
1.  Introduction
The critical zone (CZ) refers to the region between fresh bedrock, which is meters to tens of meters below 
ground surface, and the tree canopy (National Research Council [NRC], 2001; Riebe et al., 2017). The CZ 
is essential to life because of its ability to store water and support ecosystems on Earth. As summarized by 
Riebe et al. (2017), several studies have hypothesized how subsurface CZ structure varies along hillslopes 
and is influenced by different geology, tectonic, and climate conditions (e.g., Anderson et al., 2013; Lebe-
deva & Brantley, 2013; Rempe & Dietrich, 2014; St. Clair et al., 2015). Two common CZ models describe 
subsurface CZ structures in a ridge-channel system as regulated by either regional stress or hydrology (Fig-
ures 1a and 1c). Accurately resolving CZ structure in a range of field settings will be critical to testing these 
and other process-based models.

Measuring CZ structure is not trivial, mainly because the depth to unweathered bedrock is often tens of 
meters below surface (Holbrook et al., 2014) and cannot be accessed directly. Common approaches such as 
drilling are expensive, whereas digging soil pits and augering are time consuming. Moreover, these methods 
only provide point measurements and cannot efficiently map CZ variations at watershed scales. On steep 
hillslopes, using these methods can also be logistically challenging.

Seismic imaging provides an alternative way to characterize CZ structure that is cost-effective and can cover 
a large area. Specifically, the active source seismic refraction method has been commonly used for stud-
ies in CZ science because the acquisition geometry can be designed to achieve different spatial resolution 
along depth and the method is relatively easy to operate along steep hillslopes (Befus et al., 2011; Flinchum 
et al., 2018; Hayes et al., 2019; Holbrook et al., 2014; St. Clair et al., 2015). Seismic refraction imaging is done 
by identifying the P-wave arrival time at each seismic receiver (geophone) from an artificially generated 

Abstract The critical zone (CZ) is the region of the Earth’s surface that extends from the bottom of 
the weathered bedrock to the tree canopy and is important because of its ability to store water and support 
ecosystems. A growing number of studies use active source shallow seismic refraction to explore and 
define the size and structure of the CZ across landscapes. However, measurement uncertainty and model 
resolution at depth are generally not evaluated, which makes the identification and interpretation of CZ 
features inconclusive. To reliably resolve seismic velocity with depth, we implement a Transdimensional 
Hierarchical Bayesian (THB) framework with reversible-jump Markov Chain Monte Carlo to generate 
samples from the posterior distribution of velocity structures. We also perform 2D synthetic tests to 
explore how well THB traveltime inversion can resolve different subsurface velocity structures. We 
find that THB recovers both sharp changes in velocity as well as gradual velocity increases with depth. 
Furthermore, we explore the velocity structure in a series of ridge-valley systems in northern California. 
The posterior velocity model shows an increasing thickness of low velocity material from channels to 
ridgetops along a transect parallel to bedding strike, implying a deeper weathering zone below ridgetops 
and hillslopes than below channels. The THB method enhances the ability to reliably image CZ structure, 
and the model uncertainty estimates it yields provides an objective way to interpret deep CZ structure. The 
method can be applied across other near-surface studies, especially in the presence of significant surface 
topography.
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seismic source (Julian & Gubbins, 1977). In principle, greater depths can be investigated by increasing the 
distance between source and receiver (i.e., the off-end shot distance) and shorter receiver intervals can re-
solve shallower velocity structure. Because seismic velocity is affected by rock type and the degree of weath-
ering, constraints on subsurface seismic velocity from P-wave arrival data can be used to infer material type, 
fracture density, and water content (Holbrook et al., 2014).

Commercial software packages such as Plotrefa developed by Geometrics (http://www.geometrics.com) 
and DW Tomo by Geogiga (http://geogiga.com) are commonly used in seismic refraction for CZ studies (e.g., 
Befus et al., 2011; Holbrook et al., 2014; Pasquet et al., 2016; St. Clair et al., 2015). These approaches start 
from an initial velocity structure and iteratively perform the inversions until the model misfit to the arrival 
time reaches a certain threshold value. Iteration is necessary because of nonlinearity inherent in the inverse 
problem: the unknown velocity structure determines the paths taken by the seismic waves, which, in turn, 
defines how sensitive individual recorded travel-times are to the velocity structure itself. The inversions are 
regularized by parameters defining model resolution and smoothing, which are set by the user at the start of 
the inversion. For example, St. Clair et al. (2015) impose model smoothing to prevent overfitting and reduce 
the number of model parameters. They also repeat the inversions with many different initial models to en-
sure that the final velocity model is not influenced by the initial model. However, these classical approaches 
do not extensively explore the uncertainty and tradeoffs in the inverted velocity models, nor do they assess 
the effect of horizontal and vertical model smoothing assumptions. These limitations hinder interpreta-
tion, particularly of deeper structures. For example, seismic velocity models in Figures 1b, 1d, and 1f are 
inverted by using Plotrefa with synthetic data calculated from Figures 1a, 1c, and 1e with imposed Gaussian 
noise (detail described in Section 3.2). Solely based on the inverted results without the knowledge of data 
uncertainty, we cannot rigorously assess model resolution at greater depth and therefore distinguish the CZ 
models. Indeed, quantifying uncertainty and influence of prior assumptions is indispensable when testing 
hypotheses regarding CZ structure.
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Figure 1.  Schematic models of three hypotheses for subsurface CZ structure. (a) Stress model (model A), where the CZ structure is mainly influenced by 
regional stress fields. (c) Hydrology model (model B), where the CZ structure is regulated by channel incision. (e) Combined gradual model (model C), where 
a shallower change in velocity gradient is subparallel to the surface, and a deeper gradient change mirrors topography, amidst gradually increasing seismic 
velocity with depth. (b, d, and f) show the predicted CZ structures using seismic refraction with the commercial software Plotrefa. (g and h) show the mean 
vertical gradient for model C generated from the input and using Plotrefa. Without an uncertainty estimate of the mean velocity, there is no rigorous way to 
fully resolve the lower boundary of the model. CZ, critical zone.

http://geom.geometrics.com/
http://geogiga.com/


Geochemistry, Geophysics, Geosystems

In this study, we tackle a few aspects of CZ research using seismic refraction methods. We develop a seismic 
velocity inversion strategy for near-surface geophysics that does not require regularization parameters such 
as model smoothing or damping, and more fully quantifies uncertainty of the velocity models. The strategy 
is based on self-parameterizing (i.e., transdimensional), probabilistic (i.e., Bayesian) inversion of travel-time 
measurements, where the measurement uncertainty is also estimated in the inversion (i.e., hierarchical). 
To explore the capability of this Transdimensional, Hierarchical, Bayesian (THB) approach to distinguish 
different velocity structures, we design three 2D candidate models, predict traveltimes through them for 
various acquisition geometries, and invert these predicted traveltimes using our THB approach. We quanti-
tatively assess the accuracy of retrieval for each velocity structure, as well as the model uncertainty at depth. 
Finally, we conduct field surveys along hillslopes in the Cretaceous sedimentary Great Valley Sequence in 
California (Figure 2) and invert traveltime measurements from the surveys using the THB approach in or-
der to characterize the CZ structure of the study site.

2.  THB Approach
In this section, we describe our approach for inverting shallow seismic refraction data to produce estimates 
of subsurface seismic velocities. Traditional inversions obtain a velocity model that most closely predicts 
measurements and may introduce spurious structures when attempting to fit measurement noise or er-
rors introduced by modeling approximations. Typically, only a single model is obtained, and uncertainty 
quantification is limited and often neglects any nonlinearities inherent in the inversion (e.g., Tarantola 
& Valette, 1982). Because inversions for velocity structure are usually a mixed-determined problem, pri-
or information about the model must be introduced. This is commonly done by imposing smoothing or 
damping (Menke, 1984), though formulations in terms of a priori distributions on the model parameters 
are also common (Tarantola & Valette, 1982). Measurement and modeling noise, such as that due to picking 
uncertainty and the approximation to actual 3D seismic raypaths, are poorly known in active source seismic 
surveys. Thus, the reliability of model characteristics is difficult to estimate, complicating hypothesis testing 
and interpretation.

The THB inversion scheme attempts to alleviate some of the limitations of traditional inversion approaches 
in two ways: (1) It treats model complexity (i.e., the number of unknowns) as an unknown to be estimated 
from the data (Malinverno, 2002; Sambridge et al., 2006); (2) It estimates measurement and modeling error 
explicitly through the inversion (Malinverno & Briggs, 2004). Here, we implement THB inversion using the 
reversible jump Markov chain Monte Carlo (rjMCMC) algorithm (Green, 1995) and obtain an ensemble of 
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Figure 2.  Field site location. (a) Study site (Rancho Venada) location in Northern California. (b) Regional geology with hillshade background. The lower- to 
upper-Cretaceous sedimentary Great Valley Sequence rocks dominate this region. The red square indicates the study site in (c). (c) Location of the shallow 
seismic refraction transect (Figures 7 and 8). The background optical satellite image downloaded from Google Earth shows clear contrast between vegetated 
north-facing slopes and unvegetated south-facing slopes. MH2, MH3, and MH4 represent the dry channels that run across the survey line, and MH3R and 
MH4R are the ridgetops along the survey line (also labeled in Figure 8).
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velocity models. A posteriori probability density of parameters of interest (such as velocity at a location, 
number of velocity layers, data measurement uncertainty, etc.) can be estimated from the ensemble, allow-
ing uncertainties and tradeoffs to be quantified. Crucially, the inversion scheme exploits the nonuniqueness 
inherent in seismic inversions, which exhibit as multimodal posterior distributions, particularly near struc-
tural boundaries (e.g., Burdick et al., 2019; Galetti et al., 2015; Olugboji et al., 2017).

