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1Department of Geology, University of Maryland, College Park, MD 20742, USA. E-mail: jkolb1@terpmail.umd.edu
2Department of Geoscience, University of Calgary, Calgary, Canada

Accepted 2014 March 3. Received 2014 February 4; in original form 2013 August 2

S U M M A R Y
Teleseismic waves can convert from shear to compressional (Sp) or compressional to shear
(Ps) across impedance contrasts in the subsurface. Deconvolving the parent waveforms (P for
Ps or S for Sp) from the daughter waveforms (S for Ps or P for Sp) generates receiver functions
which can be used to analyse velocity structure beneath the receiver. Though a variety of
deconvolution techniques have been developed, they are all adversely affected by background
and signal-generated noise. In order to take into account the unknown noise characteristics,
we propose a method based on transdimensional hierarchical Bayesian inference in which
both the noise magnitude and noise spectral character are parameters in calculating the like-
lihood probability distribution. We use a reversible-jump implementation of a Markov chain
Monte Carlo algorithm to find an ensemble of receiver functions whose relative fits to the data
have been calculated while simultaneously inferring the values of the noise parameters. Our
noise parametrization is determined from pre-event noise so that it approximates observed
noise characteristics. We test the algorithm on synthetic waveforms contaminated with noise
generated from a covariance matrix obtained from observed noise. We show that the method
retrieves easily interpretable receiver functions even in the presence of high noise levels. We
also show that we can obtain useful estimates of noise amplitude and frequency content. Analy-
sis of the ensemble solutions produced by our method can be used to quantify the uncertainties
associated with individual receiver functions as well as with individual features within them,
providing an objective way for deciding which features warrant geological interpretation. This
method should make possible more robust inferences on subsurface structure using receiver
function analysis, especially in areas of poor data coverage or under noisy station conditions.
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1 I N T RO D U C T I O N

Teleseismic waves can convert from shear to compressional (Sp)
or compressional to shear (Ps) across impedance contrasts or due
to the presence of seismic anisotropy (Park & Levin 2000). These
conversions can be recorded at the surface by seismometers, and
analysed to probe Earth structure beneath the receiver. The wave-
forms of the Ps or Sp can be used to infer velocity structure directly
(Burdick & Langston 1977; Langston 1977); typically, however, the
parent waveform (P for Ps or S for Sp) is deconvolved from the
daughter waveform (S for Ps or P for Sp) to yield a receiver func-
tion (e.g. Vinnik 1977; Langston 1979), before structural inferences
are made. The advantage of the additional deconvolution step stems
from its ability to remove waveform complexity due to source-side
structure and the source time function. Furthermore, receiver func-
tions derived from multiple source–receiver pairs can be combined
into a 3-D discontinuity model using either simple common con-
version point stacking (e.g. Lekic et al. 2011; Levander & Miller

2012), or more sophisticated formal wavefield migration techniques
(for a review, see Rondenay 2009), which is less straightforward to
do with actual velocity profiles.

A variety of techniques have been developed to deconvolve the
parent waveform from the daughter waveform including damped
spectral division (e.g. Langston 1979; Ammon 1991; Bostock
1998), iterative time-domain deconvolution (Ligorrı́a & Ammon
1999), the multitaper method (Park & Levin 2000; Helffrich 2006)
and a form of Bayesian deconvolution (Yildirim et al. 2010).

Challenges common to all methods for obtaining receiver func-
tions are background noise—which is loudest in the microseismic
band (e.g. Peterson 1993)—and signal-generated noise, which can-
not be modelled through a convolution operator common to all
waveforms observed at a seismic station due to energy being singly
or multiply scattered by structures that are not common to all paths.
For an individual parent–daughter pair on a single path, signal-
generated noise is not an issue, except for Sp, which arrives in the
P coda. Noise is especially problematic for Sp receiver functions
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because the parent S waves overlap in their frequency content with
the primary and secondary microseism (e.g. Bromirski 2009) result-
ing in signal-to-noise ratios that are typically much smaller than in
Ps. Creating a method that is robust with respect to this noise is im-
portant for enabling receiver function analyses for stations in noisy
environments (e.g. ocean bottom, coastal, polar regions), tempo-
rary deployments and for inferring anisotropy through variations of
receiver functions with backazimuth. The smaller bin size needed
for stacking receiver functions by backazimuth requires reliably
estimating receiver functions with many fewer waveforms.

Spectral division, which due to spectral holes and noise must
be stabilized using either damping or a water-level (Clayton &
Wiggins 1976), continues to be successfully applied to receiver
function estimation (e.g. Abt et al. 2010; Schaeffer & Bostock
2010). However, introduction of damping/water-level typically gen-
erates side lobes, which complicate the interpretation of the resulting
receiver functions. Another drawback is that reliable estimates of
noise are required to choose an appropriate level of damping/water-
level. Furthermore, when noise levels and damping/water-level are
high, spectral division often does not yield reliable and interpretable
receiver functions.

