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S U M M A R Y
Inversions of planetary gravity are aimed at constraining the mass distribution within a planet
or moon. In many cases, constraints on the interior structure of the planet, such as the depth of
density anomalies, must be assumed a priori, to reduce the non-uniqueness inherent in gravity
inversions. Here, we propose an alternative approach that embraces the non-uniqueness of
gravity inversions and provides a more complete view of related uncertainties. We developed a
Transdimensional Hierarchical Bayesian (THB) inversion algorithm that provides an ensemble
of mass distribution models compatible with the gravitational field of the body. Using this
ensemble of models instead of only one, it is possible to quantify the range of interior parameters
that produce a good fit to the gravity acceleration data. To represent the interior structure of the
planet or moon, we parametrize mass excess or deficits with point masses. We test this method
with synthetic data and, in each test, the algorithm is able to find models that fit the gravity
data of the body very well. Three of the target or test models used contain only point mass
anomalies. When all the point mass anomalies in the target model produce gravity anomalies
of similar magnitudes and the signals from each anomaly are well separated, the algorithm
recovers the correct location, number and magnitude of the point mass anomalies. When the
gravity acceleration data of a model is produced mostly by a subset of the point mass anomalies
in the target model, the algorithm only recovers the dominant anomalies. The fourth target
model is composed of spherical caps representing lunar mass concentration (mascons) under
major impact basins. The algorithm finds the correct location of the centre of the mascons but
fails to find their correct outline or shape. Although the inversion results appear less sharp than
the ones obtained by classical inversion methods, our THB algorithm provides an objective
way to analyse the interior of planetary bodies that includes epistemic uncertainty.

Key words: Lunar and planetary geodesy and gravity; Inverse theory; Probability distribu-
tions; Statistical methods; Planetary interiors.

1 I N T RO D U C T I O N

The mass distribution inside the Earth is directly related to mantle
upwellings, downwellings, dynamic tomography and plate motions
(Hager & O’Connell 1981; Forte & Peltier 1987). Mapping it is
key for constraining planet-scale dynamics. On Earth, seismic ob-
servations of normal modes can be used to infer large-scale den-
sity variations on their own (Moulik & Ekström 2016; Koelemeijer
et al. 2017) or in combination with gravity data (e.g. Ishii & Tromp
1999), albeit with large uncertainty and trade-offs (Romanowicz
2001). On other planetary bodies, however, seismic data is scarce
or non-existent (Lognonné 2005), but gravity data are relatively
abundant. Gravity data have been sampled globally from orbiting
spacecraft around the Moon (Konopliv et al. 2013), Mars (Genova
et al. 2016), Mercury (Smith et al. 2012), Venus (Li et al. 2015)
and other celestial bodies (Anderson et al. 2001; Iess et al. 2010;

Konopliv et al. 2018). With these data sets, gravity inversions have
been performed to reveal local or global mass anomalies.

Inversions of the gravity field of the Moon have been particularly
instructive. Inversion of data from the Gravity Recovery and Interior
Laboratory (GRAIL) mission showed that the crust of the Moon
is less dense, more porous, and thinner than previously thought
(Wieczorek et al. 2013). This result brought estimates of lunar
composition closer to those implied by the giant impact hypothesis
for the Moon’s formation. Gradiometry from the same data revealed
elongated positive density anomalies on the surface. Their size,
orientation and distribution were interpreted as dikes resulting from
the expansion of the young Moon (Andrews-Hanna et al. 2013) and
rifts from differential contraction between the Procellarum region
and surrounding terrains (Andrews-Hanna et al. 2014). Many other
gravity studies have provided insights on the Moon’s subsurface
(Andrews-Hanna 2013; Melosh et al. 2013b; Besserer et al. 2014;

C© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1687

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/3/1687/5651163 by U

niversity of M
aryland user on 19 January 2020

http://orcid.org/0000-0002-2091-274X
http://orcid.org/0000-0002-3548-272X
http://orcid.org/0000-0002-3519-1412
mailto:kig@umd.edu


1688 K. Izquierdo, V. Lekić, L.G.J. Montési

Miljković et al. 2015; Gong et al. 2016; Soderblom et al. 2016;
Jansen et al. 2017) and on the subsurface of other celestial bodies
(Beuthe et al. 2012; Konopliv et al. 2014; Goossens et al. 2017).

Despite these successes, using gravity data to infer density
anomalies is difficult due to the inherent non-uniqueness of gravity
inversions (Backus & Gilbert 1967; Li & Oldenburg 1998), spe-
cially if the depth of these anomalies is not constrained by other
observations. Gravity inversions in (Liang et al. 2014; Zhao et al.
2019) have provided estimates of the excess mass of uplifted man-
tle beneath Maries by applying a radial weighting function that
constrains the radial distribution of anomalies. Although this elim-
inates the need of additional observations constraining the depth of
anomalies, the resulting radial density distribution is dependent on
the weighting function chosen. Since a group of density distribu-
tions can fit the data with the same error, it is necessary to show all
fitting models in order to understand the variations in the density
distribution can produce the observed gravity data. This representa-
tion of the variations in the resulting density distribution is missing
in 3-D gravity inversions to date.

The non-uniqueness of gravity inversions should be quantified
as part of the epistemic uncertainty in resulting mass distribution
models. This non-uniqueness might cause different mass distribu-
tions to fit the gravity acceleration data with the same error lead-
ing to a much higher variability between models than due solely
to aleatory errors in the measurements of gravitational accelera-
tion. Another source of epistemic uncertainty is the representa-
tion of mass anomalies in a model. The mass anomalies actually
present in a planetary body probably form complex shapes. These
shapes may be simplified in models in different ways, including
point masses, spherical caps and tesseroids. Gravity inversion re-
sults are typically evaluated by how well they fit an input grav-
ity field, but how well they fit the actual interior density distribu-
tion depends also on epistemic uncertainty and is therefore more
uncertain.

