate the Kullback–Leibler divergence (KLD) for the posterior of
both inversions with respect to their prior PDF. The KLD for discrete probability distributions is defined as:

DKL(P||Q) =
∑

i

P (i) log
P (i)

Q (i)
(17)

The KLD from Q to P, denoted DKL(P‖Q), can be interpreted as the information gained when one revises one’s beliefs from the prior
probability distribution Q to the posterior probability distribution P (Kullback & Leibler 1951). In Bayesian statistics, when P is the posterior
and Q is the prior, KLD can be interpreted as a measure of the information gained from the data that transformed the prior distribution into the
posterior distribution. The calculated KLD (Fig. 7, middle panel) shows that the fixed-parametrization inversion produced posterior solutions
containing less information at deeper depths compared to the transdimensional inversion. A similar conclusion can also be drawn based on
the comparison of rmse of these two tests (see Fig. 7, right-hand panel), which shows that, at deeper depths, TBI yields lower errors than the
fixed parametrization inversion.

The apparent superiority of TBI may be counterintuitive, since the fixed-parametrization inversion imposed a stronger and perfectly
accurate prior (since the parametrization was fixed to that of the target model). Generally, the more restrictive the prior is, the less uncertain
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Figure 7. Left: Vs depth distributions retrieved using Bayesian inversion of synthetic surface wave dispersion data when parametrization is fixed to the same
parametrization used to compute the synthetic dispersion data. The ensemble solutions are displayed as probability density functions at each depth, with
warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target
model (black dashed lines) is used to generate synthetic data. (middle) Kullback–Leibler divergence for TBI of surface wave dispersion (red triangle) and
fixed-parametrization inversion of surface wave dispersion (blue star). Right: root-mean-square error for TBI of surface wave dispersion (red triangle) and
fixed-parametrization inversion of surface wave dispersion (blue star)

the posterior should be. However, in this case, due to the trade-offs between shear velocities at different depths, the variance of the posterior
is larger than the one using TBI. We stress that the relative advantage of TBI over traditional fixed-parametrization inversion would be even
greater in the more realistic scenario using actual, rather than synthetic, SWD measurements, because in that scenario, the parametrization
would not be known a priori. Moreover, the ensemble result from TBI allows statistical inferences of potential discontinuities along depths
because of the less restrictive assumptions made on parametrization (Bodin et al. 2012).

4.2 Resolving gradual changing seismic structures using layered parametrizations

In our inversion for 1-D layered seismic structure, we assumed that elastic properties remain constant within each layer. While such assumption
is widely made in SWD inversion, gradient-based model parametrization has also been employed in the literature (Gosselin et al. 2017).
Since our inversions are inherently parsimonious, this assumption sets up an inconsistency between layered profiles preferred by the prior
information (via parametrization), and gradual ones potentially preferred by realistic data. To test the implications of this assumption for
resolving gradually changing velocity structures, we perform the following test. We compute synthetic Love and Rayleigh wave dispersion
data in a target model with a 31 km thick crust, within which the Vs increases linearly from 3.0 to 3.6 km s−1. The shear velocity jumps
from 3.6 to 4.2 km s−1 at Moho, and then increases linearly to 4.74 km s−1 at the depth of 70 km. Vp and density are scaled to Vs, following
the empirical relations from Brocker (2005) in both the target model and the later synthetic tests. We use both Rayleigh and Love wave
dispersion data from 5 to 100 s with uncertainties of 3 per cent to invert for shear velocity, and obtain the Vs profiles shown in Fig. 8
(left-hand panel). We find that despite parametrizing the inversion with layers of constant properties, the ensemble solution partially resolves
the gradually increasing velocity. The greatest exception occurs in the upper crust (above around 12 km), where the model ensemble shows a
velocity jump overlaid by constant velocities. When SWD data between 2 and 5 s period are included, the model ensemble better resolves the
gradually increasing velocity structure at the top of the crust (Fig. 8, right-hand panel). This test shows that the lack of data constraints in the
uppermost crust is the main reason for the oversimplified structure. We can see a similar tendency of the inversion toward constant-velocity
layers at the bottom of the model, where constraints from the data decrease once more. These tests suggest that throughout most of the crust,
velocity gradients can be retrieved using TBI even with a layered parametrization; nevertheless, interpretations of gradients from inversions
parametrized with constant-property layers should be cautious in areas where data constraints are less strong.