Frequency-domain deconvolution can be made more robust by
the introduction of multitaper estimates of the spectra. While this en-
ables spectral leakage to be reduced, it also decreases spectral reso-
lution. The reduced spectral resolution obliterates receiver functions
at large lag times (Helffrich 2006). Furthermore, receiver function
amplitudes can be affected by the choice of the time–bandwidth
product, the number of tapers, and by the fact that tapers reduce the
amplitude for the majority of the time window (e.g. Shibutani et al.
2008).

An alternative, time-domain method is iterative time-domain de-
convolution (Ligorrı́a & Ammon 1999), which parametrizes the
receiver function by a set of Gaussians of unknown amplitude but
whose width and number has to be decided prior to the deconvolu-
tion. Also, the method can get stuck in local minima in the model
space because once it places a Gaussian somewhere it cannot adjust
that Gaussian’s position later in the process.

Because estimation of receiver functions can be cast as an inverse
problem, Bayesian approaches can be readily applied (Tarantola &
Valette 1982). We believe that a Bayesian approach to deconvolu-
tion such as in Yildirim et al. (2010) is advantageous for generating
robust receiver function estimates because of its ability to test dif-
ferent models and compare them probabilistically. In addition, in a
Bayesian approach, the data uncertainty affects the posterior prob-
ability distribution and can be used to obtain more accurate results
(e.g. Bodin et al. 2012).

It is well known that inferences of velocity profiles based on re-
ceiver functions are highly non-unique (e.g. Ammon et al. 1990).
However, the step of creating the receiver function is also non-
unique (e.g. Lavielle 1991), which is apparent from the fact that the
convolution matrix is often singular or ill-conditioned. Therefore,
methods that yield only a single deconvolution estimate are of lim-
ited utility. This aspect of the non-uniqueness may be particularly
important when few waveforms are used under noisy conditions to
estimate the receiver function.

We present a method based on transdimensional (see Sambridge
et al. 2013) hierarchical (Malinverno & Briggs 2004) Bayesian in-
ference in which both the noise magnitude and noise spectral charac-
ter are parameters in calculating the likelihood probability distribu-
tion. In our method, we use a reversible-jump Markov chain Monte
Carlo (henceforth, RJMCMC) algorithm—first proposed by Green
(1995), applied to the analysis of mixtures with an unknown number

of components by Richardson & Green (1997), and later adopted to
geoscience by Malinverno (2002)—to find an ensemble of receiver
functions whose relative fits to the data have been calculated while
simultaneously inferring the values of the noise parameters. This
RJMCMC algorithm is an extension of the Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970) in which the pro-
posal distribution allows for jumps between subspaces of different
dimensions, allowing for dimensionality to be inferred along with
the model parameters. Motivated by the work of Piana Agostinetti &
Malinverno (2010), who used RJMCMC to infer velocity structure
from receiver functions, we treat the number of parameters defining
the receiver function as an unknown to be estimated in the inversion.
This is an appropriate choice since the complexity of the receiver
function is not known a priori and will vary with geological set-
ting. Yildirim et al. (2010) showed that including constraints on
the sparsity of the receiver functions, which stems from the fact
that it is a limited number of discrete impedance contrasts that pro-
duce Sp and Ps conversions, can improve stability and robustness
of the deconvolution; this sparsity characteristic is not exploited
by other deconvolution methods, except indirectly by iterative time-
domain deconvolution. Therefore, we parametrize the receiver func-
tion as an unknown number of Gaussians of unknown amplitude and
width.

Stawinski et al. (1998) performed transdimensional Bayesian de-
convolution and Andrieu et al. (2001) performed transdimensional
hierarchical Bayesian deconvolution (THBD; with hyperparameters
accounting for noise), both in the field of nuclear imaging. Kang &
Verotta (2007) also demonstrated transdimensional Bayesian de-
convolution, but applied to pharmacokinetic data. Application to
receiver function estimation requires, among other things, different
proposal distributions for new models as well as a different noise
parametrization. In addition, with advances in processor speed,
changing multiple components of a Markov chain simultaneously
can now be applied in this method, which due to a lower accep-
tance rate will require more iterations for the algorithm to converge
as well as to sample the posterior distribution, but will reduce the
likelihood of the algorithm getting trapped in local minima.

Using synthetic data with realistic noise characteristics, we show
that the THBD method can accurately obtain a receiver function as
well as estimate the noise parameters. Furthermore, we demonstrate
that this new approach is far less susceptible to generating spurious
features even at high noise levels due to the natural parsimony
inherent in transdimensional Bayesian methods (e.g. Malinverno
2002). Finally, the method yields not only the most likely receiver
function, but also enables its full uncertainty to be quantified by
analysing the ensemble solution.