Transdimensional approaches to traveltime tomography in 2D (Bodin & Sambridge, 2009) were extended to 
explicitly estimate data error through hierarchical parameters (Bodin et al., 2012) and to 3D tomography on 
local (Piana Agostinetti et al., 2015) and continental (Burdick & Lekic, 2017) scales. THB approaches have 
been applied to the inversion of controlled-source data in 2D dimensions: geoacoustic imaging (Dettmer & 
Dosso, 2013), full waveform reflection inversion (Ray et al., 2018; Visser et al., 2019), marine electro-mag-
netic sounding (Ray & Myer, 2019; Ray et al., 2014), electrical resistivity imaging (Galetti & Curtis, 2018), 
and refraction traveltime tomography (Ryberg & Haberland, 2018).

Here we follow the approach of Ryberg and Haberland (2018), and only briefly describe the concept and the 
process for near-surface applications. A user guide of this program can be found in Supplementary Material. 
In this inversion scheme, the user proposes an initial velocity model and priors of model parameters, in-
cluding the lower and upper bounds of each model parameter (e.g., computational grid resolution, velocity 
range, number of control points, noise parameter, total iterations). The data uncertainty term includes both 
the measurement errors associated with P-wave arrival time picking and errors introduced by approxima-
tions in forward-modeling, such as the treatment of 3D sensitivity of traveltimes to velocity variations. This 
uncertainty term is usually not quantified but it impacts the complexity of the models retrieved through in-
version. The prior for this uncertainty term is assumed to be a uniform distribution with user-set minimum 
and maximum limits, and the posterior distribution is estimated through the THB inversion. This estimated 
uncertainty term is referred to as the “noise hyperparameter” and can provide an objective estimate of data 
uncertainty (Bodin et al., 2012).

For the velocity structure, an initial velocity model is constructed by a number of control points, each of 
which has a velocity associated with it. The velocity at arbitrary locations in the model domain is given by 
Delaunay piecewise-linear interpolation of the control point velocities (Figure 3a) (implemented using scat-
teredInterpolant function in Matlab), and the number of control points can increase or decrease during the 
rjMCMC iterations. Similar approaches have previously been implemented in Ryberg and Haberland (2018) 
and Hawkins et al. (2019). There are several methods to interpolate the velocity of control points. As test-
ed by Ryberg and Haberland (2018), interpolation using Delaunay triangulation (Figure 3c) can produce 
smaller velocity jumps and therefore more realistic earth structure than using Voronoi cells with constant 
velocity within a cell (Figure 3b). For the length scales relevant to CZ science (meters to submeters), the 
transitions from soil, saprolite, to bedrock are normally gradual. We therefore use Delaunay piecewise-lin-
ear interpolation. Additionally, like Voronoi cells, the Delaunay triangles can conform to arbitrary geom-
etries, making this parameterization suitable for reproducing more than just simple layered structures. To 
start, we set the control points at the four corners of the model domain fixed with at least one free control 
point within the model domain. The maximum number of control points is set by the user, and the location 
of each control point is varied during iterations, along with its associated velocity.

The user inputs the locations of the sources and receivers on the model domain, which are on the ground 
surface in this study. Since obtaining meaningful estimates of the posterior distribution requires computing 
travel-times through velocity models proposed during large numbers (∼105−7) of rjMCMC steps, compu-
tational efficiency is crucial for ensuring practicability. To that end, we use the Fast Marching Method to 
expedite calculations (Rawlinson & Sambridge, 2005; Sethian, 1996), specifically the Matlab Fast Marching 
Method (FMM) toolbox (Kroon, 2021; Peyre, 2020; Peyre & Cohen, 2004) to compute P-wave arrival time at 
each receiver from the source.

The posterior probability of a set of model parameters { }jm  given the set of measured traveltime data { }id , 

    | ,j iP m d I  is given by Bayes’ Theorem ({ } indicates a collection of values):

            | , | , | ,j i i j jP m d I P d m I P m I (1)
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where I is the relevant background information, including grid spacing that can capture the size of struc-

ture of interest, etc.   |jP m I  is the prior probability distribution on the model parameters, which can be 

defined by the users based on the knowledge of the region targeted in the inversion (e.g., range of seismic 

velocity, number of control points in horizontal and vertical, etc.).   | ,i jP d m I  is the likelihood function 

that depends on the goodness-of-fit between predicted and measured P-wave arrival times:
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where Ti and obs
iT  are the travel times predicted by the proposed model and observed arrival times, re-

spectively.  2 is the variance of data error related to picking uncertainty and other error sources, which is 
parameterized by the noise hyperparameter. In this study, we assume that data error does not change with 
source-receiver distance, and that the noise is not spatially correlated. In Text S5, we show how error that 
increases with source-receiver distance affects the inversion results. Implementation of spatially correlated 
data noise and the design of the hyperparameters is described by Dettmer et al. (2012).

The basic concept of Markov Chain is that a new model is proposed by changing one parameter from the 
previous model, and whether or not the proposed model is accepted or rejected depends on the change in 
posterior probability following the Metropolis-Hastings condition (Metropolis et  al.,  1953). In rjMCMC, 
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Figure 3.  Schematic model geometry and interpolation of THB2D. (a) Location of cells in the model domain. The color 
of the cells represents seismic velocity. The black line is the surface topography. (b) Velocity interpolation using Voronoi 
cells. (c) Velocity using Delaunay linear interpolation.
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proposed models can have higher or lower dimensionality (the number of model parameters, i.e., control 
points, is not fixed). There are three major stages as follows.

 (1)  Propose a new model through a random walk process:

At each iteration, a new model is proposed by changing the current model. This is done by randomly se-
lecting one of six operations: (1) change velocity of a control point, (2) add a control point, (3) remove a 
control point, (4) move a control point, (5) exchange velocity between two random control points, and (6) 
change the noise hyperparameter. Random changes to the velocity, noise hyperparameter, and control point 
locations are drawn from normal proposal distributions defined by the user (see Text S3 for more detail). 
Velocities for added control points are drawn at random from the uniform distribution of the velocity prior.

 (2)  Compute travel time using FMM:

Compute travel-time based on the new proposed velocity model using the Fast-marching method 
(Peyre, 2020), and compare with the observed travel-times.

 (3)  Randomly accept or reject the proposed model:

Proposed models are accepted or rejected according to an acceptance probability that includes both the pri-
or and the fit to the data (see Metropolis et al., 1953; also see Text S3). When the proposed model is rejected, 
the current model remains for the next iteration. When the proposed model is accepted, the proposed model 
replaces the current model for the next iteration.

At the start, during the so-called “burn-in” period, the rjMCMC proposes velocity models that still bear 
the signature of the starting model and have relatively high misfit. After a sufficient number of iterations, 
misfit starts to stabilize at a relatively low value and the velocity models no longer depend on the starting 
model. Models are not saved to the ensemble until after this burn-in period ends. Since models proposed at 
a given rjMCMC step are correlated to those from the previous step, we wait 200 steps between saves to the 
ensemble (this “thinning” interval can be defined by the user). We summarize the velocity structures in the 
ensemble by their mean and represent uncertainty by computing the variances of the model parameters. 
Parameter tradeoffs can be summarized by the covariances computed from the ensemble. Uncertainty of 
the modeled velocity inversion is central to interpreting “real” versus “artificial” subsurface features.

3.  Synthetic Tests
When conducting shallow seismic surveys in the field, one chooses the spacing of geophone receivers and 
off-end shots. The choice of this spacing (e.g., 3 m between geophones) controls the shallowest resolution 
of the survey. To determine the field configuration that can best resolve CZ structure with practical limi-
tations, we first use THB traveltime inversion to explore several 1D synthetic tests with different levels of 
measurement uncertainty and off-end shot distance, as described in Text S1. Following this, we perform 2D 
synthetic tests to investigate the resolving power at depth in different CZ structures. Finally, we compare 
performance in model robustness between the THB approach and commercial software.

3.1.  2D Synthetic Test of Layered Structures

The goal of the 2D synthetic test is to investigate whether the field configuration suggested from the 1D 
test (see Text S1) can be used to distinguish different 2D velocity structures (Figures 1a, 1c, and 1e). We 
also want to test how seismic velocity distributions are resolved between commercial software and the THB 
approach. We create the synthetic CZ structures based on two end-member CZ models: (1) CZ lower bound-
ary topography mirrors surface topography from channels to ridgetops (stress-controlled model, or model 
A; Figure 1a) (St. Clair et al., 2015), (2) CZ lower boundary topography increases upslope from channels 
to ridgetops (hydrology-controlled model, or model B; Figure 1c) (Rempe & Dietrich, 2015), and (3) a 2D 
structure with gradual increase of velocity in each layer, or model C (Figure 1e).

For the first two tests, we set up a three-layer model, with a top layer (Vp = 300 m/s) that is 4–8 m thick to 
represent a soil layer, a middle layer (Vp = 2,000 m/s) as the weathered bedrock layer, and a bottom layer 
(Vp = 4,000 m/s) as the fresh bedrock layer (Figures 1a and 1b). For the third synthetic test, we set the 
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velocity to gradually increase in each layer (Figure 1e). In this design, we set a shallower layer boundary 
that is subparallel to the ground surface, and a deeper layer boundary that is similar to the lower boundary 
of the stress model (Figure 1a). At shallower depth (< 4 m), the velocity of the top layer increases from 450 
to 700 m/s. This top layer is not present at the channels. For the middle layer, the velocity increases from 
700 to 3,000 m/s and the maximum layer depth is between 30 and 40 m. For the bottom layer, the velocity 
increases from 3,000 to 5,000 m/s at the bottom of the model domain.