A Transdimensional Hierarchical Bayesian (THB) approach to
the inversion of gravity data provides a framework for exploring
uncertaintities related to gravity inversions (Sambridge et al. 2006).
With the THB approach, it is possible to sample the a posteriori
probability distribution of models given the data and constraints
based on prior information, in a way that is flexible and does not
require—but can accommodate—prior assumptions concerning the
complexity and location of mass anomalies. Therefore, the results of
THB inversions are not represented by a single model but, instead,
by an ensemble of models that fit the data. We find it convenient to
summarize this ensemble of models by: (1) the average value of each
parameters of the interior mass distribution model and (2) the range
of values for those parameters where there is a 1σ or nσ confidence
that the true value lies. Access to the entire ensemble, though, allows
a more complete view of all possible solutions, including trade-offs
and correlations between parameter values. This more complete
quantification of uncertainty in gravity inversions enables a better
grasp of the implications of retrieved structures.

In gravity inversions to date, the use of a Transdimensional
Bayesian algorithm has been limited to the recovery of 2-D local-
scale density structures. The shape of a 2-D polygon, defined by a
fixed density difference and size, a varying number of vertices in
the x–y plane and an infinite length in the z-direction, can be recov-
ered (Luo 2010). In Titus et al. (2017), the additional parameters
of density difference and size of a rectangle containing the polygon
were also estimated.

In this paper, we present a THB gravity inversion algorithm de-
signed to recover an ensemble of mass distribution models of a

spherical body from gravity acceleration data which is the radial
derivative of the gravitational potential. The number of parameters
is not fixed a priori (transdimensional aspect) but instead chosen
in light of the data. The variance in the data is also estimated as
part of the inversion technique (hierachical aspect). In Section 2,
we describe the Bayesian approach and the general logic of the
algorithm. In Section 3, we show the results of inverting several
synthetic gravity fields to illustrate the capabilities and limitations
of the method.

2 I N V E R S I O N T E C H N I Q U E

In this section, we describe how Bayes’ rule is used to assign prob-
abilities to different mass distributions inside a sphere when the
number of parameters is not fixed a priori. We also present the
reversible jump Markov chain Monte Carlo (rjMcMC) algorithm
(Green 1995) used to perform THB gravity inversions. We will use
brackets {} to represent sets of values for one parameter, such as the
value of each anomaly in the model {m}, or the gravity acceleration
data, {g}. Since {g} is only informative to the inversion when the
effect expected from a sphere of constant density is removed, the
terms gravity acceleration data or gravity anomaly might be used to
refer to {g}.

2.1 Bayesian inference

Bayes’ rule states that the probability P of having an interior mass
anomaly with magnitude m given the gravity acceleration values
at the surface {g} is proportional to the probability of observing
{g} if the mass anomaly is m multiplied by the probability of the
mass anomaly being m according to our current understanding of
its possible values: P(m|{g})∝P({g}|m)P(m). P(m|{g}) is formally
known as the posterior probability function, P({g}|m) as the likeli-
hood and P(m) is the prior.

2.2 Transdimensionality

In the classical use of Bayesian inference, the number of mass
anomalies n in the model was fixed. In the case described above, it
was set to one. Thus m was a scalar. If the number of mass anomalies
is not known a priori, n can be treated as another parameter to invert
from data {g}. Eq. (1) shows the updated probability distribution
function P({m}, n|{g}).

P({m}, n|{g}) ∝ P({g}|{m}, n)P({m}, n). (1)

There are now n + 1 unknowns to be determined. A transdimen-
sional inversion provides the added flexibility of estimating the
number of layers in a 2-D velocity model using seismic data, for
example, or the number of density anomaly objects in a 3-D model
using gravity data. This flexibility is required because we do not
actually have that information when working with real data, since
the anomalies lie in the inaccessible interior of the planet.

2.3 Reversible jump Markov chain Monte Carlo
algorithm (rjMcMC)

We represent the mass anomalies inside a sphere with point masses.
We describe in Section 3.2.4 how this parametrization performs
when the gravity data to invert is produced by finite-sized objects
instead of point masses. Using this parametrization, the interior
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mass distribution model {pm} contains the values of each param-
eter describing the mass distribution in the interior of the sphere:

{pm} =
{

n, {m}, {x}, {y}, {z}, σ 2
g

}
where n is the number of point

mass anomalies, {m} is the set of values of the mass anomalies
in kilograms, {x}, {y} and {z} are their Cartesian coordinates in
kilometers and σ 2

g is the variance of the white noise of the gravity ac-
celeration data in (m s−2)2. The corresponding posterior probability
implied by Bayes’ theorem in eq. (2) is:

P({pm}|{g}) = P(n, {m}, {x}, {y}, {z}, σ 2
g |{g})

∝ P({g}|{pm})P({pm}) (2)

with the likelihood P({g}|{pm}) given by:

P({g}|{pm}) = 1√
2π n

(
σ 2

g

)s
exp

(
−�

2

)
, (3)

where s is the number of independent observation points and

� = ({g} − {gM })T 1

σ 2
g

({g} − {gM }), (4)

where {gM} are gravity accelerations predicted by model {pm}.
Using the Metropolis–Hastings criteria (Hastings 1970), we con-

struct an algorithm that finds the values n, {m}, {x}, {y}, {z}, σ 2
g

that best fits the data and additional constraints in an unbiased way.
The process to do this is divided in two steps: (1) proposing models
from the distribution q({p′

m}|{pm}) and (2) accepting models with
the probability given by eq. (5).

α({p′
m}|{pm}) = min

[
1,

P({p′
m})P({g}|{p′

m})
P({pm})P({g}|{pm}

q({pm}|{p′
m})

q({p′
m}|{pm})

]
. (5)

The expressions for the proposal distributions and derivation
are presented in Appendix A. When adding a new anomaly, its
parameters are taken from the prior distributions which are uniform.
When changing the location of an existing anomaly, the new location
is selected from a normal distribution with mean at the current
location.

Fig. 1 shows a detailed flowchart of the algorithm. At each step of
the rjMcMC, we propose a random new model based on perturbing
the existing model. We either remove or change the location of a
randomly selected anomaly, or we introduce a new anomaly with a
location sampled randomly from the prior, or we perturb the variance
describing the noise in the data.