2 M E T H O D

We seek a method that can obtain reliable receiver functions in
the presence of high noise levels, estimate uncertainty by creating
an ensemble of solutions and estimate the characteristics of the
noise. Piana Agostinetti & Malinverno (2010) presented a method
based on transdimensional Bayesian inference, and Bodin et al.
(2012) presented a method based on transdimensional hierarchical
(with noise hyperparameters) Bayesian inference, both for inferring
subreceiver velocity structure from receiver functions. Motivated
by this idea, we develop a related method for generating receiver
functions from parent and daughter waveforms. An overview of this
method is shown in Fig. 1.
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Figure 1. An overview of the reversible-jump Markov chain Monte Carlo algorithm used for our deconvolution. The CDi j shown describes noise parametrization
type 3. For parametrization types 1 and 2, see Section 3.

We start by assuming that the parent (P) and daughter (D) wave-
forms, sampled at times ti are related by convolution with a receiver
function (G)

D = P ∗ G. (1)

The challenge is to estimate G given P and D, both of which are con-
taminated by background and signal-generated noise of unknown
amplitude and frequency content. We parametrize G as an unknown
number of Gaussians of unknown width (wi) and amplitude (ai),
centred at unknown lag times (ci). We assume that the noise can

be described by random sampling from a distribution defined by a
covariance matrix CD:

CDi j = σ 2 Ri j , (2)

where Rij is a function of absolute lag time |ti − tj| whose form de-
pends on our choice of one of three different noise parametrizations.
By parametrizing R as a Toeplitz matrix, we make the assumption
that the noise is invariant with respect to time, within the dura-
tion of a single waveform pair; noise characteristics across wave-
form pairs, specified by different Toeplitz matrices, are allowed
to vary. As we show in Section 3, the choice of parametrization
will emerge as important because the covariance matrix is used in
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calculating the likelihood of a particular receiver function. The first
two types of noise parametrizations we explore were previously
used by Bodin et al. (2012); in addition to these, we introduce a
third parametrization consisting of a decaying sinusoidal function.
This noise parametrization was motivated by covariance matrices
estimated from actual pre-event noise observed at stations in a va-
riety of tectonic settings. We analyse and discuss these different
parametrizations in detail in Section 3.

We estimate the number of Gaussians, their locations, widths
and amplitudes, as well as two additional parameters describing
the noise amplitude and frequency content using an RJMCMC im-
plementation of transdimensional hierarchical Bayesian inference,
applied to receiver function inversion by Bodin et al. (2012).

To process our data, we start by bandpassing the parent and
daughter waveforms to include signal between periods Tmin and
Tmax, and then decimate them to three times the Nyquist frequency.
When estimating an Sp receiver function, we time-reverse both the
S and P waveforms, in order to consider only positive lag times.

We start the Markov chain with an initial model, G, that contains
no Gaussians, and with a starting σ equal to the standard deviation
of the parent waveform. Note that though starting with an initial
model closer to the ‘true’ model should cause the Markov chain to
converge faster, we decided to start with a model without Gaussians
to ensure that Gaussians in our result were placed by our algorithm
and not simply due to our initial model. Also, by setting σ equal
to the standard deviation of the parent, we assume that all of the
waveform is noise, and reductions in the noise magnitude by the
signal are indications that some of the waveform can be interpreted
as a signal related through convolution. Note that if the actual noise
level is low, our choice of a starting σ value will also slow the
convergence rate. Finally, initializing the Markov chain with a single
randomly generated Gaussian tends to produce larger misfits (for
the first tested model) than starting with no Gaussians and does not
cause the chain to converge any faster.

We first convolve G with the parent waveform and calculate the
Mahalanobis distance between that convolution and D:

�(G) = (P ∗ G − D)T C−1
D (P ∗ G − D), (3)

where CD is the data covariance matrix with standard deviation
σ and noise correlation parametrized as described in Section 3.
In order to obtain �(G) with more efficiency, we solve for
C−1

D (P ∗ G − D) as a system of linear equations, eliminating the
need to calculate C−1

D explicitly. Also, by calculating the LU factor-
ization of C−1

D and saving the factors, the process is sped up further,
with the factorization only needing to be performed when the noise
correlation is changed.

The Mahalanobis distance determines the likelihood probability
of the observed daughter waveform given the model:

P(D|G) = 1√
(2π )n|CD| e

−�(G)
2 , (4)

where n is the number of points in the data vector. By Bayes’
Theorem, this probability is proportional to the probability of the
model, given the data, that is P(G|D) ∝ P(D|G).