Aside from the period range of SWD, a large measurement error could be another cause for the limited data constraint, because greater
measurement error degrades the amount of information contained in the data. Here, we test the effect of different measurement errors on
the model complexity of the retrieved solution. We perform transdimensional inversion of 2–100 s Rayleigh and Love wave dispersion data
with data measurement uncertainties ranging from 0.05 to 20 per cent. The target model used to generate synthetic data is the same gradually
changing model shown in Fig. 8. For each test, we validate the convergence of the rjMCMC with the procedure described in Section 3.1,
and then use the distribution of number of layers for the retrieved ensemble as a measure of model complexity. As is shown in Fig. 9, as
data measurement uncertainty increases, the preferred number of layers for the retrieved ensemble decreases. Since the target model has a
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Figure 8. Vs depth distributions retrieved using transdimensional Bayesian inversion of synthetic surface wave dispersion data. The period range of SWD used
is 5–100 s in the left-hand panel and 2–100 s in the right-hand panel. The ensemble solutions are displayed as probability density functions at each depth, with
warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target model
(black dashed lines) is used to generate synthetic data.
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Figure 9. Posterior probability distribution of the number of layers in the retrieved ensemble for transdimensional inversion of surface wave dispersion
measurements with different measurement uncertainties. The period range of both Rayleigh and Love wave dispersion used is 2–100 s.
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Figure 10. Vs (left) and Vp/Vs ratio (right) depth distribution retrieved using transdimensional Bayesian inversion of synthetic surface wave dispersion data.
Independent parametrization is used for Vs and Vp/Vs ratio in this test. The ensemble solutions are displayed as probability density functions at each depth,
with warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target
model (black dashed lines) contains a jump in Vp/Vs due to the α–β quartz transition that is not accompanied by a change in Vs (Diaferia & Cammarano 2017).

gradually changing velocity with depth, a decrease in the preferred number of layers would eventually lead to an oversimplified structure that
does not accurately reflect velocity gradients with depth.

4.3 Attached versus independent parametrizations

Despite the popularity of TB approaches, little discussion has concerned the parametrization of inversions involving multiple types of physical
parameters. For model space search approaches—such as TB inversion—the number of model parameters is not limited by the number of
measurements. This enables us to employ different parametrization schemes in the inversions, and quantify the effect of these choices on
the posterior solution. Bodin et al. (2016) proposed a parametrization scheme for anisotropy inversion in which anisotropic parameters are
proposed based on the existing isotropic structure. In this paper, we discussed two types of parametrization for dealing with multi-parameter
problems: attached and independent.

In regions where the geotherm is sufficiently high, the α–β quartz transition is expected to occur in the middle–lower crust, resulting
in a sharp Vp/Vs ratio increase that is not accompanied by a significant change in Vs (Kuo-Chen et al. 2012; Diaferia & Cammarano 2017).
We show a synthetic test where the target model has a simplified one-layer crust on top of mantle Vs structure, and impose a mid-crustal
Vp/Vs ratio increase from 1.7 to 1.8 representing the effects of the α–β quartz transition. This model is motivated by fig. 4 of Diaferia &
Cammarano (2017). We perform TBI of SWD data (5–100 s range) using independent and attached parametrization of Vs and Vp/Vs ratio.
The ensemble results show that when independent parametrization is applied (Fig. 10), the inversion resolves both the Vs and Vp/Vs structure
accurately, despite the distinct geometries. However, when attached parametrization is applied (Fig. 11), the retrieved structure of Vp/Vs is
strongly affected by the resolved geometry of Vs, to which the data are primarily sensitive.

This test illustrates how parametrization choices can be crucial to detecting complex structures with distinct geometries for different
seismic parameters. Specifically, it shows that surface wave studies aiming to detect the α–β quartz transition in the middle–lower crust
should employ a parametrization flexible enough to not suppress its detection.

4.4 Constraining radial anisotropy using TB inversion

In our previous synthetic tests, we assumed isotropic, layered structure, which may not always be an appropriate assumption to make, depending
on the geological setting of the seismic station being analysed. Due to lattice-preferred orientation of anisotropic minerals or shape-preferred
orientation of different rock layers or fractures, seismic wave velocities will depend on polarization and propagation directions (Crampin
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Figure 11. Vs (left) and Vp/Vs ratio (right) depth distribution retrieved using transdimensional Bayesian inversion of synthetic surface wave dispersion data.
Attached parametrization is used for Vs and Vp/Vs ratio in this test. The ensemble solutions are displayed as probability density functions at each depth, with
warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target model
(black dashed lines) contains a jump in Vp/Vs due to the α–β quartz transition that is not accompanied by a change in Vs (Diaferia & Cammarano 2017).

et al. 1984). Studying seismic anisotropy in the crust and upper mantle can provide us insights into crust and mantle deformation (Kendall
2000; Becker et al. 2003), mantle composition (Montagner & Anderson 1989), lithosphere and asthenosphere coupling (Silver & Holt 2002;
Becker 2006), and the net rotation of the lithosphere (Becker 2008). Here, we restrict our attention to radial anisotropy, in which the elastic
properties of the medium can be described by five independent elastic coefficients (A, C, F, L and N; Love 1911) at each location. Seismic
observations including surface waves and normal mode data are often used to constrain the radial anisotropy of the Earth (e.g. Ekstrom &
Dziewonski 1998; Lekic & Romanowicz 2011; Chang et al. 2014; Moulik & Ekstrom 2014). Radial anisotropy in the Earth is often due
to layering. However, recently studies also suggest that a large portion of anisotropy presented in the tomographic models may be due to
unmapped discontinuities (Bodin et al. 2015).