It is important to note that after randomly choosing the location of
the anomalies, we compute their corresponding masses by minimiz-
ing the difference between the predicted and observed acceleration
values. This is possible thanks to the linear relation between the
magnitude of a point mass and the acceleration it produces: {g}
= D{m}. Here, D is a matrix constructed using the gravitational
constant G and inverse of the distances between the point masses
and the sampling points, dij, where i is the index of the mass consid-
ered and j is the index of the observation point: Di j = G/d2

i j . The
optimal value of the point masses are determined in a least squares
sense: {mo} = (DT C−1

g D)−1 DT C−1
g {g}. Because uncertainty on the

data {g} are assumed to be normally distributed, P({g}|{pm}) will
be represented by a generalized Gaussian with mean {mo} and
posterior covariance given by C̃m = (Dt C−1

g D + C−1
m )−1 (Taran-

tola 2005), where Cg is the data covariance matrix (Cg = σ 2
g I ) and

Cm is the prior model covariance matrix. We set Cm to be a diagonal
matrix since masses of individual anomalies are not assumed to be
correlated a priori. The prior model covariance matrix also acts to
stabilize the inversion for {m} by contributing to the diagonal.

The advantage of solving for the optimal set of mass anomalies
{m} at each step of the rjMcMC is that doing so reduces by {n}
the dimensionality of the inverse problem, which dramatically im-
proves the efficiency of the search, as we only have to explore a
fraction of the model space. However, this also means that instead
of obtaining the likelihoods of randomly generated models at each
step of the rjMcMC (which is commonly the case), we only obtain
the likelihoods for randomly generated models in which the values
{m} have been tuned to optimal values {mo} so that:

P({g}|{pmo }) = max
{m}

P({g}|{pm}). (6)

The presence of tunable parameters means that we cannot simply
use the ratio of likelihoods when computing acceptance probabilities
in eq. (5). Instead, it is necessary to marginalize over the set of
tunable parameters {m} prior to comparing likelihoods and deciding
to accept or reject a proposed model. The marginalization removes
the dependence on the tunable parameters:

P({g}|n, {x}, {y}, {z}, σ 2
g ) =

∫ mmax

mmin

P({g}|{pm})P{m}d{m}

=
√

(2π )n|C̃m |
(mmax − mmin)n

P({g}|{pmo}). (7)

Putting this all together, the acceptance probability α used by the
algorithm becomes:

α = min

[
1,

(
σ 2

g

σ 2
g

)s

exp

(
−� − �′

2

)

×
√

|C̃m′ |
|C̃m | (mmax − mmin)n−n′

⎤
⎦ . (8)

Since the optimal values of the anomalies is obtained by linear
inversion, there is not a strict limit on its minimum and maximum
possible values (mmin and mmax ). We use instead −1022 to 1022 kg
as a sufficiently wide range in eq. (8).

2.4 Hierarchical parameter

As described above, our algorithm treats the uncertainty of the data,
parametrized by the variance of the normal distribution describing
white noise in the data (σ 2

g ), as a parameter to be inferred during
the inversion. This formulation is referred to as hierarchical (Malin-
verno & Briggs 2004). Since the complexity of the mass distribution
models obtained by the algorithm depends on the level of noise in
the data, it is important to estimate the noise variance together with
the estimation of the values of the model parameters (Bodin et al.
2012). Inversions of data with higher noise levels should produce
simpler models. Lower noise levels produce more complex models
since a greater number of model parameters can be justified when
attempting to fit the data. Even when the noise variance is estimated
by external methods, like measurement uncertainties from satellite
tracking data, estimating the hierarchical noise parameter through
the inversion can be important in assessing how well the model can
fit the data (epistemic uncertainty). For example, Olugboji et al.
(2017) found that when constructing surface wave phase veloc-
ity maps, the hierarchical noise estimates are systematically higher
than reported data uncertainties, and attributed the difference to
additional uncertainty arising from modelling assumptions. Gao &
Lekić (2018) detail how the parametrization of the model itself can
degrade or bias inferences obtained by transdimensional Bayesian

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/3/1687/5651163 by U

niversity of M
aryland user on 19 January 2020



1690 K. Izquierdo, V. Lekić, L.G.J. Montési

Figure 1. Flowchart of the THB gravity inversion algorithm. The initial model is chosen randomly from the prior distribution and subsequent models are
obtained from the current model either by changing the position of a randomly chosen anomaly, by changing the noise variance, or by adding a new or removing
an existing anomaly according to the reversible jump Markov chain Monte Carlo (rjMcMC) procedure. Proposed models are accepted or rejected based on
their relative likelihood (eq. 6). After a burn-in period, models are saved to the ensemble, which represents a sample of the posterior distribution P({pm}|{g}).
Note that masses of the anomalies are not explored, but rather inverted for at each step of the algorithm.

inversion; we later discuss how these effects manifest in the hierar-
chical noise parameter in our inversions. In this paper, the level of
noise is unknown but it is assumed to have a normal distribution.

3 VA L I DAT I O N

In order to assess the ability of the proposed method to characterize
the mass anomaly distribution within a celestial object, we carry out

a suite of validation tests. We construct four different mass distribu-
tions by specifying the location and magnitude of mass anomalies
inside a sphere with radius R and zero mean density. We call these
mass distributions target or true mass distributions. We calculate the
gravity acceleration produced by each target distribution and apply
a level of white noise to it. The inversion algorithm described in
Section 2 uses this synthetic gravity data as input to obtain a mass
distribution ensemble. We then compare the mean of the ensem-
ble with the corresponding target model to see how effectively the
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Table 1. Prior distributions of parameters used by the rjMcMC algorithm.
R is the radius of the sphere. The limits of x, y and z are clearly marked
by the boundaries of the sphere since anomalies cannot be outside it. The
distributions of σ 2

g and n do not have tangible limits. We instead set them to
sufficiently large values so that the posterior distributions for these parame-
ters are not truncated. In other words, the possible ranges of values are wide
enough not to bias the search of the rjMcMC.

x y z σ 2
g n

Min −R −R −R 10−14 (m s−2)2 1
Max R R R 10−10 (m s−2)2 140

algorithm recovered the mass distribution that produced the input
gravity data.

The validation tests are divided in two types according to whether
the mass anomalies of the target models are point masses or 3-
D objects. Since the algorithm uses point masses to construct an
output mass distribution, the goal is to test how well the algorithm
recovers the location and magnitude of anomalies with a perfect
parametrization and how it approximates the shape of finite objects
with point masses.