We set up the synthetic seismic survey similar to the actual field survey, assuming 24 geophones at 3 m 
intervals. This means that we survey the entire synthetic landscape 69 m at a time. The maximum off-end 
shot distance is 36 m, and shots are made every 9 m until 36 m past the last geophone. We then move this 
survey to the next 69 m along the hillslope until completion of the entire transect. Since the maximum off-
end shot is 36 m away from the first/last geophone, the first and last geophones are placed 36 m from the 
end-boundary of the model domain (Figure 1a). We estimate the P-wave arrival times from a shot to every 
geophone using the FMM (Peyre, 2020; Rawlinson & Sambridge, 2005; Sethian, 1996). To simulate possible 
human P-wave picking errors or other sources of noise, we add Gaussian noise with a standard deviation 
(one-sigma) of 2 ms to all P-wave arrival times for models A and B, and 1 ms Gaussian noise to model C. 
The Gaussian noise level is the same in all source-receiver distances. In practice, the data uncertainty due 
to picking error could increase with source-receiver distance. In Text S5, we show a synthetic test in which 
data error increases with distance. We test the synthetic data by running the commercial software Plotrefa 
and the THB inversion.

3.2.  Plotrefa

We first use Plotrefa, a commercial software developed by Geometrics Inc. for inverting velocity models 
of the synthetic tests. We set the model mesh size as 3 m horizontally and between 1 and 4 m vertically 
with layer thickness increasing with depth (Figure S3). Although Plotrefa may achieve better performance 
with finer model mesh size, we are not able to generate high resolution models because of the restrictions 
of our license. The modeled seismic velocity can be varied between 250 and 5,000 m/s. Plotrefa sets up an 
initial velocity structure with the lowest velocity (250 m/s) near the ground surface to the highest velocity 
(5,000 m/s) at the bottom of the model, which is a total of 70 m below the highest ground surface elevation.

For models A, B, and C, we continue the inversions until the predicted velocity structures do not vary sig-
nificantly after multiple iterations. The final predicted velocity models are shown in Figures 4a, 4b, and 5a. 
The dashed contour lines in Figures 4a, 4b, and 5a are the layer boundaries between the top and middle 
and the middle and bottom layers in the input models (Figures 1a, 1c, and 1e). The vertical velocity gradient 
plots (Figures 4c, 4d, and 5b) represent the depth where seismic velocity increases more rapidly and can be 
a good indicator of where material boundaries are.

In general, the true layer boundaries are roughly located where there is a change of color (i.e., seismic ve-
locity). The result seems to fit model B better (Figure 4b); however, as the model mesh structure at shallow 
depth is parallel to the ground surface (Figure S3), the velocity model result may preferentially favor velocity 
boundary structures that are similar to the ground surface (e.g., model B). An alternative way to identify 
velocity layers is using the vertical velocity gradient. For models A and B, as the seismic velocity changes 
abruptly between velocity layers in the input synthetic structures (Figures 1a and 1c), the vertical velocity 
gradient should increase near the boundaries of these layers. However, in the vertical velocity gradient of 
the velocity models (Figures 4c and 4d), we are unable to clearly identify velocity layers due to blurred and 
discontinuous colors. For model C, although the velocity model (Figure 1f) reproduces the gradual velocity 
increase with depth of the input model (Figure 1e), the change of velocity gradient with depth in the input 
(Figure 1g) is not predicted by the model (Figure 1h). Due to the model mesh structure (Figure S3), most of 
the high velocity gradients occur along meshing rather than along true velocity boundaries. As uncertainty 
estimates are not provided with Plotrefa (or traditional inversion methods), we are unable to determine 
whether or not the complexity between the mid- and high-velocity layers shows the real topography of the 
velocity boundary, or is due to the mesh structure and/or over-fitting measurement noise. Without this 
knowledge, we are unable to properly image this boundary or to rigorously distinguish the bottom layer 
topography between models A and B.
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3.3.  THB Method

For all models, we set the model thickness as 60 m with 1 m horizontal and vertical grid spacing. We per-
form 2 × 106 iterations with 10 Markov Chains. This amount of iterations, Markov Chains, and model size 
took about 80 h of computation time for all models in a workstation with an 18-core Intel Xeon Gold 6140 
processor.

For models A and B, the RMSE misfit evolutions (Figures S4a and S4c) show that the misfits start to stabilize 
at a constant level after ∼3 × 105 iterations. We set the “burn-in” conservatively at 1 × 106 iterations. In the 
model misfit and uncertainty analyses (Figures S4b and S4d), the noise hyperparameter that can be con-
sidered as data measurement uncertainty is ∼2.3 ms for both models. The RMSE misfit is ∼2.3 ms for both 
models A and B. The RMSE misfit and the noise hyperparameter values are roughly the same, indicating 

that THB can fit the data with the same level of misfit as the noise hyperparameter (i.e.,  2 1). However, 
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Figure 4.  2D synthetic tests of models A and B using Plotrefa and THB. The input velocity models are from Figures 1a and 1c. Subplots (a–d) are the results 
from Plotrefa, and (e–j) are the results from THB. The black or white dashed lines in each subplot are the layer boundaries between the top, middle, and 
bottom layers shown in Figures 1a and 1c. The vertical dashed lines in the subplots show the locations of the vertical velocity profiles in Figure 6. THB, 
Transdimensional Hierarchical Bayesian.
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we note that the hyperparameter is about 15% greater than the imposed Gaussian noise (2 ms). This de-
viation is likely due to the implementation of sharp velocity boundaries that cannot be properly modeled 
with Delaunay interpolation (Figure 3c). The mean velocity model in the ensemble obtained by THB has 
a mean misfit of ∼1.9 ms, which is close to our imposed Gaussian noise. In comparing the mean misfit 
versus source-receiver distances of both models (Figures S4b and S4e), there seems to be a higher misfit 
level in shorter source-receiver distances, even though the level of imposed Gaussian noise is the same in 
all source-receiver distances.

The mean velocity, vertical velocity gradient, and model uncertainty (illustrated by the coefficient of var-
iation, which is standard deviation divided by the mean of the posterior distribution) of the ensemble of 
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Figure 5.  2D synthetic test of model C using Plotrefa and THB. The input velocity model is from Figures 1e and 1g. 
(a and b) are the results from Plotrefa, and (c–e) are the results from THB. The black or white dashed lines in each 
subplot indicate the highest change in gradient, separating the top, middle, and bottom layers shown in Figure 1e. The 
vertical dashed lines in the subplots show the locations of the 1D velocity profiles in Figure 6. THB, Transdimensional 
Hierarchical Bayesian.
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models obtained by THB for scenarios A and B are shown in Figures 4e–4j, and other related plots are in Fig-
ure S4. For both input models A and B (Figures 1a and 1c), THB predicts roughly three velocity layers, with 
(a) a top layer < 500 m/s near the ground surface, (b) a ∼2,000–3,000 m/s middle layer, and (c) a ∼4,500 m/s 
bottom layer (Figures 4e and 4f). Model A detects a more irregular middle layer, with a rapid increase and 
then decrease in velocity below both ridgetops. The transition between layers can be highlighted by plotting 
the vertical velocity gradient (Figures 4g and 4h), as the seismic velocity increases more rapidly near layer 
interfaces. Between the top and middle layers, the velocity gradient is > 400 m/s/m, indicating a sharper ve-
locity increase. The location of the inferred interface fits remarkably well with the input velocity boundary 
(black and white dashed contour lines in Figure 4). The boundary between the middle and bottom layers is 
also shown by the increase of velocity gradient to ∼200 m/s/m (Figures 4g and 4h), but is less pronounced 
in model B. The coefficient of variation of the posterior ensemble represents the model uncertainty, and is 
< 5% for the top layer of both posterior models (Figures 4i and 4j), with a much higher variation (50%) along 
the transition from the top to the middle layer. The uncertainty of the middle layer ranges from 15%-35% in 
model A and 10%–15% in model B. The bottom layer has a 10%–20% and 10%–15% uncertainty for models A 
and B, respectively. Lower coefficient of variation values does not necessarily indicate more accurate fitting 
of the input, but rather greater consistency between models in the accepted ensemble. In fact, model B has a 
lower coefficient of variation than model A and yet model A achieves a better fit to the input. Nevertheless, 
higher uncertainty values can tell us about the resolution power of our setup and may be useful in inter-
preting the predicted model. For example, the regions of high variation along the layer transitions arise due 
to uncertainty of where the exact layer transition occurs, and can be used to map out interfaces (e.g., Bur-
dick & Lekic, 2017; Olugboji et al., 2017). The smoothness of the layer transition in the mean model is not 
inherently due to smoothness in the target velocity gradient, but can be due to an averaging over different 
locations in iterations (e.g., Burdick et al., 2019).

For the combined model (model C), after 2 × 106 iterations, 10 Markov chains converge to a mean misfit 
of ∼0.9 ms with burn-in set as 1 × 106. Due to lower input noise, model C has a lower mean misfit than 
models A and B. The hyperparameter is 1.07 ms, which is very close to the imposed Gaussian noise (1 ms). 
This result indicates that the Delaunay interpolation can properly infer data noise when the layer bound-
aries are not sharp. The results for model C are shown in Figures 5c–5e and Figure S4. The mean velocity 
profile predicts layers within which velocity increases gradually, and captures the thickening of the top 
layer (< 700 m/s) toward ridgetops. The mean vertical gradient is able to detect the two changes in gradi-
ent described in the input setup: one subparallel to topography, and the other mirroring topography. Both 
interfaces have a mean vertical gradient of 100–125 m/s/m. Both the shallower and deeper interfaces are 
gradual transitions, but can still be detected by THB rjMCMC. Uncertainty is 5%–10% throughout much of 
model C (Figure 5e). There is a slightly higher uncertainty closer to the channels and toward the bottom 
of the profile. The far-right and far-left edges of the model have uncertainty > 15% likely due to fewer ray 
paths constraining that section. There is likewise a region of high uncertainty (30%) below the first ridgetop 
where velocity decreases.