At each step of the Markov chain, a new model G′ is created by
choosing, with replacement, three of the following seven possibili-
ties:

(1) Creating a new Gaussian with random width, location and
amplitude, according to probabilities listed in Table 1;

(2) Changing an existing Gaussian’s amplitude;
(3) Changing an existing Gaussian’s width;

Table 1. Parameters defining the probability density
functions (PDFs) from which the random model real-
izations/updates are drawn. The first three parameters
have probabilities listed for creating a new Gaussian
with uniform distributions between min and max. The
last five parameters have probabilities listed for chang-
ing the value based on a normal distribution with mean
μ and standard deviation θ . Tmin,max are the low and high
period corners of the bandpass applied to the data. σP

denotes the standard deviation of the parent waveform.
α is defined in the text.

Parameter PDF type min/μ max/θ

Location (ci) Uniform 0 s 25 s
Width (wi) Uniform 1

10 Tmin
1

10 Tmax

Amplitude (ai) Uniform −1.5α 1.5α

�Location (ci) Gaussian t 0.15
�Width (wi) Gaussian w 0.04
�Amplitude (ai) Gaussian a 0.1α

�σ (noise) Gaussian σ 0.0025σP

�λ (noise) Gaussian λ 0.000125

(4) Changing an existing Gaussian’s location;
(5) Changing the noise standard deviation;
(6) Changing the noise correlation parameter;
(7) Removing a Gaussian.

If there are no Gaussians, option 1 is chosen. Otherwise, option 6
is given a 2.5 per cent probability of being chosen, with the remain-
ing 97.5 per cent probability split between the other six options.
This is done because changing the noise correlation necessitates
updating the LU factorization of C−1

D and is computationally ex-
pensive. Reducing the likelihood of selecting option 6 allows us to
speed up the algorithm without imposing a fixed value for the noise
correlation parameter.

After choosing the three options, if any of the Gaussians
overlap—which we define as the area within one standard deviation
of the centre of one Gaussian overlapping in time with the area
within one standard deviation of the centre of another Gaussian—
then that model is rejected and a new model is chosen. This in-
corporates our prior knowledge that the receiver function should be
sparse. An alternative implementation would be to shift overlapping
Gaussians so that they are no longer overlapping; we opt against this
implementation because it would cause more models to be tested
at that spot in the model space, which would violate the Metropolis
algorithm.

Because of the transdimensional nature of our algorithm, ini-
tial models with no Gaussians can quickly add many Gaussians
in order to model complexity without ever correctly modelling the
largest Gaussians, or can model large Gaussians as a superposi-
tion of smaller nearby Gaussians. As the number of dimensions
increases, changes to any single Gaussian become less likely. So,
in order to more quickly converge to a well-fitting model, we place
limits on how quickly the total number of Gaussians can increase
during the burn-in period. This allows the algorithm more time
to optimize the locations, widths and amplitudes of the existing
Gaussians as the dimensionality and thus the model space increases.
We impose a limit of k Gaussians in the first 1000k(k + 1) itera-
tions. For example, up to one Gaussian is allowed from 1 to 2000
iterations, up to two Gaussians are allowed from 2001 to 6000 it-
erations, up to three Gaussians are allowed from 6001 to 12 000
iterations, etc. This continues so that a maximum of 30 Gaussians
are allowed until 9.3 × 105 iterations after which there is no limit to
the number of Gaussians allowed. It should be noted, however, that
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THB deconvolution for receiver functions 5

for computational convenience and to place limits on receiver func-
tion complexity, we set the prior on having more than 30 Gaussians
to zero, effectively making our Gaussian limit scheme end with 30
Gaussians being allowed after 8.7 × 105 iterations.

The values of the relevant parameters are randomly drawn from
probability density functions (PDFs) defined in Table 1. The factor
of 1

10 relating the minimum and maximum widths of the Gaussians to
Tmin and Tmax is introduced so that the peak power of the narrowest
and widest allowed Gaussians is approximately equal to the low
(Tmin) and high (Tmax) period corners of the bandpass applied to the
data. The α in Table 1 is an estimate of the magnitude of the largest
Gaussian in the receiver function based on the cross-correlation
of the parent and daughter waveforms and comes from eq. 12 in
Kikuchi & Kanamori (1982), where x is D and w is the convolution
of P and the minimum width Gaussian allowed in the algorithm.
The likelihood probability given by eq. (4) is then calculated for the
new model, G′, and the chance that the model update is accepted is
given by

min

(
1,

P(D|G ′)
P(D|G)

(k + 1)

k ′

)
, (5)

where k is the number of Gaussians in the current model G and k′ is
the number of Gaussians in the proposed model G′. The extra ratio
term is introduced by the prior, as explained in the Appendix.

The ratio of model probabilities determines the acceptance prob-
ability of the new model. We calculate the acceptance in log space,
taking advantage of the fact that

1

2
log(|CD|) = nlogσ +

∑
i

log
(
RU

i i

)
, (6)

where RU is the upper triangular Cholesky factor of R; this is a
computationally efficient means of calculating the determinant of
the covariance matrix.