3.1 Point masses as the target mass distribution model

In the first series of validations tests, the target mass distribution
is built using point mass anomalies. It might be expected that the
inversion algorithm, which parametrizes mass anomalies as point
masses, should be able to recover the distribution perfectly. How-
ever, the resolution of the gravity data and the natural attenuation of
1/r2 of the gravity acceleration limit the combination of depths and
magnitudes it can recover. In addition, the transdimensional aspect
of the inversion method is inherently parsimonious, so the output
distribution is likely to contain fewer mass anomalies than the target
model.

We consider three cases in this category of target models. Target
Model I and Target Model II contains five point mass anomalies
(Table 2). In Target Model I, the deeper anomalies have larger
magnitudes than the shallower anomalies and all the anomalies have
different latitudes and longitudes. In Target Model II all the mass
anomalies have the same latitude, longitude and mass but different
depths. Target Model III contains 50 anomalies. Their locations and
magnitudes are chosen from an uniform probability (see Supporting
Information).

The parameters to recover are {m}, {x}, {y}, {z}, n and σ 2
g . The

prior information given to the algorithm is shown in Table 1 with the
only additional constraint that anomalies should be located inside
the sphere (x2 + y2 + z2 ≤ R2). All inversions ran for 1 × 106 steps
using only one McMC chain. Fig. 3 shows the log(likelihood) per
step for the three cases. The likelihood increases with increasing
number of steps or iterations of the algorithm until it stabilizes
around iteration 4 × 105. The results shown next are taken from the
group of models obtained after that step.

3.1.1 Fit to input gravity data

Fig. 2 shows the input gravity acceleration data used for each vali-
dation test and the gravity acceleration data of the mass distribution
found by the algorithm. Each data set contains 2542 acceleration
values uniformly sampled across the surface of the sphere. In case
I, the gravity signature of each of the five point mass anomalies are
clearly distinguished because larger magnitude deeper point masses

produce gravity signatures of similar amplitude as the smaller but
shallower point masses and because all the point mass anomalies are
positioned at different latitude and longitude. At first sight, it would
appear that target model II has a gravity anomaly only at one loca-
tion. That is because the five input masses have the same latitude,
longitude and magnitude but different depths. Deeper anomalies
with the same magnitude produce a broader and weaker gravity
signal than shallower ones. In case III, the gravity data is produced
by 50 point mass anomalies with random locations and magnitudes.
For visualization, the gravity maps in Fig. 2 III are saturated at 250
mGal in order to show the gravity signatures of many anomalies.
In reality, the shallowest mass anomaly produces a gravity accel-
eration as strong as 1000 mGal that dominates the gravity map,
overpowering the other signals.

In all three cases, our inversion algorithm is able to find a mass
distribution that fits the input gravity data. Additionally, the noise
of the input gravity accelerations σ g is recovered to 2 per cent error
of the true value. However, the purpose of the inversion is not just to
reproduce the input gravity values but to constrain the source. We
discuss next the distribution of mass anomalies in the output model
and how they compare with the target distribution.

3.1.2 Fit to target density model

As gravity inversions are non-unique, fitting the input gravity data
does not mean the algorithm has found the correct mass distri-
bution. In this section, we compare the mean of the model en-
semble obtained by the algorithm with the known correct mass
distribution (target model). In order to do that, we examine the
posterior probability distribution of the models, P({pm}|{g}) =
P(n, {m}, {x}, {y}, {z}, σ 2

g |{g}). Which shows the most likely com-
bination of parameters given the gravity data. This posterior proba-
bility is obtained by measuring the frequency of different values of
parameters from an ensemble of models obtained by the algorithm.
The ensemble only contains models sampled after convergence is
achieved. In other words, the sampling starts only after the residual
between model prediction and input data (eq. 4) no longer changes
significantly compared to the variation in the first set of iterations.

The locations of the gravity anomalies in the output acceleration
data match those of the input (Fig. 2). This shows that density
anomalies found by the algorithm are present at the correct latitudes
and longitudes. Therefore, we focus on describing the distribution
of the parameters that have trade-offs in gravity inversions: the
magnitude and depth of anomalies.

Fig. 4 shows the comparison between the target and output mod-
els for test cases I, II and III. In test case I, there is perfect agreement
between the mass anomalies in the target model and the inversion
result. This shows that the algorithm is able to find the correct dis-
tribution of mass anomalies inside the sphere with non-informative
priors for the situations when the gravity signature of the masses
are equally dominant. In a more graphical way, this means that we
can easily identify the signature of all masses in the gravity map
(Fig. 2 I). Similarly, perfect matches were obtained for target mod-
els with n from 1 to 20 as long as each gravity signature was easily
identifiable.

For case II, the algorithm fails to match the correct distribution.
Instead, it finds a distribution that fits the gravity data using fewer
point mass anomalies. As shown in Fig. 4(case II), the target model
has five mass anomalies of the same magnitude (1 × 1016 kg) but
different depths. Deeper mass anomalies produce very low magni-
tude gravitational acceleration compared to the shallower one which
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Table 2. Location, number and magnitude of point masses used in Target Models I and II.

Target Model I Target Model II

Parameter 1 2 3 4 5 1 2 3 4 5

Latitude (◦) θ 31.7 43.9 22.0 15.0 −65.9 −15.2 −15.2 −15.2 −15.2 −15.2
Longitude (◦) λ −90 12.8 155.5 −63.3 −168.3 −80.3 −80.3 −80.3 −80.3 −80.3
Radius (R) r 0.99 0.90 0.80 0.70 0.60 0.99 0.96 0.93 0.90 0.87
Mass (kg) m 1016 1018 2 × 1018 5 × 1018 9 × 1018 1016 1016 1016 1016 1016

(Ia) (IIa) (IIIa)

(Ib) (IIb) (IIIb)

(Ic) (IIc) (IIIc)

Figure 2. Gravity acceleration data used as input in the inversion (a) and gravity acceleration data produced by the output which is the mean of the ensemble
of mass distribution models (b). In the three cases shown here, the target model consists of point masses. Target model 1: five point masses with different
depths and magnitudes. Target model II: five point masses with the same latitude and longitude but different depths. Target model III: fifty point masses with
random locations and magnitudes. The maximum misfit magnitude is 10 mGal in places where the acceleration is 200 mGal or higher, as shown by maps in (c),
indicating that the algorithm is able to provide satisfactory data fits. Figures III (a) and III (b) are saturated to 200 mGal to show the gravity signal produced
by several point masses. Otherwise the maps are dominated by the signal of one very large and shallow point mass. Tables B1 and B2 in the supplementary
material provide the locations and magnitudes of all 50 point masses.