The input velocity for model C was designed with a thicker top layer on north-facing than on south-facing 
hillslopes. As the model grid size is set to 1 and 3 m for geophone intervals, this level of grid resolution 
cannot well resolve the thickness variation. The 2-m variation in thickness is recovered to an extent by THB, 
with vertical velocity and vertical gradient profiles from slope A and slope C distinguishably different from 
slope B and slope D in the first 4 m (Figure 6e). Changes in velocity gradient for south-facing and north-fac-
ing slopes occur at roughly 2 and 4 m depths, respectively, corresponding to the input model. However, 
differences between the model profiles become more muddled at depth. From this test, we see that THB can 
capture gradual increases in velocity and changes in velocity gradient with the presence of measurement 
noise, though it may produce a broader zone of transition than actually exists.

To explore whether the initial velocity model could influence the posterior mean velocity distribution, we 
also perform THB inversion for model C with two different initial velocity distributions: (1) constant initial 
velocity of 2,000 m/s and (2) initial velocity increasing with depth. As demonstrated in Figure S4, given 
a sufficient number of iterations, the posterior mean velocity model should be independent of the initial 
velocity distribution. We additionally show the mean velocity model during the intermediate period (before 
burn-in) to show the evolution of the velocity distribution from the initial model to after burn-in.
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3.4.  Comparison of Traditional Inversion and the THB Approach

In the 2D synthetic tests, Plotrefa is able to resolve increases of seismic velocity at depth with roughly correct 
velocities at shallower (< 10 m) depth (Figure 1). However, for depths greater than 20 m where velocity is 
greater than 2,000 m/s, Plotrefa is not able to clearly recover the deep structure of the three synthetic veloc-
ity structures (Figures 4a, 4b, and 5a). In model A, Plotrefa captures increased CZ thickness, but the shape 
of the bottom layer boundary is more irregular and therefore it is hard to confidently resolve the topography 
of the bottom layer (Figure 4a). Additionally, the inferred velocity structure can be significantly influenced 
by the model meshing structure, as the meshes are subparallel to the surface topography (Figure S3). On the 
other hand, the THB approach is able to clearly differentiate the synthetic velocity structures (Figure 4e). 
At shallower depths, both Plotrefa and THB can resolve the top layer equally well, but THB predicts a much 
sharper boundary between the top and middle layers.

To better compare results between Plotrefa and THB, we plot the vertical velocity and vertical velocity gra-
dient below the tallest ridge (labeled by the vertical black dashed line in Figures 4a and 4e). As shown in 
Figure 6a, for Model A we find a much better agreement between the input velocity structure (green line) 
and the inferred structure by THB (orange line with black standard deviation) than the velocity profile pre-
dicted by Plotrefa (blue color). THB predicts one high gradient peak, and a second more gradual increase 
in velocity, implying two layer boundaries in the inferred velocity structure. A sharper peak at ∼9 m depth 
indicates a well resolved boundary, and the gentle increase to ∼33 m depth has a wider distribution of the 
peak, implying a less well resolved boundary. The velocity gradient predicted by Plotrefa (blue color in 
Figure 6a) shows two high gradient peaks related to the layer boundaries, but the gradients are lower than 
those predicted by THB, and the depth of the two peaks are ∼5 m below the input model. Additionally, 
Plotrefa predicts another peak at a 23–28 m depth that could be due to overfitting the imposed measure-
ment noise. Because there is no formal uncertainty analysis in Plotrefa, we cannot easily determine the 
number of layers from the velocity gradient. As shown in Figure 4e, Plotrefa additionally overestimates the 
model A velocity at a 10–15 m depth and then predicts a velocity decrease right below. As both Plotrefa and 
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Figure 6.  Vertical velocity and velocity gradient profiles of the 2D synthetic tests. The profiles are below the highest elevation of the models (vertical dashed 
lines in Figure 5). (a–c) are the vertical profiles below ridgetops for models A, B, and C, respectively. (d) is the vertical profile below the channel for model C. 
The green lines are the input velocity structures. The blue and orange colors represent the inferred velocity structure using Plotrefa and THB, respectively. The 
black lines are the 1-sigma confidence interval of the THB model. (e) shows vertical profiles below north- (blue and red lines) and south-facing (green and 
yellow lines) hillslopes of model C. Solid lines are the input velocity and dashed lines represent inferred velocity structure using THB. THB, Transdimensional 
Hierarchical Bayesian.
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THB inversions do not impose the velocity increase with depth constraint, the velocity decrease shown in 
Figure 4e (also present as a negative peak in the velocity gradient in Figure 6a) is likely driven by synthetic 
data noise. Since Plotrefa imposes smoothing while THB does not, the THB mean velocity model is a more 
accurate reflection of the data.

In model B, although Plotrefa does not recover a sharp boundary between the top and middle layers, the 
inferred middle layer velocity is closer to the input velocity (Figures 4b and 4d). THB can predict a sharp 
shallow boundary with correct inferred low-velocity (300 m/s) and depth (∼6 m) (Figures 4f and 4h), but 
the inferred mid-velocity is ∼500 m/s greater than the input velocity of 2,000 m/s. Since Plotrefa solely 
minimizes model misfit without considering measurement uncertainty, it is able to identify the boundary 
between the middle and bottom layers. However, the shape of this boundary is more irregular (Figure 4b), 
and Plotrefa also predicts an additional layer boundary at 25 m depth, which is likely due to overfitting data 
noise. On the other hand, THB simultaneously minimizes model misfit and data uncertainty (i.e., noise 
hyperparameter), so in return it predicts a smoother boundary due to the presence of data uncertainty. 
The major difference between models A and B is the thickness of the middle layer (the green color layer 
in Figures 1a and 1c). With a thinner middle layer in model B, the crossover distance between middle and 
bottom layers is shorter. Combined with steep surface topographic relief, this would result in an even short-
er crossover distance and therefore shorter arrival time difference between layers. When the arrival time 
difference between geophones is sufficiently small compared to the imposed data noise, THB may consider 
the true layer boundary as measurement noise. This is better shown in the vertical velocity plot in Figure 6b. 
Below the boundary of top and middle layers, the velocity gradient stabilizes at a near constant value below 
∼11 m depth. This can be an indication that THB considers the arrival time difference that determines the 
second layer boundary as measurement noise. With increasing number of iterations, THB rjMCMC has the 
tendency to further separate the middle and bottom layers. We therefore do not consider the poorer velocity 
model in model B as a failure for THB. It still predicts some likelihood of an appearance of a second layer 
with a much broader depth range, as shown in the vertical velocity gradient in Figure 6b. We also want to 
note that the imposed data noise in the 2D synthetic tests is higher than in the actual field survey, so THB 
can rigorously distinguish the stress-controlled (model A) and hydrology-controlled (model B) structures.

For model C, THB detects the sharpest change in velocity at a 6–7 m depth, and another at a 29–31 m depth 
below ridgetops (Figures 6c and 6d). The input velocity structure at this location indicates these changes 
in gradient should occur at a 4 m depth and 31 m depth, respectively. THB therefore captures a smoother 
version of the input gradient changes, extending the thickness over which velocity transitions occur. Verti-
cal profiles for Plotrefa do capture more accurate locations below the ridgetop where the gradient changes; 
however, instead of producing a smooth increase in velocity with depth, Plotrefa detects additional changes 
in gradient within the middle layer where no such variation exists in the input (Figure 6c). More of these ex-
traneous gradient peaks are seen in Plotrefa below the channel, while THB instead presents a well-defined 
velocity change that captures the transition from the middle to bottom layers. As it is not easy to compare 
model fitting by inspecting the mean velocity distribution (Figures 5a and 5c), we plot the residual velocity 
of model C, shown in Figure 7, to further gauge the accuracy of Plotrefa and THB. Positive residual veloc-
ities indicate model overestimation of the input velocity. While both Plotrefa and THB are within 300 m/s 
of the input velocity for much of the profile, Plotrefa appears to be spottier below ridgetops, with misfit 
regularly above 500 m/s. Plotrefa also underestimates the input velocity by 1,000 m/s below channels. THB 
is therefore more accurate at capturing the high velocity present below channels. Both have very low misfit 
in the low velocity layer, with slightly higher misfit where the velocity gradient changes in the input.

To summarize results from the 2D synthetic tests, the traditional inversion method such as Plotrefa can ob-
tain good fits to the data, reducing nonuniqueness and model complexity through imposed model smooth-
ing (e.g., St. Clair et al., 2015). However, it is not straightforward to choose a model smoothing value that 
can best account for the data uncertainty, model nonuniqueness, and the model resolution with depth. On 
the other hand, THB can simultaneously estimate model misfit and the noise hyperparameter, without the 
need for a separate model smoothing parameter. In this way, the model uncertainty (Figures 4i, 4j, and 5e) 
is estimated based on the ensembles of the posterior velocity distribution, which are affected by evolving 
estimates of measurement noise. The model inferred from this method can better represent an unbiased 
velocity structure due to the presence of measurement uncertainty.
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4.  Field Study
4.1.  Study Site and Field Survey Setup

We perform an active-source shallow seismic refraction survey at Rancho Venada, near Williams, Califor-
nia (Figure 2a). This region has a semi-arid climate, with distinct dry and hot summers and cold and wet 
winters with an average precipitation of 483 mm/yr between water years 2008 and 2019 using data from the 
Parameter-elevation Regressions on Independent Slopes Model Climate Group at Oregon State University 
(http://prism.oregonstate.edu). Rancho Venada is located between the Northern California Coast Ranges 
and the Central Valley with elevation between 150 and 300 m. The Great Valley Sequence comprises region-
al lithology in the study site, including lower to upper Cretaceous sandstone, siltstone, shale, and conglom-
erate (Rich, 1971; Figure 2b). The bedrock lithology is mostly N15°W strike and ∼45°–50°E dip. The strike 
of the sedimentary layers is aligned with the orientation of the major-ridges and trend NW-SE. In addition, 
the study area is dissected by low-order channels into a channel-ridge system (Figures 2b and 2c). This site 
is ideal for exploring CZ structure because the strike and dip of the bedrock is nearly constant, and there are 
no major folds or fault structures here (Rich, 1971). We design our field survey line to be parallel to the bed-
ding strike in order to reduce complexity in subsurface bedrock structure due to lateral heterogeneity from 
rock type variations (Figure 2c). Therefore, the presence of lateral heterogeneity in the velocity structure 
could be more likely due to CZ development.