To study shear wave radial anisotropy, we use the Voigt average isotropic shear wave velocity Vs and radial anisotropy parameter
ξ = (V sh/V sv)2 instead of isotropic shear velocity alone to represent the seismic structure. With limited studies discussing the relationship
between isotropic Vs and ξ geometries, we propose to use independent parametrization to represent such ignorance.

For the synthetic test, we set the vertical shear wave velocity Vsv for the target model to be same as the Vs value from the isotropic
target model we used in previous sections. We set the horizontal shear wave velocity Vsh to be different from the Vsv structure so that the
radial anisotropy parameter ξ = (V sh/V sv)2 has a value of 1.149 between 19 and 50 km and a value of 1.000 at other depths (Fig. 12,
black dashed line). Vp and density in thebr target model are derived from isotropic Vs using the empirical relationship from Brocker (2005).
To systematically investigate the effects of parameter trade-offs and data uncertainties on the retrieved structures, we perform a series of
synthetic tests with different combinations of parameter types and data uncertainties.

We start by inverting SWD data, assuming a 2 per cent measurement error uncorrelated between periods. Here, we invert for Vs, ξ and
Vp without assuming scaling relationships between any of them. In order to study the effect of trade-offs between different model parameters
in a systemic way, we scale density to Vs, using expressions in Brocker (2005). The prior on ξ is set to be a uniform distribution between 0.81
and 1.21. The retrieved structure is shown in Fig. 12. Compared to the velocity structures, the ensemble of ξ spreads widely across the prior
space. Despite the large variance, the inversion is able to resolve an anisotropic layer between 19 and 50 km. In Fig. 12, we plot the trimmed
mean and the mode of the posterior PDF to better illustrate the inversion result. Both the trimmed mean value and the mode are overestimated
between 10 and 19 km, as can be seen by comparing them against the target structure shown in black.

In Fig. 13, we show the scatter plots coloured by their density from the posterior PDF of Vs, Vp and ξ at three different depths. The
scatter plots between Vp and ξ show that there are trade-offs between these two parameters. These trade-offs result from the fact that in a
radially anisotropic medium, Rayleigh waves, whose sensitivity is primarily to Vsv, are also sensitive to Vp, while Love waves, whose primary
sensitivity is to Vsh, are not sensitive to Vp. This trade-off between Vp and ξ limits our ability to retrieve radial anisotropy given the limited
constraints provided by SWD data. Similarly, we test the trade-off between density and ξ by performing an inversion for Vs, ξ and density
without assuming a fixed scaling relationship between them, while fixing the Vp scaling to Vs, using the expressions in Brocker (2005).
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Figure 12. Anisotropy inversion with independent parametrization and no scaling on Vp. The ensemble solutions (Vs on the left and ξ on the right) are
displayed as probability density functions at each depth, with warmer colours corresponding to higher posterior probabilities, the solid red line denoting the 5
per cent trimmed mean of the posterior and the magenta line denoting its mode. The target model (black dashed lines) is used to generate synthetic data.

The target model is same as the one in Fig. 12. The retrieved structure of ξ is shown in Fig. 14 (left). While the ensemble results resolve
an anisotropic structure approximately between 19 and 50 km, both the trimmed mean and the mode are underestimated within this depths
range. Moreover, the thickness of the anisotropic layer is not well constrained. We interpret this as a result of trade-off between density and ξ

limiting our ability of resolving radial anisotropy giving the limited constraints provided by SWD data.
To validate the effect of the trade-off on the inference of ξ , we apply the same empirical relationship from Brocker (2005) used in the

target model to derive both Vp and density from Vs in our synthetic test to reduce the trade-off between Vp, density and ξ . We keep the rest
of the inversion set-up the same as in the previous two tests. The retrieved ξ structure is shown in Fig. 14 (right). Compared to the tests with
no scaling applied to Vp or density, the radial anisotropy structure is better constrained at several depths. The estimated ξ from the mode of
posterior PDF is closer to the true value between 24 and 48 km. The mode of the ensemble in this test also better tracks the thickness of the
anisotropic layer. We plot the marginal posterior PDF in Fig. 15 at several depths to better illustrate the retrieved ξ against the actual structure.
In Fig. 15, we also show the coloured scatter plot between Vp and ξ , which illustrated the reduced Vp– ξ trade-off compared to the results
shown in Fig. 13.

The three tests together show that the trade-offs between Vp and ξ as well as between density and ξ affect the inversion result for ξ.