Since the ensemble solution we obtain with THBD is only truly
representative of the posterior probability density for the model pa-
rameters if convergence has been achieved, we run our chains at
least this long before saving models. Slow convergence is a com-
mon problem in Markov chain Monte Carlo (MCMC) methods
(Gilks et al. 1996) and a number of tools to analyse convergence
has been proposed. Cowles & Carlin (1996) analysed 13 commonly
used convergence diagnostics for MCMC algorithms, recommend-
ing using multiple tests to analyse convergence, but also noting that
it is never possible to say with certainty that a finite sample from
an MCMC algorithm has converged to the underlying stationary
distribution. Therefore, we test convergence in a number of ways.
First, we ensure that the misfit is and remains low and the calculated
likelihood is and remains high. Fig. 2 shows the evolution of the
model likelihood as a function of iteration for 32 parallel chains.
Then, we compare the marginal probability densities obtained by a
number of different MCMC chains; if all the chains have converged
to the same solution, then these marginal probability densities will
be similar. We confirm that this is indeed the case for the numbers of
Gaussians, locations of Gaussians, amplitudes and widths, as shown
in Fig. 3.

After a burn-in period lasting at least as long as the limit on
the maximum number of Gaussians is in place, and convergence is
achieved, the model is saved every 500th iteration for another 106

iterations. The purpose of saving only every 500th iteration is to
reduce computer storage while allowing the algorithm enough iter-
ations to create uncorrelated models in the model space. Typically,
we find that the algorithm converges within ∼5 × 105 iterations,
while the limit on the maximum number of Gaussians is still in place.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

Lo
g 

Li
ke

lih
oo

d

Number of Iterations

Figure 2. Likelihood progression by iteration for 32 Markov chains. The
algorithm generally converges within ∼5 × 105 iterations for Ps waveform
pairs.

3 N O I S E PA R A M E T R I Z AT I O N

In order to get reliable results with this algorithm, it is important that
the covariance matrix CD accurately describes the covariance of our
data. Data residuals can be used to estimate the full data covariance
matrix if array data—in which noise character is common across
the array—are available (Holland et al. 2005; Dosso et al. 2006).
However, because noise characteristics depend on time and location,
this promising method is unavailable to us; nevertheless, it should
be explored in situations where dense seismic arrays are operating.

Dettmer et al. (2012) propose a new parametric procedure for
estimating the full data covariance matrix based on autoregressive
error models of arbitrarily high order. This technique is very promis-
ing in MCMC applications, since it obviates the need for calculating
the inverse and determinant of the data covariance matrix. However,
without careful study of noise characteristics, this method runs the
risk of misidentifying actual signals as noise, if the autoregressive
order is chosen to be unjustifiably high. Therefore, in our study, we
opt for a direct parametrization of CD that approximates characteris-
tics observed on actual pre-event time-series of noise at broad-band
seismometers in a variety of different settings.

Bodin et al. (2012) suggest two parametrizations for the covari-
ance matrix: type 1, an exponentially decaying correlation (eq. 7)
and type 2, a Gaussian correlation (eq. 8). They also show that the
type 2 parametrization is more realistic than type 1, because an ex-
ponentially decaying correlation tapers off quickly, producing noise
that has a higher frequency content than observed in actual pre-event
noise. On the other hand, the exponentially decaying correlation has
the advantage that analytical forms for the inverse and determinant
of its covariance matrix exist and can be quickly computed. A type
2 covariance matrix, however, is difficult to invert; Ababou et al.
(1994) show that it is, in fact, one of the worst-conditioned covari-
ance matrices possible due to its zero slope at t = 0.

To evaluate how appropriate these noise parametrizations are for
representing actual noise, we analysed pre-event noise at ANMO.
We created covariance matrices based on 250-s samples of noise
before 5833 recorded earthquakes, by normalizing the noise time-
series, placing them in a matrix, and then multiplying that matrix by
its transpose. Then, each row of the resulting matrix is divided by the
value of the diagonal entry. The first 50 s of the resulting covariance
matrix can be seen in Fig. 4(d). We then averaged the values along
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fits the real noise correlation best for all but the smallest lag times, where
parametrization 2 fits the real noise correlation slightly better. Parametriza-
tion 1 yields poor fits at all lag times.

the diagonal of our covariance matrix to create an estimate of the
correlation as a function of lag time, which is shown in Fig. 5. It
can be seen that the noise resembles a decaying sinusoidal function,
whose periodic anticorrelations cannot be described by the first two
types of noise parametrization. We verify that similar covariance
matrices describe the noise at seismic stations in other geological
settings, including islands, coastlines and Antarctica.

Based on this shape of the noise correlation, we propose a
parametrization of noise, type 3, which is a decaying exponen-
tial multiplied by a cosine function. Given this, our three noise
parametrizations are
Type 1:

Ri j = e−λ|t j −ti |, (7)

Type 2:

Ri j = e−λ2|t j −ti |, (8)

Type 3:

Ri j = e−λ|t j −ti |cos(λω0|t j − ti |). (9)

In order to limit the number of parameters when using the third
noise parametrization, we fixed ω0, in essence scaling the decay to
the oscillation rate of the covariance. Note that the Rij appear in the
definition of the covariance matrix in eq. (2).