We conducted the field survey in mid-December 2019 before significant rainfall in the 2020 water year. We 
use the ES-3000 system with 24 14-Hz geophones manufactured by Geometrics, INC. Each 14-Hz geophone 
has clean-response to 240-Hz and records ground motion in a vertical component. We set the geophone 
(receiver) spacing as 3 m, so each survey line is 69 m (the same as geometry as in the synthetic test). The 
total survey line is 306 m along hillslope (273 m in horizontal distance), covering two channels and two 
ridgetops, with the first and last geophone located at 54 and 261 m along hillslope, respectively (46 and 
232 m in horizontal distance) (Figure 2c). The black circles in Figure 8a are the location of geophones, and 
the mean hillslope angle is ∼25° (Figure 8a). We generate the seismic source by swinging a 7 kg (12-pound) 
sledgehammer. For each shot location, we stack eight shots if the source is not co-located with a receiver 
(i.e., an off-end shot) and a stack of four shots otherwise. The farthest off-end shot is 54 m away from the 
first geophone. We performed a long off-end shot distance mainly because we did not know the exact CZ 
thickness at the site. A longer off-end shot distance also allows deeper raypaths below steep hillslopes. We 
set the shot interval as 9 m when the shots are within geophones, and we change the shot interval to 3 m 
when the shots are near ridgetops in order to better resolve shallow surface features (black cross symbols 
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Figure 7.  Difference between synthetic model C and the inverted models. (a) Difference in velocity between Plotrefa 
and the input. (b) Difference in velocity between THB and the input. Positive velocity residual indicates the model 
has overestimated the input velocity, while negative velocity indicates underestimation of the input velocity. THB, 
Transdimensional Hierarchical Bayesian.

http://prism.oregonstate.edu/
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in Figure 8a). The increased shot interval is designed to ensure sufficient raypath coverage to constrain the 
shallow structure near ridgetops.

The topographic profile of the field site is obtained from a digital elevation model (DEM) surveyed in an 
airborne LiDAR mission in 2017 (Nelson et al., 2017), and the DEM spatial resolution is 1 m. The elevation 
uncertainty of LiDAR DEM is normally <0.3 m (Lindsay, 2006), which is much lower than the total eleva-
tion change (more than 50 m) along the elevation profiles (more than 270 m). We therefore do not consider 
elevation error in the survey profiles.

4.2.  Inferred Seismic Velocity

We pick the P-wave arrival time (i.e., traveltime) of each geophone using the software Pickwin, which is 
part of the seismic recording and processing software package by Geometrics. After P-wave arrival times 
are determined, we perform the velocity inversion using THB. The model domain is 273 m horizontally 
and 80 m in depth (assuming the deepest raypath could be at 80 m depth) (Figure 8a). We set the model 
grid resolution as 0.5 m and perform THB inversion with 15 Markov Chains with 1 × 106 iterations for each 
chain. We allow velocity to vary between 300 and 5,000 m/s and set the initial number of control points to 
500. The initial starting model has a gradual increase of velocity from 300 to 5,000 m/s along depth with 
244 control points. As shown in Figure 8e, the misfit of early (<103) iterations varies between 10 and 7 ms 
in the Markov Chains. After ∼6 × 105 iteration, the RMSE misfit of all of the chains stabilizes to between 
1.54 and 1.66 ms (Figure 8e). We therefore set the burn-in percent as 60% with a total of 4 × 105 post burn-in 
iterations for each Markov chain.

The THB program shows the misfit evolution, mean velocity, vertical velocity gradient, coefficient of varia-
tion of the posterior probability, and seismic raypaths in Figure 8 (see also Figures S6 and S7 for other prod-
ucts). Along this transect, the coefficient of variation of the ensemble solution (Figure 8c) suggests that our 
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Figure 8.  Field survey results using THB approach. (a) Mean velocity model from the posterior distribution. The black circles are geophone locations, and 
the black crosses are shot locations. (b) Mean vertical velocity gradient. The black circles and the black cross symbols in (a and b) are the geophone and shot 
locations, respectively. (c) Coefficient of variation (inferred as model uncertainty) of the posterior velocity distribution. (d) Seismic raypaths in the mean 
velocity structure. The white dashed line in (a–c) indicates the lowest seismic raypath. The inferred velocity below this line implies poor to no model resolution. 
(e) The evolution of RMS (root-mean-square) misfit of the 15 Markov Chains. THB, Transdimensional Hierarchical Bayesian.
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field survey configuration can resolve velocity structure to ∼10–30 m below surface, with deeper imaging 
resolution below hillslopes and ridgetops. The variation of resolved depth range is due to surface topogra-
phy and the actual velocity at depth. As demonstrated in 2D synthetic tests, the resolving depth would be 
deeper in the presence of a thicker layer of low-velocity material (Figure 4e). In the mean velocity distri-
bution, the depth of low to high velocity transition is generally shallower below valley bottoms than ridge 
tops. This pattern is clearly shown in the vertical gradient (Figure 8b), where high gradient values represent 
a sudden increase in seismic velocity. The vertical gradient plot suggests that there is at least one steep 
velocity increase from ∼900 to ∼3,000 m/s near ridgetops and from ∼1,200 to ∼4,000 m/s below channels.

In comparison of misfits in absolute values along shot-receiver distance (Figure S6b), there is no clear dis-
tance-dependent misfit except for some higher misfits up to ∼12 ms at 10–30 m distance. The mean misfit 
is ∼1.1 ms (Figure S6b), and the standard deviation of the misfit is ∼1.6 ms (Figure S6c).

5.  Discussion of Field Survey
5.1.  General Interpretation of the Velocity Model

The mean velocity and vertical velocity gradient calculated from the ensemble solution are shown in Fig-
ures 8a and 8b. In order to only focus on the interpretable part of the velocity model, we clip out the area be-
low the deepest seismic raypath, and make transparent the edges of the model where there is no geophone 
coverage (Figure 9a). We do not attempt to interpret these poorly constrained regions. We want to emphasize 
again that the mean velocity shown in Figure 8a represents the mean of the posterior ensembles, so when 
interpreting the velocity structure we should also take into account the model uncertainty (Figure 8c). In 
addition, in locations that are poorly constrained by data (i.e., low raypath density), THB will tend to re-
trieve ensemble solutions distributed similar to the prior on the velocity distribution; therefore, the mean 
model will return to the mean value of the prior velocity range (also see Text S2). This explains the lower 
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Figure 9.  Field survey results and vertical velocity profiles. (a) Mean velocity model. The transparent edges of the profile mark areas with no geophone 
coverage where fewer ray paths constrain the velocity structure. The white lines are the velocity contours at 1,400 m/s. The black contour line marks the 
location of the highest vertical velocity gradient when seismic velocity is lower than 2,500 m/s. Note the highest vertical velocity gradient is located close to the 
1,400 m/s velocity contour line. (b–d) show the selected vertical velocity and velocity gradient profiles below ridgetops (b), hillslopes (c), and channels (d). The 
colored curves are the mean velocity along depth, and the thin black curves are the 1-sigma confidence interval of the THB model. Note that seismic velocity 
increases more rapidly with depth below channels than below ridgetops. THB, Transdimensional Hierarchical Bayesian.
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velocity found in the areas below the deepest raypath (white dashed line in Figure 8a). These locations are 
also characterized by greatest uncertainty, and can therefore easily be identified as uninterpretable.

We can identify several features from the mean velocity and the vertical velocity gradient plots: (1) Below 
hillslopes and ridgetops, the seismic velocity is commonly lower than 700 m/s (mostly 450 m/s) in the top 
1–3 m below surface. This low velocity layer is much thinner or absent below channels. (2) Below this low 
velocity zone, there is a >10 m thick zone with higher vertical velocity gradient (>200 m/s/m; Figure 8b), 
and the value of the velocity gradient is higher near the channels. The velocity generally increases from 
<1,000 to ∼3,000 m/s from the top to the bottom of this high velocity gradient layer. (3) Below the high 
velocity gradient layer, the velocity increases more gradually from ∼3,000 to ∼4,000 m/s close to the deepest 
raypath. (4) Although model uncertainty is higher close to the deepest raypaths, the deepest raypaths pres-
ent as a mirror image of the surface topography (Figure 8).

We estimate the model uncertainty based on the coefficient of variation (Figure 8c) and find variations gen-
erally less than 25% within the domain sampled by raypaths. There is higher variation below the channel 
(MH4) and ridgetop (MH4R), possibly due to a rapid change of velocity, which may indicate the presence 
of layer boundaries. Uncertainty is also slightly greater below the high velocity gradient layer described in 
the last paragraph. Below the hillslopes, velocity is lower (yellow-to-brown color) at horizontal distances 
100, 130, and 205 m; however, the coefficient of variation corresponding to these regions is also greater. The 
high variation here indicates greater differences within the THB ensemble, which is likely a result of lesser 
raypath coverage in these regions (Figure 8d). As a result, the inverted velocity here is not well constrained. 
The coefficient of variation allows us to interpret the model resolution, but the value itself is not directly 
equivalent to model accuracy.