This means that without introducing additional data, applying a proper scaling between Vp, density and ξ helps resolve the radial anisotropy;
however, on the other hand, Vp–Vs–density scaling assumptions need to be carefully made since an unsuitable scaling could bias the estimate
of ξ . As a comparison, in Fig. 16, we show the retrieved anisotropy structure where we apply a constant Vp/Vs ratio of 1.68 as the scaling
during the inversion. As expected, the incorrect scaling biases our estimate of Vp. The retrieved anisotropy structure also deviates from the
true value at several depths. We estimate an anisotropic layer between 24 and 48 km for the correct scaling case, while for the fixed Vp/Vs
case, the anisotropic layer is only recovered between 23 and 38 km. In Fig. 16, we calculated the rmse of the ensembles for the three radial
anisotropy tests against the true value from the input model. It can be seen that when assumptions about Vp–Vs scaling are incorrect, the
disagreement between the posterior and the true value is the largest between 20 and 50 km, which covers most of the anisotropic layer. The
rmse in the incorrect scaling case can be as large as 0.16, while the largest rmse in the correct scaling is 0.12.

Roy & Romanowicz (2017) investigated the effect of assuming a fixed Vp/Vs on the inversion of SWD and converted body wave (P-to-S)
data for Vs radial anisotropy. By comparing results obtained fixing Vp/Vs to those obtained treating Vp/Vs as unknown, they concluded that the
slight difference in the choice of Vp/Vs would not affect the retrieved structure. While the inclusion of body wave data does not provide direct
constraint on radial anisotropy, it is expected to improve the constraints on the depths and impedance contrasts across discontinuities in the
velocity structures, and indirectly lead to better resolution of radial anisotropy. Therefore, the work of Roy & Romanowicz (2017) complements
the analysis presented here, in which we explore the effects of scaling assumptions on inversion of SWD alone, without including observables
such as receiver function. Furthermore, unlike this study, Roy & Romanowicz (2017) assume the geometry of variations in isotropic Vs and
radial anisotropy to be the same. As is discussed in Section 3.3, when such assumption is justified, it helps resolve the posterior; our study
provides a different, complementary perspective on how different parametrization choices could affect the resolution of radial anisotropy.
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Figure 13. Parameter trade-offs and marginal posterior PDF at 15 km (upper), 35 km (middle) and 55 km (bottom) from the radial anisotropy inversion with
no scaling relation assumed between Vs and Vp. Left-hand panels show the scatter plot of Vs and ξ values from the 10 000 models in the ensemble solution.
The scatter plot is coloured by the density of points to better reveal the parameter trade-off. Warm coluors denote higher probabilities and cool colours denote
lower probabilities. Middle panels show coloured scatter plots but for Vp and ξ values in the ensemble. The right-hand panels are the marginal posterior PDF
of ξ . The true value at that depth is plotted as red dashed line.

5 C O N C LU S I O N

TB inversion has recently gained increasing attention in the area of geophysics. Its applications to various topics including seismic tomography
(Young et al. 2013; Calo et al. 2016; Petrescu et al. 2016; Burdick & Lekic 2017; Olugboji et al. 2017), earthquake source inversion (Dettmer
et al. 2014), receiver function estimation (Kolb & Lekic 2014), controlled source exploration geophysics (Ray et al. 2014; Gehrmann et al.
2015), geoacoustic inversion (Dettmer et al. 2010) and viscosity inversion (Rudolph et al. 2015), show the utility of flexible yet naturally
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Figure 14. Anisotropy inversions with independent parametrization and no scaling on density (left)/correct scaling on Vp and density (right). The ensemble
solutions are displayed as probability density functions at each depth, with warmer colours corresponding to higher posterior probabilities, the solid red line
denoting the 5 per cent trimmed mean of the posterior and the magenta line denoting its mode. The target model (black dashed lines) is used to generate
synthetic data.

parsimonious parametrization in geophysical inversion as well as the capability of uncertainty quantification of inversion results that better
represent the data sensitivity.

In this paper, we first show that we are able to retrieve seismic structures using SWD and Rayleigh wave ZH ratio individually and
together with less restrictive assumptions. Our synthetic tests suggest that although SWD and the ZH ratios are sensitive to Vp, Vs and
density to various degrees, neither data set is individually able to resolve a comprehensive structure. However, because of the flexibility of
the transdimensional inversion, we can easily combine the ZH ratio data with SWD in a joint inversion. We show that TB inversion can take
advantage of the complementary sensitivity of the two data types to simultaneously constrain the continental lithosphere Vs structure, as well
as the crustal Vp structure.

By comparing the results from the transdimensional inversion and inversion with fixed but correct parametrization, we illustrate that
a fixed parametrization with strong prior information could bias the estimate of model parameters. One might argue that given a fixed but
correct parametrization, the inversion results should represent the true uncertainties of the model parameters. However, the estimates of model
parameters include not just the value of elastic parameters but also their distribution along depth (i.e. layering). A fixed parametrization
is equivalent to using a prior that assumes no uncertainty for the latter, which affects the estimates of the former due to model parameter
trade-offs.