For each noise parametrization, we found the parameters that
best fit the actual noise, and plotted the modelled and observed
correlations in Fig. 5. Parametrization type 2 has the best fit at
very small lag times (T < 0.6 s), but in keeping close to the zero
slope of the correlation observed at zero lag time, it yields ill-
conditioned covariance matrices. Parametrization type 3 fits the
observed correlation across a much wider range of lag times, and
especially at long lag times. Parametrization type 1 does a poor job
at all lag times.

In our problem, noise on the parent and daughter components
will affect the misfit in different ways. If there is noise ε(t) on the
parent component, noise η(t) on the daughter component and the
true receiver function is G0, then the parent component we observe
is

Pobs = P + ε, (10)

and the observed daughter component is

Dobs = P ∗ G0 + η. (11)

Since we are estimating G from observed waveforms, that is, Dobs =
Pobs ∗ G, we are solving for G in

P ∗ G0 + η = (P + ε) ∗ G, (12)

and the Mahalanobis distance (eq. 4) becomes

�(G) = [(P + ε) ∗ G − (P ∗ G0 + η)]T

× C−1
D [(P + ε) ∗ G − (P ∗ G0 + η)]. (13)

Therefore, assuming G and G0 are approximately equal, the ef-
fective noise is ε ∗ G − η. To ensure that the covariance matrix
we modelled from noise on one of the components can accurately
represent the overall effective noise, we compared the covariance
matrix of 2000 random time-series ε ∗ G − η (Fig. 6b) against our
parametrization type 3 covariance matrix (Fig. 6a). One of these
time-series can be seen in Fig. 6(c). We generated the random noise
time-series η and ε from the parametrized covariance matrix by
multiplying the Cholesky factor of the matrix with samples drawn
at random from a standard normal distribution (Seydel 2009, p. 91).
For G, we used a receiver function generated from our synthetic
seismograms with no noise added. We find that because the receiver
function has relatively low amplitudes and is convolved with the
noise on the parent component, the overall contribution of the noise
on the parent component is only a fraction of the contribution of the
noise on the daughter component. This is why the covariance matri-
ces in Fig. 6 are so similar, and justifies our approach of explicitly
accounting only for noise on the daughter component.

There are a number of model selection methods that are often
used to identify preferred MCMC models, including the Akaike
information criterion (Akaike 1974), the Bayesian information
criterion (Schwarz 1978) and the deviance information criterion
(Spiegelhalter et al. 2002). These methods reward goodness-of-fit,
through the likelihood function, and penalize the number of pa-
rameters in a model. Therefore, in order to evaluate whether noise
parametrization 3 that we present in this paper is indeed preferable
over existing noise parametrizations, we compared the likelihoods
and average number of Gaussians for parametrizations 1 and 3
(parametrization 2 is ill-conditioned and cannot be updated easily)
when applied to synthetics with real noise added. We randomly se-
lected 100-s segments of horizontal and vertical vectors of pre-event
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Figure 6. Test on overall noise. (a) The parametrization 3 covariance matrix. (b) The covariance matrix created from 2000 random samples of ε ∗ G − η,
where ε is noise on the parent and η is noise on the daughter. (c) One of those random samples. The similarity of (a) and (b) justifies the use of parametrization
3 in modelling noise for the deconvolution problem.
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Figure 7. Log-likelihood and average number of Gaussians when using parametrization 1 (blue) versus parametrization 3 (red). Ten randomly selected noise
pairs were added to a synthetic Sp waveform pair and THBD was performed on these waveform pairs using either parametrization 1 or parametrization 3.
Parametrization 3 was not only able to produce models with a higher likelihood, but also was able to do so using fewer Gaussians.

noise at the Albuquerque, New Mexico station ANMO of the Global
Seismic Network, and added them to synthetic Sp waveform pairs.
These noisy synthetics were then deconvolved using THBD im-
plemented with parametrization 1 in one case and parametrization

3 in the other. This process was repeated 10 times (using differ-
ent randomly selected noise vectors each time). In Fig. 7, we plot
the likelihoods and average number of Gaussians, as a function
of iteration, for the two different noise parametrizations. We find
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THB deconvolution for receiver functions 9

that parametrization 3 results in higher likelihoods and uses fewer
Gaussians. Based on this observation, we conclude that regardless
of which model selection method is used, parametrization 3 is a
better model for our noisy data.