As P-wave velocity of the shallowest layer is between 450 and ∼700 m/s, the material comprising this layer 
is likely soil near the ground surface trending to a mixture of soil and saprolite with depth. Given our 3 m 
geophone spacing, we cannot directly determine the thickness of the soil layer due to poorer resolution 
of the shallowest few meters. Below the top layer, the velocity gradient is commonly greater, with P-wave 
velocity increasing almost linearly from ∼700 to ∼3,000 m/s, as is highlighted in the velocity gradient plot 
(Figure 8b). This is even more pronounced especially toward the channels. Laboratory experiments show 
that depending on the ambient stress and porosity, the P-wave velocity of sedimentary rocks in the upper 
crust generally ranges from 2,000 to 4,000 m/s (Saxena et al., 2018). In particular, the P-wave velocity of 
fresh (not chemically altered) sandstone in shallow crust with 10% or 20% porosity is 4,600 or 3,800 m/s, 
respectively (Geldart & Sheriff, 2004). We therefore infer that the material comprising this second layer is 
a mixture of saprolite and weathered bedrock. The increase of seismic velocity here could also be due to 
reduction of porosity (Hayes et al., 2019; Holbrook et al., 2014) and/or reduction of chemical weathering 
(e.g., Gu et  al.,  2020), reflecting an increase of material strength in the saprolite or weathered bedrock 
materials. Note that this middle layer is thicker (∼15 m) below the ridgetops than elsewhere. Below here, 
seismic velocity increases from ∼3,000 to > 4,000 m/s with a lower vertical velocity gradient. The gradual 
increase of velocity in this layer represents the transition from more weathered (either chemically and/or 
physically) to more pristine, low porosity bedrock below. However, due to the poorer resolving power of 
seismic refraction at greater depth, we cannot provide further insights into the abruptness of the transition 
from weathered to fresh bedrock.

To compare velocity structures at different locations along the survey line, we plot a selection of vertical 
profiles below ridgetops, hillslopes, and channels, and document the velocity and velocity gradient struc-
tures (Figures 9b–9d). In ridgetop profiles (MH3R and MH4R in Figure 9a), velocity increases from 450 m/s 
near the surface to 3,500 m/s close to 35 m depth, with the standard deviation increasing to ∼400 m/s (Fig-
ure 9b). However, the velocity structure profile is quite different between ridges MH4R and MH3R. The ve-
locity profile below MH4R rapidly increases to ∼3,000 m/s and stays as a constant below 11 m depth. Below 
hillslopes (Figure 9c), the velocity profiles of 3 locations are nearly identical, with a constant low velocity 
(450 m/s) for the top 1–2 m, followed by a rapid increase of velocity from 450 to ∼3,500 m/s at ∼15 m depth, 
and then nearly constant below, regardless of slope aspect. This finding is different from the strong aspect 
ratios between north and south facing slopes in the Shale Hills Critical Zone Observatory in Pennsylvania 
(e.g., West et al., 2019). The standard deviation of velocity is roughly the same below hillslopes and below 
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ridgetops, indicating similar resolving power. Below channels (Figure 9d), the low velocity layer is absent 
and the velocity increases to ∼4,000 m/s at shallower depth with low uncertainty (above 10 m depth).

As demonstrated in the synthetic models A and B, THB inversion is able to detect a sudden increase of ve-
locity (Figure 4), though not able to precisely recover the step increase in velocity gradient as set up in the 
synthetic models (the green lines in the gradient profiles in Figure 6) due to presence of measurement noise 
and geophone spacing. Field data indicates that constant velocity layers with velocity jumps, as implement-
ed in models A and B, may not be realistic in Earth structure. In synthetic model C, THB is able to retrieve 
gradual increases of velocity and changes of velocity gradient (Figures 5 and 6), similar to those found in 
the velocity profiles shown in the field data inversion. We want to emphasize that in THB inversion we do 
not impose a model smoothing parameter, so the gradual velocity increase with depth is more likely to be a 
real structure. The presence of a high velocity gradient zone in our field survey, rather than velocity jumps, 
implies a lack of sharp material boundaries below hillslopes.

To summarize the field data at Rancho Venada, the seismic velocity model suggests a weathered, uncon-
solidated material such as soil near the surface, followed by a ∼10 m thick layer with increasing saprolite 
component, a weathered bedrock layer with gradually increasing material strength with depth, and un-
weathered bedrock underneath.

5.2.  Broader Implications of the CZ Structure at the Study Site

By comparing the vertical velocity gradient and the seismic velocity, we find that when Vp < 2,000 m/s, the 
highest vertical velocity gradient (black contour line in Figure 9a) roughly coincides with the 1,400 m/s Vp 
contour line (dashed white contour line in Figure 9a). This contour line falls within a zone of high veloc-
ity gradient, as introduced in Section 5.1, and possibly indicates a more pronounced increase of material 
competency at the contour depth. From borehole drilling experiments in a granitic site in Laramie Range, 
Wyoming, Flinchum et al. (2018) observe that the material Vp is ∼1,200 m/s near the casing depth at four 
boreholes. The depth of casing indicates the presence of competent material, which they interpret as the 
top of weathered bedrock. Although we are not able to determine the process that dominates the strong 
vertical velocity gradient at Rancho Venada, we find some similarity in near-surface seismic velocity struc-
ture between our study site and sites in Laramie Range, Wyoming (Flinchum et al., 2018), southern Sierra 
Nevada, California (Hayes et al., 2019; Holbrook et al., 2014), Gordon Gulch, Colorado (Befus et al., 2011), 
and the Shale Hills Critical Zone Observatory (Gu et al., 2020). In this study, saprolite-weathered bedrock 
is interpreted as between 700 and 3,000  m/s in the layer with high velocity gradient (Section  5.1). The 
consideration of 3,000 m/s as saprolite material is higher than the saprolite P-wave velocity reported by 
Befus et al. (2011), Olyphant et al. (2016), Flinchum et al. (2018), and West et al. (2019) with evidence from 
drilling. It is therefore also possible that the saprolite-weathered bedrock transition occurs at the highest 
velocity gradient, near 1,400 m/s. Future drilling at the study site will directly constrain the saprolite-bed-
rock transition.

Since the strike and dip of the Cretaceous sedimentary bedrock units are near identical in our field site (Fig-
ure 2b) and the survey line is parallel to the bedding strike, we can rule out the scenario that the difference 
in structure below hillslopes versus channels is due to bedrock geometry or change in lithology. Instead, our 
result suggests that the difference in velocity structure is likely influenced by different weathering processes 
and conditions between channels and hillslopes. The most significant velocity feature that distinguishes 
channels from hillslopes is the presence of high velocities (>4,000 m/s) at shallow depths below channels. 
This rapid transition from low to high velocity likely indicates a shallower weathering front, while the more 
gradual increase of velocity below hillslopes implies a thicker, more developed saprolite layer (high vertical 
velocity gradient layer in Figure 8b) toward ridgetops.

Flinchum et al. (2018) interpret a saprolite, weathered bedrock, and protolith layers in the CZ structure along 
hillslopes based on seismic refraction and drilling. Toward the ridgetops, they infer a convex up boundary 
between the saprolite and weathered bedrock layers, and the topography of the protolith is inverted relative 
to the surface topography (Figure 13 in Flinchum et al., 2018). Based on our field survey at Rancho Venada, 
the topography of the high velocity gradient zone (the light yellow color in Figure 8b) presents a convex up 
structure toward ridgetops. On the other hand, the elevation along the deepest raypaths (the white dashed 
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line in Figure 8) decreases toward ridgetops. Although we are not able to resolve velocity below the deepest 
raypaths, the higher density of raypaths along the deepest resolvable velocity suggests a sudden increase of 
velocity. This velocity increase suggests the weathered to unweathered bedrock transition likely mirrors the 
surface topography. The velocity structure characterized at Rancho Venada is similar to what is found by 
Flinchum et al. (2018), despite different geology and climate conditions. By solely using active source seis-
mic refraction, the uncertainty and difficulty in identifying material boundaries hinders our capability of 
testing different CZ hypotheses. Without directly accessing rock material (e.g., drilling), it is challenging to 
further relate Vp to specific types of material at our study site. Further investigations including direct assess-
ment to material and sampling are needed to provide better insights into the CZ evolution in our study stie.

6.  Future Work
We rely on P-wave arrival time picking and seismic refraction for inferring seismic velocity structure. The 
method and the field configuration designed in this study can also be applied to other near-surface geo-
physics studies such as ice structure in glaciers (Marusiak et al., 2020; Montgomery et al., 2017), lava layers 
in volcanic fields (Wells et al., 1985), or the hydrologic structures in floodplains (Steelman et al., 2018). 
There are other techniques in seismology for imaging subsurface structure such as S-wave (Vs) arrival, sur-
face wave dispersion, seismic reflection, and so on. For example, subsurface moisture content can strongly 
influence P-wave velocity (Gregory, 1976). To properly measure fracture density and how much water can 
be stored within the CZ structure, work related to in situ measurement of soil/rock moisture in different 
seasons will be essential. Direct borehole drilling through CZ structure and relating core samples to seismic 
structure (e.g., Flinchum et al., 2018; St. Clair et al., 2015) will provide ground-truth material properties and 
how they are related to seismic imaging, and therefore a better picture of the evolution of CZ structure in 
different geologic and climatic conditions. For example, measuring porosity and chemical element deple-
tion along the boreholes and the calibration with the seismic velocity profiles will allow us to estimate po-
rosity, chemical weathering, and volumetric strain based on seismic velocity models (Gu et al., 2020; Hayes 
et al., 2019; Holbrook et al., 2014).