While a 1-D layered model with constant elastic value within each layer is assumed in our TB inversion, our synthetic tests suggest
that given robust data constraints, this layered structure parametrization is still able to resolve structures in which elastic properties change
gradually with depth. We show that the limited SWD resolution and large measurement error could both result in gradient structures appearing
oversimplified when using parametrizations based on constant-velocity layers.

We then explore the effects of choices of parametrization on the retrieval of isotropic and anisotropic structure from surface wave
inversion. Specifically, we propose and contrast two distinct parametrization choices: attached, in which all parameters of interest share the
same geometry; and, independent, in which the geometry of different physical parameters can vary.

Using synthetic tests, we show that the attached-type scheme tends to yield results whose geometry is mainly determined by the parameter
that is best constrained by the data at hand. When other parameters share the same geometry with the best-resolved parameter, the use of
attached-type parametrization is advised (see Fig. 7). On the other hand, when parameters do not share the same geometry, the estimate of
less well constrained could be biased due to trade-offs (see Fig. D1). The attached-type parametrization we discuss in this study is similar
to the scheme proposed by Bodin et al. (2016), since parameters of different type share the same geometry. It differs from the Bodin et al.
scheme, in that since the anisotropic structure is sampled by adding/removing anisotropic parameters from an existing layer, our attached-type
parametrization assumes uniform prior on the additional parameters and samples them together.

The independent-type parametrization we introduce offers a more flexible parametrization containing less prior information. By assuming
no correlation between the geometry of different parameters, we are able to detect potentially complex structures with distinct geometries of
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0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

2

3

4

5

6
V

s 
(k

m
/s

)
Depth = 15km

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

5

6

7

8

9

V
p 

(k
m

/s
)

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

0

500

1000

1500

2000

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

2

3

4

5

6

V
s 

(k
m

/s
)

Depth = 35km

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

5

6

7

8

9
V

p 
(k

m
/s

)

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

0

500

1000

1500

2000

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

2

3

4

5

6

V
s 

(k
m

/s
)

Depth = 55km

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

5

6

7

8

9

V
p 

(k
m

/s
)

0.9 1 1.1 1.2

ξ = (V
sh

/V
sv

)2

0

500

1000

1500

2000

Figure 15. Parameter trade-offs and marginal posterior PDF from the radial anisotropy inversion with correct scaling relation between Vp and Vs at 15 km
(upper), 35 km (middle) and 55 km (bottom). Left-hand panels show the scatter plot of Vs and ξ values from the 10 000 models in the ensemble solution.
Middle panels are the coloured scatter plots but for Vp and ξ . The right-hand panels are the marginal posterior PDF of ξ . The true value at that depth is plotted
as red dashed line.

different parameters while using an optimally parsimonious number of parameters. This situation would accompany the α–β quartz transition
as shown in Fig. 10 and discussed in Section 4.3. Additionally, it would be expected in the presence of a layer of partial melt where Vs drops
dramatically but Vp does not, which might be associated with volcanic regions, regions with elevated temperatures in the lower crust, or even
glacial firn aquifers recently seismically characterized in Greenland (Montgomery et al. 2017).

Seismic Bayesian inversion has been used to investigate the radial anisotropy of the Earth (Shapiro & Ritzwoller 2002; Beghein &
Trampert 2004; Beghein et al. 2014; Calo et al. 2016). In particular, Calo et al. (2016) applied a transdimensional inversion using SWD
as well as receiver function data, and relied on empirical scaling laws between Vs and Vp to reduce parameter trade-offs. Here, we show
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Figure 16. Left: anisotropy inversion with independent parametrization and a fixed Vp/Vs ratio of 1.68. The ensemble solutions are displayed as probability
density functions at each depth, with warmer colours corresponding to higher posterior probabilities, the solid red line denoting the 5 per cent trimmed mean
of the posterior and the magenta line denoting its mode. The target model (black dashed lines) is used to generate synthetic data. Right: root-mean-square error
of radial anisotropy inversion ensemble against the input model. The blue curve is the TB inversion with fixed Vp/Vs = 1.68 using Rayleigh and Love wave
dispersions. The red curve is the same inversion except using no Vp–Vs scaling. The black curve uses the correct Vp–Vs scaling as the input model, while the
rest of the setting is same as the previous two.

that inferences of radial anisotropy from SWD are affected by prior information imposed on the inversion process. Specifically, applying
proper scaling relations between Vp, Vs and density helps improve the constraints on radial anisotropy, while inaccurate assumptions about
Vp–Vs–density scaling can bias estimates of radial anisotropy.