4 R E S U LT S

In order to test our algorithm, we created synthetic Ps and Sp
seismograms [rotated into the P-SV system using a free-surface
transform matrix (Kennett 1991)] from a model with three veloc-
ity layers—crust, mantle lithosphere and asthenosphere—using a
propagator-matrix approach (Keith & Crampin 1977). The wave-
forms correspond to ray parameters of 0.0600 and 0.1129 s km−1,
respectively. We generated random noise time-series realizations
from the covariance matrix of actual pre-event noise from ANMO
as described in Section 3. We then added a different randomly
generated noise time-series (of the same magnitude) to the parent
and daughter components, and ran the deconvolution algorithm for
2 × 106 iterations, saving every 500th model after a burn-in pe-
riod of 106 iterations; we tested running THBD for 107 iterations
but this did not yield statistically different ensembles than THBD
with 2 × 106 iterations. We fixed ω0 at 4.4, the value which gave
us the best fit to the covariance matrix obtained from real noise
(see Fig. 5). In order to explore a range of noise levels that might
be encountered with real data, we calculated this deconvolution
for 32 increasing levels of noise, that is, increasing values of σ in
eq. (2). For comparison, we also estimated the receiver functions
using damped spectral division, in which the amplitude was nor-
malized by calculating the deconvolution of the parent from itself
using the same damping and then dividing the receiver function by
the maximum value of that result. The results of the THBD and
damped spectral division deconvolutions can be seen in Fig. 8.

The receiver functions generated from damped spectral division
for Ps seismograms are shown in the left-hand panel of Fig. 8 and
the receiver functions generated from our THBD method are shown
in the right-hand panel. The amplitude of noise added to the seismo-
grams increases from bottom to top with increasing waveform pair
number. In the central panel are the parent and daughter waveform
pairs corresponding to noise levels 4, 17 and 30. It can be seen that
by adding noise generated from a covariance matrix created using
real data to a synthetic seismogram one can get realistic-looking
seismograms. The noise levels in the noisier seismograms are quite
high, especially relative to the signal in the daughter components,
and also overlap with signal in frequency content. This overlap can
destroy information carried by the signal resulting in an inaccurate
receiver function regardless of the method used. Good examples of
this interference by noise are in waveform pairs 27, 28 and 29 where
in both deconvolutions there are similar artefacts between 20 and
25 s. On both the damped spectral division and THBD receiver func-
tions, the Moho conversion and the PpPs and PpSs+PsPs crustal
multiples can be seen at approximately 4, 14 and 18 s, respectively.
The LAB conversion at 9 s is harder to see in the receiver func-
tions, especially when they are viewed individually. An advantage
of our THBD method compared to damped spectral division is that
there are many fewer artefacts which, without stacking, would be
difficult to unambiguously interpret. Also, note that the true peaks
are more compact in the THBD receiver functions—and closer to
the delta functions expected in a receiver function given the lay-
ered model in which our synthetics are calculated—than in the
damped spectral division receiver functions where they have longer
period appearances as a result of the damping needed to stabilize the
deconvolution.

The Sp receiver functions and seismograms in Fig. 9 are analo-
gous to their Ps counterparts in Fig. 8. The receiver functions look
simpler since they do not contain multiples, which arrive after the
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Figure 8. Ps waveforms and deconvolutions. Left-hand panel: the damped spectral division receiver functions for synthetic Ps seismograms with 32 increasing
noise levels. Right-hand panel: the THBD receiver functions for the same seismograms. Central panels: the parent and daughter waveforms for waveform
pairs 4, 17 and 30; note the increasing level of noise especially on the daughter component. The THBD method produces fewer artefacts than damped spectral
division.
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Figure 9. Sp waveforms and deconvolutions. Left-hand panel: the damped spectral division receiver functions for synthetic Sp seismograms with 32 increasing
noise levels. Right-hand panel: the THBD receiver functions for the same seismograms. Central panels: the parent and daughter waveforms for waveform pairs
4, 17 and 30. At high noise levels, even the THBD method fails at retrieving the LAB phase, and information from multiple waveform pairs must be combined
to retrieve it (see Fig. 11).

S. The absence of overprinting of direct conversions by multiples
is a major advantage of the Sp method over the Ps one when in-
vestigating deep structure. In both the THBD method and damped
spectral division, the Moho is visible at approximately 5 s, while the
LAB at approximately 12 s is less reliably retrieved; at the highest
noise levels, the LAB phase is indistinguishable from noise in the
damped spectral division results and absent in the THBD results. A
major difference, once again, is that there are many more artefacts
in the damped spectral division receiver functions, which can only
be diminished by averaging a substantial number of waveforms.

Some useful information contained in the ensemble solution pro-
duced by our THBD method is illustrated in Fig. 10, in which we
analyse the results of the deconvolution for the Sp waveform pair 6
(Fig. 10a and see Fig. 9). Because the Metropolis algorithm yields
an ensemble of models, and the probability that a parameter has a
particular value is proportional to the number of models that have
that value, we can plot the distributions of the parameter values
across the ensemble models to visualize uncertainty on individual
parameters (Figs 10b–d and f–i). The true (input) values of the
receiver function parameters are denoted with red lines.