7.  Conclusions
In this study, we provide an open source Transdimensional Hierarchical Bayesian inversion scheme for 
traveltime measurements made on data from active source seismic refraction experiments. The THB inver-
sion is implemented using reversible-jump Markov Chain Monte Carlo (THB rjMCMC) and is shown to 
better resolve seismic structure compared to traditional techniques, while eliminating the need for explicit 
regularization through smoothing. We explore active source seismic refraction fieldwork configurations as 
well as a novel inversion scheme to better resolve deep critical zone structure. We used three unique 2D syn-
thetic models with different input model geometry to compare the traditional inversion method and THB. 
Traditional seismic refraction inversions poorly resolve velocity structure boundaries and gradual velocity 
increases with depth. Additionally, without addressing data and model uncertainties, we cannot rigorously 
interpret deep critical zone structure. With the THB approach that simultaneously minimizes model misfit 
and estimates measurement uncertainty, we are able to identify deeper velocity boundaries. Based on active 
source seismic refraction surveys along the strike of the Cretaceous sedimentary rocks in northern Califor-
nia, the mean velocity model from the field survey data using THB shows that along the survey lines, there 
is commonly a near constant seismic velocity at shallow depth (0–3 m below ground surface), followed 
by an increase in velocity (i.e., high velocity gradient) from 700 to 3,000 m/s, and finally a more gradual 
velocity increase from ∼3,000 to > 4,000 m/s. We interpret this velocity structure as transitions from soil, 
saprolite, and weathered bedrock to unweathered bedrock. This transition is more gradual below ridgetops 
and hillslopes than below channels, suggesting a more developed weathering zone along ridgetops and 
hillslopes. Our work demonstrates that THB is an ideal approach for inverting velocity structure from active 
source seismic refraction surveys and understanding model uncertainty at depth. This work contributes 
to our ability to reliably image and interpret CZ structure as well as other near-surface geophysics studies.

HUANG ET AL.

10.1029/2020GC009172

18 of 20



Geochemistry, Geophysics, Geosystems

Data Availability Statement
The THB code, user guide, and the Vp traveltime picking data are currently being archived on Zenodo (http://
doi.org/10.5281/zenodo.4590999). The colormap used in most of the figures are based on Crameri (2018) 
and Greene (2020).

References
Anderson, R. S., Anderson, S. P., & Tucker, G. E. (2013). Rock damage and regolith transport by frost: An example of climate modulation 

of the geomorphology of the critical zone. Earth Surface Processes and Landforms, 38(3), 299–316. https://doi.org/10.1002/esp.3330
Befus, K. M., Sheehan, A. F., Leopold, M., Anderson, S. P., & Anderson, R. S. (2011). Seismic constraints on critical zone architecture, 

Boulder Creek watershed, Front Range, Colorado. Vadose Zone Journal, 10(4), 1342. https://doi.org/10.2136/vzj2010.0108er
Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178(3), 

1411–1436. https://doi.org/10.1111/j.1365-246x.2009.04226.x
Bodin, T., Sambridge, M., Rawlinson, N., & Arroucau, P. (2012). Transdimensional tomography with unknown data noise. Geophysical 

Journal International, 189(3), 1536–1556. https://doi.org/10.1111/j.1365-246x.2012.05414.x
Burdick, S., & Lekić, V. (2017). Velocity variations and uncertainty from transdimensional P-wave tomography of North America. Geophys-

ical Journal International, 209, 1337–1351. https://doi.org/10.1093/gji/ggx091
Burdick, S., Waszek, L., & Lekić, V. (2019). Seismic tomography of the uppermost inner core. Earth and Planetary Science Letters, 528, 

115789. https://doi.org/10.1016/j.epsl.2019.115789
Crameri, F. (2018). Scientific colour-maps. Zenodo. http://doi.org/10.5281/zenodo.1243862
Dettmer, J., & Dosso, S. E. (2013). Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations. 

Journal of the Acoustical Society of America, 133(5), 2612–2623. https://doi.org/10.1121/1.4795804
Dettmer, J., Molnar, S., Steininger, G., Dosso, S. E., & Cassidy, J. F. (2012). Trans-dimensional inversion of microtremor array dis-

persion data with hierarchical autoregressive error models. Geophysical Journal International, 188, 719–734. https://doi.
org/10.1111/j.1365-246x.2011.05302.x

Flinchum, B. A., Steven Holbrook, W., Rempe, D., Moon, S., Riebe, C. S., Carr, B. J., et al. (2018). Critical zone structure under a granite 
ridge inferred from drilling and three-dimensional seismic refraction data. Journal Geophysical Research: Earth Surface, 123, 1317–1343. 
https://doi.org/10.1029/2017jf004280

Galetti, E., & Curtis, A. (2018). Transdimensional electrical resistivity tomography. Journal of Geophysical Research: Solid Earth, 123, 
6347–6377. https://doi.org/10.1029/2017JB015418

Galetti, E., Curtis, A., Meles, G. A., & Baptie, B. (2015). Uncertainty loops in travel-time tomography from nonlinear wave physics. Physical 
Review Letters, 114(14), 148501. https://doi.org/10.1103/physrevlett.114.148501

Geldart, L. P., & Sheriff, R. E. (2004). Problems in exploration seismology and their solutions. Houston, TX: Society of Exploration 
Geophysicists.

Greene, C. (2020). Crameri perceptually uniform scientific colormaps. MATLAB Central File Exchange. Retrieved from https://www.math-
works.com/matlabcentral/fileexchange/68546-crameri-perceptually-uniform-scientific-colormaps

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732. 
https://doi.org/10.1093/biomet/82.4.711

Gregory, A. R. (1976). Fluid saturation effects on dynamic elastic properties of sedimentary rocks. Geophysics, 41, 895–921. https://doi.
org/10.1190/1.1440671

Gu, X., Mavko, G., Ma, L., Oakley, D., Accardo, N., Carr, B. J., et al. (2020). Seismic refraction tracks porosity generation and possible CO2 
production at depth under a headwater catchment. Proceedings of the National Academy of Sciences of the United States of America, 117, 
18991–18997. https://doi.org/10.1073/pnas.2003451117

Hawkins, R., Bodin, T., Sambridge, M., Choblet, G., & Husson, L. (2019). Trans-dimensional surface reconstruction with different classes 
of parameterization. Geochemistry, Geophysics, Geosystems, 20(1), 505–529. https://doi.org/10.1029/2018GC008022

Hayes, J. L., Riebe, C. S., Holbrook, W. S., Flinchum, B. A., & Hartsough, P. C. (2019). Porosity production in weathered rock: Where volu-
metric strain dominates over chemical mass loss. Science Advances, 5, eaao0834. https://doi.org/10.1126/sciadv.aao0834

Holbrook, W. S., Riebe, C. S., Elwaseif, M., L. Hayes, J. J., Basler-Reeder, K., L. Harry, D., et al. (2014). Geophysical constraints on deep 
weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surface Processes and Landforms, 39, 
366–380. https://doi.org/10.1002/esp.3502

Julian, B. R., & Gubbins, D. (1977). Three-dimensional seismic ray tracing. Journal of Geophysics, 43, 95–113.
Kroon, D. J. (2021). Accurate fast marching. MATLAB Central File Exchange. Retrieved from https://www.mathworks.com/matlabcentral/

fileexchange/24531-accurate-fast-marching
Lebedeva, M. I., & Brantley, S. L. (2013). Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the 

empirical regolith production function. Earth Surface Processes and Landforms, 38(15), 1793–1807. https://doi.org/10.1002/esp.3424
Lindsay, J. B. (2006). Sensitivity of channel mapping techniques to uncertainty in digital elevation data. International Journal of Geograph-

ical Information Science, 20(6), 669–692. https://doi.org/10.1080/13658810600661433
Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical 

Journal International, 151(3), 675–688. https://doi.org/10.1046/j.1365-246x.2002.01847.x
Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. 

Geophysics, 69(4), 1005–1016. https://doi.org/10.1190/1.1778243
Marusiak, A. G., Schmerr, N. C., DellaGiustina, D. N., Pettit, E. C., Dahl, P. H., Avenson, B., et al. (2020). The deployment of the seismom-

eter to investigate ice and ocean structure (SIIOS) on Gulkana Glacier, Alaska. Seismological Research Letters, 91, 1901–1914. https://
doi.org/10.1785/0220190328

Menke, W. (1984). Geophysical data analysis: Discrete inverse theory. Cambridge, MA: Academic Press, Inc.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing 

machines. The Journal of Chemical Physics, 21, 1087–1092. https://doi.org/10.1063/1.1699114
Montgomery, L. N., Schmerr, N., Burdick, S., Forster, R. R., Koenig, L., Legchenko, A., et al. (2017). Investigation of firn aquifer structure in 

southeastern Greenland using active source seismology. Frontiers of Earth Science, 5. https://doi.org/10.3389/feart.2017.00010

HUANG ET AL.