Previous studies have highlighted the potential of unmodelled crustal structure to bias inferences of upper-mantle radial anisotropy (e.g.
Bozdag & Trampert 2008; Ferreira et al. 2010; Lekic et al. 2010), but the effect of Vp–Vs–density scaling assumptions has not garnered
equal attention. Therefore, we stress that careful choices must be made to prevent the estimates of radial anisotropy from being biased due to
unmodelled Vp and density structure. We find that trade-offs between Vp and radial anisotropy can increase rmse by 33 per cent in estimates
of radial anisotropy.

Our inversion for radial anisotropy adopts an independent parametrization in which the geometries of isotropic Vs and ξ are not assumed
to be the same. With fewer assumptions made to avoid potential bias in the inversion results, we are able to resolve the main anisotropic feature
in the synthetic model. The independent-type parametrization scheme is particularly appropriate since radial anisotropy need not share the
same geometry as isotropic wave speeds, as pointed out by Montagner (2002).

In this study, we considered three sources of uncertainty: limitation of data sensitivity; assumed scaling among parameters; and the
choice of parametrization, including both the number of parameters and attached vesuss independent parametrizations for multiparameter
problems. The discussion of different sources of uncertainties presented herein should help inform choices for inversions on surface wave
measurements on their own and in combination with other, complementary data types (e.g. receiver functions). While better constraints
on seismic velocity profiles are expected when combining multiple seismic observables, it is necessary to attribute the influence of certain
parametrization choices. This becomes particularly important for inferences of parameters such as radial anisotropy and density—which are
less well constrained by available data—since our findings suggests that model parametrization can significantly bias them.

A C K N OW L E D G E M E N T S

5 A c k n o w l e d g m e n t s

The authors thank Scott Burdick and Michael N. Evans for suggestions and two anonymous reviews that have improved this manuscript. The
authors also thank Glenn J. Rix and Carlo G. Lai for making their Rayleigh wave dispersion code open to public. VL acknowledges support
from NSF grants EAR1352214 and EAR1361325, as well as from the Packard Fellowship for Science and Technology.

Downloaded from https://academic.oup.com/gji/article-abstract/215/2/1037/5061122
by University of Maryland user
on 01 September 2018



1056 C. Gao and V. Lekić
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A P P E N D I X A : AT TA C H E D - T Y P E PA R A M E T R I Z AT I O N

Proposal probabilities

For the ‘attached’ type parametrization, all three elastic parameters are assigned to one Voronoi nucleus. Below, we specify the proposal
probabilities corresponding to each of the four possible steps in the Markov Chain: change, move, birth and death.

(1) Change. Randomly choose one of the Voronoi nuclei and randomly change all three parameters (Vp, Vs and ρ) based on a normal
distribution with specified standard deviation. The proposal ratio is given by:

qvs

(
v′

s |vs

) = 1

σvs

√
2π

exp

{
−

(
v′

s − vs

)2

2σ 2
vs

}
(A1)

The proposed value of Vs is denoted by a prime, and is obtained by:

v′
s = vs + uσvs (A2)

where σvs is the standard deviation for perturbations to Vs, and u is a random number generated from the standard normal distribution.
Expressions for Vp and density are analogous:

qvp

(
v′

p|vp

) = 1

σvp

√
2π

exp

{
−

(
v′

p − vp

)2

2σ 2
vp

}
(A3)

v′
p = vp + uσvp (A4)

qρ

(
ρ ′|ρ) = 1

σρ

√
2π

exp

{
− (ρ ′ − ρ)2

2σ 2
ρ

}
(A5)

ρ ′ = ρ + uσρ (A6)

In this type of model perturbation, the expressions for the proposal ratios can be used to compute the final acceptance probability. Eqs (A1),
(A3) and (A5) clearly satisfy detailed balance conditions:

qvs

(
v′

s |vs

) = qvs

(
vs |v′

s

)
(A7)

qvp

(
v′

p|vp

) = qvp

(
vp|v′

p

)
(A8)

qρ

(
ρ ′|ρ) = qρ

(
ρ|ρ ′) (A9)

Since the three parameters are perturbed at the same time, we have

qvs

(
v′

s |vs

)
qvp

(
v′

p|vp

)
qρ

(
ρ ′|ρ) = qvs

(
vs |v′

s

)
qvp

(
vp|v′

p

)
qρ

(
ρ|ρ ′) (A10)

Therefore,

q(m|m ′)
q(m ′|m)

= 1 (A11)

(2) Move. In a move step, the depth of a randomly chosen Voronoi nucleus is perturbed based on a normal distribution with specified
standard deviation.

qc

(
c′

i |ci

) = 1

σc

√
2π

exp

{
−

(
c′

i − ci

)2

2σ 2
c

}
(A12)

Even though the model parametrization changes, the number of Voronoi nuclei does not change, so no additional parameter is added in this
step. When considering the proposal ratio of changing from m to m’, eq. (A12) clearly satisfies detailed balance:

qc

(
c′

i |ci

) = qc

(
ci |c′

i

)
(A13)
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Therefore,

q(m|m ′)
q(m ′|m)