Figure 3. Likelihood plots for cases I, II and III. We can see that the
likelihood increases with the number of iterations until it reaches a higher
value where it stabilizes. The ensembles are composed of models from the
4 × 105 to the 1 × 106 iteration.

causes the fit of the model to the data to be dominated by one shal-
lowest mass. As can be seen in eq. (8) in the term (mmax − mmin)n−n′

where n is the number of point masses, the THB algorithm prefers
models with fewer anomalies, which means that it tends to match
the gravity signature of the dominant anomalies only. Here the algo-
rithm favours a single anomaly with a larger magnitude in a shallow
location instead of the correct location of the five anomalies. The
deeper mass anomalies in the target model produce subtle gravity
signatures that are considered noise by our inversion algorithm. A
lower noise variance (σ 2

g ) would enhance the significance of weak
features of the input gravity data, and would therefore justify the
placement of additional anomalies.

For test case III, something similar to test case II occurs. In
Fig. 4(case III), we can see that the mass anomalies located in
the upper right triangle of the plot r versus m are preferentially
recovered by the algorithm. This means that, again, the algorithm is
less sensitive to the presence of deeper, smaller masses that do not
contribute much to the residual. Reflecting its inherent parsimony,
the algorithm fits the gravity data with fewer masses than present in
the target model. Fig. 5 shows the number of anomalies recovered
by the THB method in comparison with the ones contained in the
true or target models of test cases I, II and III.

In summary, the algorithm is able to find mass distribution models
that fit the input gravity data and accurately recovers the input noise
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Bayesian inference mass anomalies 1693

Figure 4. Comparison of target mass anomalies (squares) with output mass anomalies (triangles) and associated probability distributions for cases I, II and
III. The location of the symbol shows the magnitude of a point mass and its distance from the centre of the sphere. The colour shows the probability of having
a point mass there based on the input gravity acceleration data. In case I there is perfect agreement between the output and target models and between the
probability distributions. In case II the inversion favours a single point mass anomaly of larger magnitude than the five point mass anomalies in the target
model. The point mass anomalies in output model III have shallower locations or larger magnitudes. The red triangle is included to highlight this fact. Point
mass anomalies outside this triangle appear in the target model but not in the output one. This mismatch happens because the algorithm is parsimonious and
uses the fewer number of total anomalies possible. Deep and small anomalies do not affect the residual as strongly as shallow and large ones, so the parsimony
of the algorithm works against their recovery.

Figure 5. Number of anomalies inferred by the THB algorithm. For case
I, the correct number of anomalies is found, while for cases II and III,
fewer anomalies are recovered. This is a reflection of the parsimony of the
algorithm. Since some deep and small anomalies do not substantially affect
the residual (defined by eq. 4), and the algorithm prefers simpler to more
complex models (i.e. it is parsimonious), the algorithm does not introduce
these masses when fitting the input gravity acceleration data.

levels. However, in all three cases, the inherent parsimony of the
method makes it difficult to recover all the anomalies when a subset
of them dominate the gravity data and overpower the contributions
of smaller and/or deeper masses to the residual. Lower input noise
levels would justify the introduction of additional point masses.
This behavior is common in all transdimensional inversions where
the number of seismic velocity layers or density anomaly objects is

not specified a priori (e.g. number of layers recovered in transdi-
mensional Bayesian surface wave dispersion Gao & Lekić 2018).
Although it might be tempting to fix the number of parameters in
order to avoid this problem in the tests presented here, that approach
is not appropriate for the study of real gravity data sets, where the
number of density anomalies is not known a priori. Instead, it is im-
portant to understand the limitations of transdimensional inversions
and interpret the results taking this limitations into account.

3.2 Spherical caps as the target density model

As a second set of validations tests, we invert a set of gravitational
acceleration values that was produced by 3-D objects instead of
point masses. It is necessary to see which features of our target
3-D objects we can recover using point masses. If necessary, future
algorithm development may use a model parametrization with finite
sized objects to recover target 3-D objects. The objects used here
are similar in shape to the expected mass anomalies found under
major impact basins on the Moon, called mascons (Melosh et al.
2013a). These objects are represented by spherical caps such as the
one shown in Fig. 6.

3.2.1 Fit to input gravity data

We use synthetic gravity acceleration data that provides a simpler,
idealized view of the lunar gravity field (Lemoine et al. 2013). This
radial gravity acceleration map (Fig. 7a) was obtained by computing
the radial gravity acceleration produced by spherical caps with sizes,
latitudes and longitudes listed in Table 3. The location and size of
these caps are similar to those of major basins on the Moon where
large mass concentrations, called mascons, where identified (Muller
& Sjogren 1968; Neumann et al. 1996). The outer shells of the caps
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Figure 6. Spherical caps used as mass anomaly objects in the target model.
They represent the volume inside a spherical shell of certain thickness Rmax

− Rmin limited by a concentric cone of aperture α.

(c)

(b)

(a)

Figure 7. Comparison between the gravity data used as input in the inversion
(a) and the gravity data produced by the mass distribution model found by
the algorithm (b). The maps of differences (c) show that the error is only 5
mGal in places with a gravity acceleration larger than 200 mGal.

Table 3. Location and diameter of lunar basins used to produce the synthetic
gravity data. The density anomaly of these mascons is 300 kg m–3.

Name Latitude Longitude Diameter (km) Aperture (◦)

Imbrium 32.8◦N 15.6◦W 224 23.21
Nubium 21.3◦S 16.6◦W 143 14.82
Serenitatis 28◦N 17.5◦E 141 14.61
Australe 38.9◦S 93◦E 120 12.44
Crisium 17◦N 59.1◦E 165 17.10
Humorum 24.4◦S 38.6◦W 115 11.92
Smythii 1.3◦N 87.5◦E 145 15.03
Nectaris 15.2◦S 25.5◦E 100 10.36
Orientale 19.4◦S 92.8◦W 110 11.40

Figure 8. Evolution of the likelihood of models found by each of the 100
independent Markov chains. Each point on represents the likelihood of the
density model {pm} accepted at each iteration. As the number of iteration
increases, all the chains converge to similar likelihood values. Models after
4 million iterations are regarded as having converged and are sampled (one
out of every 1000 model) to form the ensemble used to compute the most
likely density model.

were set to r = 0.99 and the inner ones to r = 0.97. The black circles
in Fig. 7 show the outline of these caps and the name of basins on
which they are based (Neumann et al. 2015). The 2562 acceleration
values of this map and the prior probability distributions in Table 1
were the inputs to the inversion. As in the previous test, the prior
information was not informative, only limiting the anomalies to be
inside the sphere.