10.1029/2020GC009172

19 of 20

Acknowledgments
The authors would like to thank the 
Brown family and the Hemmi family 
for granting us the access to their prop-
erties and also for their encouragement 
and support for our field work. Doug 
Dreger, Bill Dietrich, Alex Bryk, Behnaz 
Hosseini, Daniella Rempe, Ernie 
Bell, Michelle Pedrazas, Jesse Hahm, 
David Dralle, Maryn Sanders, Jeng 
Hann Chong, Alexis Lopez, Amanda 
Donalson, Margaret Zimmer, and Kerri 
Johnson provided insightful comments 
and/or contributed to the early part 
of the field work. Steve Holbrook and 
two anonymous reviewers provide 
insightful comments that significantly 
improve the quality of the manuscript. 
The NASA Postdoctoral Program at Jet 
Propulsion Laboratory, administered by 
the Universities Space and Research As-
sociation through a contract with NASA 
supported M.-H. Huang for preliminary 
fieldworks between 2015 and 2017. 
Part of this work is supported by NSF-
EAR2012616 award to M.-H. Huang, a 
Paglia Post-Bachelor Research Fellow 
Award to B. Hudson-Rasmussen, and 
a Packard Foundation Fellowship and 
NSF-EAR1352214 award to V. Lekic. 
This study was inspired after participat-
ing in a fieldwork led by Bill Dietrich 
and Steve Holbrook in 2014. Pickwin 
and Plotrefa are licensed software 
developed by Geometrics (https://www.
geometrics.com/).

http://doi.org/10.5281/zenodo.4590999
http://doi.org/10.5281/zenodo.4590999
https://doi.org/10.1002/esp.3330
https://doi.org/10.2136/vzj2010.0108er
https://doi.org/10.1111/j.1365-246x.2009.04226.x
https://doi.org/10.1111/j.1365-246x.2012.05414.x
https://doi.org/10.1093/gji/ggx091
https://doi.org/10.1016/j.epsl.2019.115789
http://doi.org/10.5281/zenodo.1243862
https://doi.org/10.1121/1.4795804
https://doi.org/10.1111/j.1365-246x.2011.05302.x
https://doi.org/10.1111/j.1365-246x.2011.05302.x
https://doi.org/10.1029/2017jf004280
https://doi.org/10.1029/2017JB015418
https://doi.org/10.1103/physrevlett.114.148501
https://www.mathworks.com/matlabcentral/fileexchange/68546-crameri-perceptually-uniform-scientific-colormaps
https://www.mathworks.com/matlabcentral/fileexchange/68546-crameri-perceptually-uniform-scientific-colormaps
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1190/1.1440671
https://doi.org/10.1190/1.1440671
https://doi.org/10.1073/pnas.2003451117
https://doi.org/10.1029/2018GC008022
https://doi.org/10.1126/sciadv.aao0834
https://doi.org/10.1002/esp.3502
https://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/24531-accurate-fast-marching
https://doi.org/10.1002/esp.3424
https://doi.org/10.1080/13658810600661433
https://doi.org/10.1046/j.1365-246x.2002.01847.x
https://doi.org/10.1190/1.1778243
https://doi.org/10.1785/0220190328
https://doi.org/10.1785/0220190328
https://doi.org/10.1063/1.1699114
https://doi.org/10.3389/feart.2017.00010


Geochemistry, Geophysics, Geosystems

National Research Council (NRC). (2001). Basic research opportunities in earth science. Washington, DC: The National Academies Press.
Nelson, M. D., Bryk, A. B., Fauria, K., Huang, M.-H., & Dietrich, W. E. (2017). Physical properties of shallow landslides and their role in 

landscape evolution investigated with ultrahigh-resolution lidar data and aerial imagery (pp. 11–15). New Orleans, LA: AGU.
Olugboji, T. M., Lekic, V., & McDonough, W. (2017). A statistical assessment of seismic models of the U.S. continental crust using Bayesian 

inversion of ambient noise surface wave dispersion data. Tectonics, 36, 1232–1253. https://doi.org/10.1002/2017TC004468
Olyphant, J., Pelletier, J. D., & Johnson, R. (2016). Topographic correlations with soil and regolith thickness from shallow-seismic refrac-

tion constraints across upland hillslopes in the Valles Caldera, New Mexico. Earth Surface Processes and Landforms, 41(12), 1684–1696. 
https://doi.org/10.1002/esp.3941

Pasquet, S., Holbrook, W. S., Carr, B. J., & Sims, K. W. W. (2016). Geophysical imaging of shallow degassing in a Yellowstone hydrothermal 
system. Geophysical Research Letters, 43, 12027–12035. https://doi.org/10.1002/2016GL071306

Peyre, G. (2020). Toolbox fast marching. MATLAB Central File Exchange. Retrieved from https://www.mathworks.com/matlabcentral/
fileexchange/6110-toolbox-fast-marching

Peyre, G., & Cohen, L. (2004). Surface segmentation using geodesic centroidal tesselation (pp. 995–1002). Proceedings of 2nd International 
Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004, Thessaloniki, Greece.

Piana Agostinetti, N., Giacomuzzi, G., & Malinverno, A. (2015). Local three-dimensional earthquake tomography by trans-dimensional 
Monte Carlo sampling. Geophysical Journal International, 201(3), 1598–1617. https://doi.org/10.1093/gji/ggv084

Rawlinson, N., & Sambridge, M. (2005). The fast marching method: An effective tool for tomographic imaging and tracking multiple phas-
es in complex layered media. Exploration Geophysics, 36, 341–350. https://doi.org/10.1071/eg05341

Ray, A., Kaplan, S., Washbourne, J., & Albertin, U. (2018). Low frequency full waveform seismic inversion within a tree based Bayesian 
framework. Geophysical Journal International, 212(1), 522–542. https://doi.org/10.1093/gji/ggx428

Ray, A., Key, K., Bodin, T., Myer, D., & Constable, S. (2014). Bayesian inversion of marine CSEM data from the Scarborough gas field us-
ing a transdimensional 2-D parametrization. Geophysical Journal International, 199(3), 1847–1860. https://doi.org/10.1093/gji/ggu370

Ray, A., & Myer, D. (2019). Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning. Geophysical Jour-
nal International, 217(3), 1706–1726. https://doi.org/10.1093/gji/ggz111

Rempe, D. M., & Dietrich, W. E. (2014). A bottom-up control on fresh-bedrock topography under landscapes. Proceedings of the National 
Academy of Sciences of the United States of America, 111, 6576–6581. https://doi.org/10.1073/pnas.1404763111

Rich, E. I. (1971). Geologic map of the Wilbur Springs quadrangle, California (Map I-538). Retrieved from https://ngmdb.usgs.gov/Prodesc/
proddesc_444.htm

Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep critical zone architecture: a historical review and four testable hypoth-
eses. Earth Surface Processes and Landforms, 42, 128–156. https://doi.org/10.1002/esp.4052

Ryberg, T., & Haberland, C. (2018). Bayesian inversion of refraction seismic traveltime data. Geophysical Journal International, 212, 1645–
1656. https://doi.org/10.1093/gji/ggx500

Sambridge, M., Gallagher, K., Jackson, A., & Rickwood, P. (2006). Trans-dimensional inverse problems, model comparison and the evi-
dence. Geophysical Journal International, 167(2), 528–542. https://doi.org/10.1111/j.1365-246x.2006.03155.x

Saxena, V., Krief, M., & Adam, L. (2018). Handbook of borehole acoustics and rock physics for reservoir characterization. Amsterdam, The 
Netherlands: Elsevier.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences 
of the United States of America, 93(4), 1591–1595. https://doi.org/10.1073/pnas.93.4.1591

St. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., et al. (2015). Geophysical imaging reveals topographic stress 
control of bedrock weathering. Science, 350, 534–538. https://doi.org/10.1126/science.aab2210

Steelman, C. M., Arnaud, E., Pehme, P., & Parker, B. L. (2018). Geophysical, geological, and hydrogeological characterization of a tributary 
buried bedrock valley in southern Ontario. Canadian Journal of Earth Sciences, 55, 641–658. https://doi.org/10.1139/cjes-2016-0120

Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 
20, 219–232. https://doi.org/10.1029/rg020i002p00219

Visser, G., Guo, P., & Saygin, E. (2019). Bayesian transdimensional seismic full-waveform inversion with a dipping layer parameterization. 
Geophysics, 84(6), R845–R858. https://doi.org/10.1190/geo2018-0785.1

Wells, S. G., Dohrenwend, J. C., McFadden, L. D., Turrin, B. D., & Mahrer, K. D. (1985). Late Cenozoic landscape evolu-
tion on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. GSA Bulletin, 96, 1518–1529. https://doi.
org/10.1130/0016-7606(1985)96<1518:LCLEOL>2.0.CO;2

West, N., Kirby, E., Nyblade, A. A., & Brantley, S. L. (2019). Climate preconditions the Critical Zone: Elucidating the role of subsur-
face fractures in the evolution of asymmetric topography. Earth and Planetary Science Letters, 513, 197–205. https://doi.org/10.1016/j.
epsl.2019.01.039

HUANG ET AL.

10.1029/2020GC009172

20 of 20

https://doi.org/10.1002/2017TC004468
https://doi.org/10.1002/esp.3941
https://doi.org/10.1002/2016GL071306
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
https://doi.org/10.1093/gji/ggv084
https://doi.org/10.1071/eg05341
https://doi.org/10.1093/gji/ggx428
https://doi.org/10.1093/gji/ggu370
https://doi.org/10.1093/gji/ggz111
https://doi.org/10.1073/pnas.1404763111
https://ngmdb.usgs.gov/Prodesc/proddesc_444.htm
https://ngmdb.usgs.gov/Prodesc/proddesc_444.htm
https://doi.org/10.1002/esp.4052
https://doi.org/10.1093/gji/ggx500
https://doi.org/10.1111/j.1365-246x.2006.03155.x
https://doi.org/10.1073/pnas.93.4.1591
https://doi.org/10.1126/science.aab2210
https://doi.org/10.1139/cjes-2016-0120
https://doi.org/10.1029/rg020i002p00219
https://doi.org/10.1190/geo2018-0785.1
https://doi.org/10.1130/0016-7606(1985)96%3C1518:LCLEOL%3E2.0.CO;2
https://doi.org/10.1130/0016-7606(1985)96%3C1518:LCLEOL%3E2.0.CO;2
https://doi.org/10.1016/j.epsl.2019.01.039
https://doi.org/10.1016/j.epsl.2019.01.039

	Bayesian Seismic Refraction Inversion for Critical Zone Science and Near-Surface Applications
	Abstract
	1. Introduction
	2. THB Approach
	3. Synthetic Tests
	3.1. 2D Synthetic Test of Layered Structures
	3.2. Plotrefa
	3.3. THB Method
	3.4. Comparison of Traditional Inversion and the THB Approach

	4. Field Study
	4.1. Study Site and Field Survey Setup
	4.2. Inferred Seismic Velocity

	5. Discussion of Field Survey
	5.1. General Interpretation of the Velocity Model
	5.2. Broader Implications of the CZ Structure at the Study Site

	6. Future Work
	7. Conclusions
	Data Availability Statement
	References