= 1 (A14)

(3) Birth. In the birth step, we randomly choose a depth defined by the uniform prior, and create a new Voronoi nucleus. The velocity and
density values corresponding to the newly created nucleus are drawn from normal distributions centred on the current values of Vp, Vs and
density at the chosen depth. The standard deviations of the normal distributions (σvp2, σvs2, σρ2) can differ from, but in this study are fixed
to be the same as, ones used in the Change step.
The proposal probability for assigning a velocity v′

s to the new Voronoi nucleus (denoted by subscript n + 1) is given by:

q
(
v′

s |m
) = 1

σvs2

√
2π

exp

{
−

(
v′

s,n+1 − vs,i

)2

2σ 2
vs2

}
(A15)

where vs,i is the velocity of the Voronoi nucleus closest to the depth of the newly born nucleus.
Analogous expressions can be written for Vp and density:

q
(
v′

p|m
) = 1

σvp2

√
2π

exp

{
−

(
v′

p,n+1 − vp,i

)2

2σ 2
vp2

}
(A16)

q
(
ρ ′|m) = 1

σρ2

√
2π

exp

{
−

(
ρ ′

n+1 − ρi

)2

2σ 2
ρ2

}
(A17)

We now turn our attention to defining the probabilities related to the depth of the Voronoi nucleus. Assume that we have n Voronoi nuclei in
the current model m, and there are N possible positions in total for placing a Voronoi nucleus. The probability of having a (n + 1)th Voronoi
nucleus in the rest of the available positions will be:

q
(
c′|m) = 1

N − n
(A18)

The reverse process is to delete the added Voronoi nucleus from m’. The probability of deleting one Voronoi nucleus from (n + 1) nuclei is

q
(
c|m ′) = 1

n + 1
(A19)

The associated probabilities of removing the elastic parameters when their associated Voronoi nucleus is deleted are:

q
(
vs |m ′) = 1 (A20)

q
(
vp|m ′) = 1 (A21)

q
(
ρ|m ′) = 1 (A22)

We write the proposal ratio as:

q(m|m ′)
q(m ′|m)

= q(c|m ′)
q(c′|m)

q(vs |m ′)
q(v′

s |m)

q(vp|m ′)
q(v′

p|m)

q(ρ|m ′)
q(ρ ′|m)

(A23)

Substituting expressions (A15)–(A22) into eq. (A23), we obtain:

(
q (m|m ′)
q (m ′|m)

)
birth

= (2π)
3/2σvs2σvp2σρ2 (N − n)

(n + 1)
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)2

2σ 2
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+
(
ρ ′
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)2

2σ 2
ρ2

]
(A24)

(4) Death. The death step is the exact reverse of the birth step, since one of the existing n Voronoi nuclei, denoted by index j, is randomly
chosen and deleted to create a model m’ with (n − 1) nuclei. For the death step, since it is supposed to be the exact reverse step of birth, here
we consider the situation of changing from n to (n − 1) Voronoi nuclei, we have(

q (m|m ′)
q (m ′|m)

)
death

= n

σvs2σvp2σρ2(2π)
3/2 (N − n + 1)

exp −
[(

v′
s, j − vs,i

)2

2σ 2
vs2

+
(
v′

p, j − vp,i

)2

2σ 2
vp2

+
(
ρ ′

j − ρi

)2

2σ 2
ρ2

]
(A25)

where index i denotes the Voronoi nucleus closest to the deleted nucleus.

Acceptance probabilities

In the move and change step, the number of model parameters does not change, and the proposal ratios are unity. The acceptance probability
can be written as:

α
(
m ′|m) = min

[
1,

p (m ′)
p (m)

· p (d|m ′)
p (d|m)

]
(A26)
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Since the dimension of the model does not change, and the priors on all the parameters are uniform, the prior ratio will be either zero or
unity, and the acceptance probability can be simplified to:

α
(
m ′|m) =

{
min

[
1,

p(d|m′)
p(d|m)

]
if ∀i ∈ [1, n] , vsi ∈ Js, vpi ∈ Jp, ρi ∈ Jρ

0 otherwise
(A27)

For a birth step, according to eq. (11), the prior ratio takes the form(
p (m ′)
p (m)

)
birth

=
{

n+1
(N−n)�vs�vp�ρ

if (n + 1) ∈ I, and v′
s,n+1 ε Js, v

′
p,n+1 ∈ Jp, ρ ′

n+1 ∈ Jρ

0 otherwise
(A28)

Substituting eqs (15), (A24) and (A28) into eq. (16), the acceptance probability becomes

α
(
m ′|m)
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=
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2
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′
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n+1 ∈ Jρ

0 otherwise

(A29)

For the death step, the prior ratio should be the inverse of eq. (A28), except we change from n nuclei to (n−1) nuclei. Therefore,
substituting eqs (15) and (A25) into eq. (16), we have:

α
(
m ′|m)

death
=

⎧⎪⎨
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�vs�vp�ρ
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2

}
if (n − 1) ∈ I

0 otherwise

(A30)

Independent-type parametrization

In the ‘independent’ type parametrization, we have three independent sets of Voronoi nuclei, each specifying Vs, Vp or density. When changing
the current model in the Markov Chain, we first randomly choose one out of the three types of parameters (Vs, Vp and density) with equal
probability. Once a specific type of parameter is chosen, the rest of the process and the proposal probabilities are identical to that described
in Bodin & Sambridge (2009).