3.2.2 McMC set up

One hundred independent Markov chains were run using the gravity
acceleration data set of Fig. 7 as input. Each of these chains had a
different initial mass distribution model {pm} chosen randomly from
the prior distribution. Each chain was run for 5 × 106 iterations of the
rjMcMC cycle shown in Fig. 1. Fig. 8 shows that the likelihood of the
density models increases with increasing number of iterations. After
4 million iterations, the value of the likelihood no longer changes
significantly and is similar for models of all chains. This is taken
as a sign of convergence. The ensemble is obtained by sampling
one model every 1000 iterations starting after 4 million iterations.
Therefore, the ensemble contains 1000 models from each of the
100 chains. The average gravity data produced by this ensemble
matches the input gravity data very well with differences of only
±2 mGal (Fig. 7b).

3.2.3 Fit to target mass distribution

The most likely mass distribution found by the algorithm is obtained
by breaking down the volume of the sphere in cells and calculating
the average mass from the ensemble in each cell at all depths. This
follows from the argument that the models contained in the ensem-
ble are sampled with a frequency representative of the posterior
probability. Fig. 9 shows the comparison between the target model
and the mean of the ensemble. The output or mean model contains
prominent positive masses near the centre of the location of target
caps, but they are often surrounded by a ring of negative masses.
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Figure 9. Comparison of the target density model (a) with the location of the
point mass anomalies of the mean of the ensemble (b). In map (b), negative
anomalies are plotted using the blue colourbar while positive anomalies the
red one. The locations of positive mass anomalies in the output model match
the centre of the mascons in the target model. However, their outlines are not
perfectly circular and most are surrounded by a ring of negative anomalies.
The black circles outline the basins that motivated the density anomalies
in the target model; they are shown for reference but are not part of the
inversion.

This was not expected since the target model contains only positive
density anomalies.

The negative mass anomalies that appear in Fig. 9 could have one
of two different origins.

(1) Parsimony of the algorithm encourages the model to match
the gravity signature of spherical caps with fewer masses than would
be needed to cover the entire spherical cap. Instead of uniformly
distributed positive mass anomalies where there is a positive density
in the target model, the algorithm uses negative masses to sharpen
a broad positive gravity signal. A schematics of this phenomenon is
shown in Fig. 10. A well-chosen distribution of positive and nega-
tive point masses produces a boxcar-shaped anomaly that resemble
the expected signal at the cost of a slightly larger a posteriori vari-
ance. This interpretation is further supported by a pair of additional
synthetic tests we carried out. When inversion is performed on data
computed at an elevation of 100 km above the surface, but otherwise
identical to those described thus far, the ensemble mass distribu-
tions shown in the top panel of Fig. 11 no longer show the rings
of negative mass anomalies. This is because the additional distance
suppresses high wavenumber features of the mascon gravity data—
those arising from the sharp edges shown in Fig. 10—more than the
low wavenumber ones corresponding to smooth variations. Simi-
larly, when we increase the maximum allowed value of the noise to
10−8, we allow the inversion to ignore smaller amplitude features,
such as those due to the edges; the resulting mass anomalies also no
longer show the rings of negative mass, as seen in the bottom panel
of Fig. 11.

(2) Since models from consecutive iterations differ from each
other only in the location or magnitude of a single anomaly, it is

possible that the algorithm first finds a large, deep positive mass
that improves the residual very much. This mass becomes almost
impossible to delete because of its effect on the residual and, instead,
later models are improved by adding the negative point masses. In
essence, the algorithm remains at a local misfit minimum. However,
the stochastic acceptance probability adopted in our algorithm and
the presence of 100 independent McMC should prevent this kind of
effect from dominating the ensemble solution. Therefore, it is most
likely that the imperfect distribution of density anomalies returned
by our inversion technique is due to the parsimony inherent to THB
algorithms.

Another way to compare the inversion result and the target mod-
els is to examine the posterior probability distributions computed
from the ensemble, which shows the relative frequency of models in
the ensemble having certain value of a parameter or a combination
of parameters. The credible region of these parameters is calculated
as the region where 68 per cent of the posterior probability is lo-
cated, in a similar fashion than results shown in a 1 σ confidence
intervals. Fig. 12 shows the posterior probability of the location
of anomalies and their credible region. Peaks of probability match
the true location of the centre of mascons, which means that the
algorithm effectively recovers the value of these parameters. Fig. 13
shows the posterior probability distribution of mass anomaly depth,
P({r}|{g}). The posterior probably features a marked preference
for anomalies at very shallow depth, around the correct depths of
0.97 ≤ r ≤ 0.99 which are the same limits the spherical caps in the
target model have. This distribution extends deeper than this limits,
probably again as a result of the parsimony of the algorithm that can
adjust the shape of the gravity anomalies by including deeper point
masses (Fig. 10). The credible region is limited by r � 0.87, which
includes the correct value of the target model.

The value of the noise variance is overestimated by the algorithm:

10−10
(
m s−2

)2
instead of 10−11

(
m s−2

)2
in the target model.

When we repeat the inversion increasing the maximum value of
the prior on the noise hyperparameter, the algorithm returns the

highest possible value 10−8
(
m s−2

)2
. This implies that the true

value of the noise variance is too small to be recovered since it
is swamped by the large modelling error of using the point mass
parametrization to represent objects of finite size.

The most likely value of the number of anomalies n is 60 with
a range between 50 and 73 contained in the 68 per cent credible
interval. Although this lacks physical meaning since the true den-
sity model is not made of point masses, this shows an important
characteristic of the algorithm. The fact that most models have 60
anomalies, less than maximum number allowed (140), shows that
the algorithm is indeed parsimonious, as designed. It matches the
true gravity data with fewer number of anomalies than the ones it
could use.

3.2.4 Uncertainty related to point mass parametrization

In Section 3.2.3 we described how the output mass distribution
model or the mean of the ensemble has patterns of negative and
positive rings of point mass anomalies where the spherical caps of
the target model are located. This shows that using point masses in
the THB algorithm contributes to the uncertainty in the interpreta-
tion of what the actual internal distribution of the mass in a body is.
If the output mass distribution model is given by Fig. 10(c), for ex-
ample, the actual mass distribution of the interior of the body could
be the ones shown in Figs 10(a) or (c). Additional constraints might
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(a) (c)

m
G
al

(b)

Figure 10. Gravity acceleration produced by different mass distributions. The dots show the location of the point mass anomalies, the size indicates relative
magnitude of the mass anomaly, and the colour indicates whether they represent mass surplus (positive mass anomaly, red) or deficit (negative mass anomaly,
blue). The blue line shows the values of the gravitational acceleration produced by the point masses. (a) Gravity acceleration produced by the target model
which is a density anomaly of finite extent. (b) Gravity acceleration due to many positive point masses can match the gravity acceleration produced by the
density anomaly shown in (a). (c) The gravity acceleration in (a) can be approximated with fewer point masses including both positive and negative ones. An
inherently parsimonious algorithm would prefer the simpler model comprising fewer point mass anomalies provided that the fit to the data is sufficiently good.
This is our explanation for why parsimony can introduce negative mass anomalies into our ensemble solution.

(a) (b)

Figure 11. Effect of observation height and noise hyperparameter on retrieval of mass anomalies. Same as Fig. 9 but with (a) synthetic gravity data computed
at 100 km elevation above the surface instead of at the surface, and (b) 100 times larger noise variance hyperparameter. Note the disappearance of negative
mass rings visible in Fig. 9.

help distinguish between them but, in the absence of such con-
straints, all these possibilities must be considered. Uncertainty on
the inversion results is higher than if instructive a priori constraints
were used, as in the case where mass anomalies are restricted to a
given depth representing, say, the crust–mantle interface. However,
in the absence of independent constraints, our approach provides a
more complete estimate of the actual uncertainty.

4 D I S C U S S I O N

Most inversions methods that use a spherical harmonic decompo-
sition of the gravity data of a body assume that gravity anomalies
are caused by density anomalies as deep as the crust–mantle bound-
ary (Huang & Wieczorek 2012; Wieczorek et al. 2013; Jansen
et al. 2017). These density anomalies are the differences between
the expected and actual location of the crust mantle interface. By
associating the Bouguer anomaly to the topography of the crust-
mantle interface, potential mass anomalies below the core–mantle
boundary could be mapped into shallower locations. Other grav-
ity inversion methods allow for variations in the density of the
crust or upper mantle but the resulting density anomalies can only
be constrained in latitude and longitude and not in depth (James
et al. 2019). Liang et al. (2014) and Zhao et al. (2019) find density
anomalies correlated to lunar basins down to 100 km but they do
not provide the uncertainty of their models or a way to understand
how much variation in the resulting density distribution produce the
same gravity anomalies. The THB algorithm described here does

not need to assume how deep the mass anomalies are located or if
they are all at the same depth. Additionally, the method is parsi-
monious and introduces only as many mass anomalies as justified
by the data. This method yields an ensemble of models that fit the
data, which can be analysed to determine the posterior probabil-
ity density functions describing the latitude, longitude, depth and
magnitude of the mass anomalies. The ensemble can be analysed
to estimate uncertainty in the inferred mass distributions, including
trade-offs between and uncertainties on model parameters due to
the inherent non-uniqueness of gravity inversions; this uncertainty
covers the range of model parameters that produce a similar fit to
the gravity data. Since models are proposed in a random way, and
prior information can be incorporated explicitly in a probabilistic
way, the results of this method are less likely to be biased.

The disadvantages of our THB method compared to the tradi-
tional methods based on spherical harmonics inversions is an in-
crease in computational time and memory resources since THB is
an iterative method and the ensemble contains many models, each
with potentially many parameters to save and analyse. To minimize
the computational time and improve efficiency of the model space
search, the proposed method is a hybrid one, leveraging linear inver-
sion for point mass anomaly magnitude at each step of the rjMcMC.
This reduces the number of iterations needed for convergence and
the odds of getting trapped in a local likelihood maxima.

Our validation tests show that while the location of mass anoma-
lies can be readily recovered by the THB method, their detailed
shape cannot be confidently estimated when the input gravity data
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(a)

(b)

(c)

Figure 12. Posterior probability of the latitude and longitude of mass
anomalies for three inversions: (a) standard inversion (Figure 8); (b) in-
version of the gravity data observed at 100 km height; and (c) inversion with
large noise hyperparameter allowed. The red contours outline the regions
where the 68 per cent probability region is located. The anomalies are fully
contained inside the basins where the target mass anomalies are specified
(black circles). Recovery of true centre positions of the input mascons im-
proves when higher altitude gravity observations are used—since they have
longer wavelength gravity variations—and when larger noise hyperparame-
ter values are allowed—since they allow the inversion to neglect fitting the
sharp corners of the mascon gravity data. 10.

is produced by finite-sized objects. Additionally, we find that the
parsimonious nature of the algorithm can cause spurious negative
mass anomalies to be introduced into the ensemble solution when
the point mass anomaly parametrization is used. We anticipate that
both of these drawbacks can be addressed by increasing the com-
plexity of the model parametrization. In particular, we may want
to consider a general family of finite size objects instead of just
point masses. In that way, it may be possible to infer the location
and shape of mascons in the Moon (Neumann et al. 2015), Mars
(Neumann et al. 2004), Mercury (Mazarico et al. 2014) and possi-
bly Ceres (Bland et al. 2018). However, doing so will come at the
price of increased computational costs.

Figure 13. Posterior probability distribution of point mass radius r. The
mass anomalies in the target density model have r = 0.99 for the outer shell
and r = 0.97 for the inner shell. The most likely r matches the target value
and it is contained in the 68 per cent credible region limited by the red line.

5 C O N C LU S I O N

This study presents a THB algorithm for the inversionof gravity
data. This method uses a point mass parametrization, non informa-
tive priors, and a larger model space than previous transdimensional
Bayesian gravity inversion methods. In order to reduce the number
of iterations needed to achieve convergence, an optimization of the
magnitude of point masses is applied. A new acceptance probability
α that takes into account this optimization is derived.