Once the type of parameter to perturb is chosen, it is straightforward to derive the acceptance probability. We take perturbing density
as an example. When choosing to change the density value or to move one of the Voronoi nuclei (denoted by index i), the dimension of the
model does not change. Therefore, we have:

α
(
m ′|m) =

{
min

[
1,

p(d|m′)
p(d|m)

]
if ∀i ∈ [1, n] , ρi ∈ Jρ

0 otherwise
(A31)

For a birth step:

α
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=
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exp
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(A32)

where n is the number of Voronoi nuclei defining the density structure.
Finally, for the death step in which Voronoi nucleus j is deleted, and Voronoi nucleus i is the remaining nucleus closest to the deleted

one, we have:

α
(
m ′|m)

death
=

⎧⎪⎨
⎪⎩

�ρ

σρ2(2π )
1

/2
exp

{
−

(
ρ′

j −ρi

)2

2σ 2
ρ2

− 	(m′)−	(m)

2

}
if (n − 1) ∈ I

0 otherwise

(A33)

A P P E N D I X B : C O N V E RG E N C E A NA LY S I S F O R T B I N V E R S I O N O F S W D

rmsdvs (z) =

√√√√∑n(z)
i=1

(
yi (z) − yi (z)

)2

n (z)
(B1)

Here, z stands for the depth; n stands for the number of bins used to discretize the PDF; yi (z) is the value of the PDF at the depth z; yi (z)
is the mean value of the PDF across four ensembles. The rmsds of the four ensembles are close to each other and have low absolute values
across all depths. This confirms that after the chosen burn-in period, the ensemble results from different starting models are indistinguishable
from each other.
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Figure B1. The evolution of misfit along the rjMCMC with different starting models. Four starting models with different initial numbers of layers are used here
to invert surface wave dispersion data between 5 and 100 s. Every 100th model from a total of 10 million iterations is plotted on a linear (top) and logarithmic
(bottom) x-axis. After about 2 × 105 iterations, all four rjMCMC remain at a low misfit. We choose a burn-in period of 2.5 × 106 iterations to ensure the
rjMCMC have converge before sampling the ensemble solution.

0 0.005 0.01 0.015
RMSD value

0

10

20

30

40

50

60

70

D
ep

th
(k

m
)

Two-layer model
Five-layer model
Fifteen-layer model
Correct model

Figure B2. Root-mean-square deviation of Vs posterior probability density functions from TB inversion of surface wave dispersion using four different starting
models. We use the following equation to calculate to root-mean-square deviation (rmsd) for the four ensembles.
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A P P E N D I X C : N O R M A L I Z E D RO O T - M E A N - S Q UA R E E R RO R O F V s A N D V p
E N S E M B L E F RO M F i g . 5

nrmseV s (i) = rmseV s (i)
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Figure C1. Normalized root-mean-square error of Vs (red) and Vp (blue) inversion ensemble against the input model. The ensemble is taken from test shown
in Fig. 5 where Vs, Vp and density are inverted using SWD and ZH ratio. The rmse of Vs and Vp are normalized by their mean at that given depth.

Take Vs as an example; here i stands for the depth, Vs(i) is the mean value of Vs from the ensemble at that depth, rmseV s(i) is the
root-mean-square error of Vs against the target at that depth.
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A P P E N D I X D : T B J O I N T I N V E R S I O N O F S W D A N D Z H R AT I O S F O R TA RG E T
M O D E L I N W H I C H T H E D E N S I T Y G E O M E T RY I S D I F F E R E N T F RO M T H AT O F V s

Figure D1. Vs (left), Vp (middle) and density (right) posterior probability density functions obtained by TB joint inversion using synthetic SWD and ZH
ratio data. In this test, the attached-type parametrization is used. The ensemble solutions are displayed as probability density functions at each depth, with
warmer colours corresponding to higher posterior probabilities, and the solid red line denoting the 5 per cent trimmed mean of the posterior. The target model
(black dashed lines) is used to generate synthetic data. The density structure of the target model has a single abrupt change at 19 km depth, unlike the velocity
structure, where the Moho is at 31 km. The retrieved density structure does not resolve the density increase at 19 km, and instead shows an increase around
31 km, imposed by the geometry of velocity structure through the attached-type parametrization used for inversion.
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