The performance of the algorithm is assessed through a series of
validation inversions which aim to recover a target mass distribution
model that contains either point mass anomalies or 3-D objects of
constant density anomaly.

The algorithm is able to match perfectly the target model in which
the gravity signatures of all point mass anomalies have similar val-
ues and are well separated from each other. When the gravity ac-
celeration data is dominated by the signature of fewer point masses
than the total number contained in the target model, the algorithm
tries to fit only those dominant masses. This is a consequence of par-
simony and the transdimensionality of the algorithm. In the second
set of inversions, the algorithm finds the correct latitude, longitude
and depth of the centre of massive spherical caps but fails to find
their outline. Instead the model includes a ring of negative masses
and some deeper masses to sharpen the gravity data to better match
the the input. For all the tests for which the target model is build
from point masses, the algorithm finds the correct noise variance.
However, if the target model contains finite size objects, like spher-
ical caps, the variance increases during the inversion above the data
uncertainty because of the addition of modelling error arising from
the use of point masses and the parsimony of the algorithm. A
parametrization based on finite size object such as spherical cap
may be better able to recover target models that contain 3-D density
objects.
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A P P E N D I X A : P RO P O S A L
D I S T R I B U T I O N S

The general proposal distribution used to generate a new
member of the Markov chain Monte Carlo is q({p′

m}|{pm}) =
q(n′, {m ′}, {x ′}, {y′}, {z′}, σ 2′

g |{n}, {m}, {x}, {y}, {z}, σ 2
g ). As can be

seen in Fig. 1, the model {p′
m} is chosen by making one of four pos-

sible changes in model {pm}. Therefore, depending on the change
chosen, the proposal distribution simplifies in one of several ways.

(i) Add a new anomaly. The location of the new anomaly is
chosen from the prior distribution.

(ii) Change the coordinates of an existing anomaly. This proposal
distribution is the same for x, y and z. The magnitude of the standard
deviation represents how far or close can be the new location of the
anomaly and s is the number of data points in the input gravity data.
In the inversions shown in this paper, σ x = σ y = σ z = 5 km.

q(x ′|x) = 1√(
2π n

(
σ 2

g

)s) exp

(
− (x ′ − x)2

2σ 2
x

)
(A1)

(iii) Delete an existing point mass: uniform probability of choos-
ing any of the existing ones.

(iv) Change the variance of noise on input data. The standard
deviation of this distribution is σσ 2

g
. For the inversions shown in this

paper, σσ 2
g

= 4.9 × 10−12
(
m s−2

)
.

q
(
σ 2′

g |σ 2
g

)
= 1√(

2π n
(
σ 2

g

)s) exp

⎛
⎝−

(
σ 2′

g − σ 2
g

)2

2σ 2
σ 2

g

⎞
⎠ (A2)

A P P E N D I X B : L O C AT I O N O F
A N O M A L I E S O F TA RG E T M O D E L I I I

The location and magnitude of the anomalies were chosen randomly.

Table B1. Location of anomalies 1–25 of the target model III.

Anomaly Latitude Longitude Radius Mass (kg)

1 −42.1 −25.9 0.9 7.4879 × 1017

2 75.3 −58.5 0.49 0.4125 × 1017

3 −7 11.6 0.94 0.6318 × 1017

4 66.7 59.1 0.87 0.2002 × 1017

5 54.9 76.5 0.56 0.3022 × 1017

6 53.7 52.5 0.62 0.6162 × 1017

7 −44.1 38.4 0.84 1.9651 × 1017

8 −21.4 73.5 0.74 0.1294 × 1017

9 −48.5 −64.8 0.73 4.5031 × 1017

10 −67.7 41.8 0.82 0.2986 × 1017

11 60.6 157.5 0.91 3.1491 × 1017

12 −46.2 123.2 0.85 4.4993 × 1017

13 22.4 −2.5 0.58 0.2314 × 1017

14 12.2 170.2 0.87 3.582 × 1017

15 4.1 −64 0.8 3.0992 × 1017

16 7.1 −171 0.7 1.9576 × 1017

17 34.2 26.9 0.89 0.1286 × 1017

18 −18.4 −92.2 0.9 7.8446 × 1017

19 −8.4 −20.1 0.8 0.397 × 1017

20 −39.5 −146.9 0.76 8.8032 × 1017

21 8.8 −26 0.32 0.1749 × 1017

22 −40.9 173.5 0.75 0.9531 × 1017

23 38.8 −14.5 0.65 0.4445 × 1017

24 −35.8 −169.8 0.99 5.0659 × 1017

25 48.1 117.6 0.76 0.4204 × 1017

Table B2. Location of anomalies 26–50 of the target model III.

Anomaly Latitude Longitude Radius Mass (kg)

26 12 −37 0.71 2.0249 × 1017

27 −16.7 −0.5 0.63 4.1305 × 1017

28 16.5 128 0.59 8.5556 × 1017

29 −61.2 50.9 0.59 3.3633 × 1017

30 −46.9 −131.1 0.79 0.1691 × 1017

31 −70.3 177.2 0.71 1.3994 × 1017

32 29.8 −179.1 0.91 0.4983 × 1017

33 −11.1 53.5 0.77 0.8389 × 1017

34 −39.6 35.5 0.89 8.8763 × 1017

35 36.9 −34.5 0.44 0.1471 × 1017

36 11.7 91.4 0.65 0.3964 × 1017

37 16.7 −93.4 0.49 0.7331 × 1017

38 −9.1 −116.2 0.67 0.2973 × 1017

39 4.9 −30.6 0.73 0.9013 × 1017

40 −39.3 −119.2 0.8 3.9532 × 1017

41 38.7 −100.3 0.92 1.3488 × 1017

42 −38.8 97.3 0.87 1.0252 × 1017

43 −31.1 −19.7 0.93 2.4992 × 1017

44 −37.4 57.8 0.75 1.1489 × 1017

45 −52.9 −24.8 0.68 0.3238 × 1017

46 17.9 179.7 0.79 0.2273 × 1017

47 −10.9 −115 0.86 1.33 × 1017

48 24.3 93 0.29 0.6577 × 1017

49 55.5 128.7 0.23 0.7973 × 1017

50 −26.1 105.1 0.65 2.4374 × 1017
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