The histogram of the number of models with a Gaussian at a
given lag time is plotted in Fig. 10(b), indicating the probability that
the receiver function has a Gaussian at a particular lag time. The
histogram shows that the majority of the models have two Gaussians
(also shown in Fig. 10h), one at ∼5 s and the other at ∼12 s. The
reason that the probability peak at 12 s has a lower amplitude than the
5-s peak, even though the majority of models have both Gaussians,
is that there is less certainty on the location of the second Gaussian,
broadening the peak and reducing its amplitude.

We can also quantify how well the amplitudes (Figs 10c and
d) and widths (Figs 10f and g) of these two Gaussians are con-
strained by the waveform pair. In receiver function deconvolution,
amplitudes and widths of the Gaussians are correlated so that the

integral of a peak is proportional to the impedance contrast pro-
ducing the Ps (Sp) conversion(s). The synthetic waveforms we used
were generated through a model with instantaneous impedance con-
trasts that would manifest as instantaneous spikes in a receiver func-
tion estimated from truly broad-band data. Because we are using
bandlimited signals, the spike widens. The ‘true’ values of am-
plitudes (red vertical lines) correspond to those associated with
Gaussians of minimum allowable width. We can see that the Gaus-
sian at 5 s has bimodal amplitude (Fig. 10c) and width (Fig. 10f)
distributions. Though not bimodal, the distributions of amplitude
(Fig. 10d) and width (Fig. 10g) of the Gaussian at 12 s is not nor-
mally distributed. This implies that uncertainty analyses that assume
normally distributed errors on the receiver function parameters are
inappropriate even in this relatively low-noise situation.

In Fig. 10(e), we present a visualization of the ensemble solution
where all the models are binned by time and amplitude and the
bins with more models in them are shaded brighter. The bimodal
amplitude distribution for the first Gaussian in the ensemble solution
can be seen by the dark spot (low probability) at about −0.3. The
fuzziness in the second peak in the ensemble solution is an indication
that there is some uncertainty in its location, width and amplitude.

The ensemble solution also enables us to quantify uncertainty on
the recovery of the noise hyperparameters. For example, Fig. 10(i)
shows the distribution of the noise magnitude (σ ), which is ap-
proximately normally distributed around the value of 0.01. While
the noise magnitude is estimated properly for lower noise levels, it
should be noted that as noise levels increase, some of the noise may
be interpreted as signal by the algorithm (especially if it has simi-
lar frequency content), reducing the estimated noise magnitude and
narrowing the posterior distributions around incorrect parameter
values (see Fig. 13 and associated discussion).

Real data sets often contain a number of noisy waveforms
from which information is to be retrieved. In order to model this
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Figure 10. Analysis of a single deconvolution result. (a) Parent and daughter waveforms from Sp waveform pair 6. (b) The probability of a Gaussian being
at a given time in the receiver function. (c and d) Histograms of the amplitudes of the two most common Gaussians (at ∼5 and 12 s). (e) Ensemble solution
combining all of the models by binning them based on time and amplitude. (f and g) Histograms of the widths of the two most common Gaussians (at ∼5
and 12 s). (h) Histogram of the number of Gaussians. (i) Retrieved noise magnitudes (σ ). True values are marked in red. For the amplitudes, the amplitude
corresponding to the minimum allowable width is taken as the ‘true’ amplitude.

situation, we added high levels of noise to 20 Sp waveform pairs and
deconvolved them using three methods. First, we used our THBD
method to get 20 receiver function ensemble solutions and then av-
eraged across them to obtain an overall receiver function (Fig. 11a).
Next, we deconvolved the waveform pairs using damped spectral
division following two approaches: (1) deconvolving the waveform
pairs (damping each deconvolution individually) and averaging the
results in the time domain (Fig. 11b), and (2) stacking the wave-
forms in the frequency domain with a single damping parameter and
simultaneously deconvolving them (Fig. 11c). This figure shows
that by combining the information from multiple noisy waveform
pairs, we can retrieve a receiver function that contains Gaussians
associated with both the Moho (red) and LAB (blue) conversions.
Unlike the receiver functions obtained by the two implementations
of damped spectral division (Figs 11b and c), the receiver function
obtained with the THBD method does not show any artefacts that

might mistakenly be interpreted as geological structures (impedance
contrasts). This result demonstrates that our method is capable of ob-
taining easily interpretable receiver functions even from waveforms
contaminated by high levels of noise, though doing so requires us-
ing information from multiple pairs of waveforms (see Fig. 10 for
results obtained from only a single waveform pair).

The tests in Fig. 11 naturally lead to the idea of stacking ob-
served waveforms of a given slowness and backazimuth and then
using the stacked waveforms to perform a single deconvolution with
the THBD method. This would be advantageous because it would
reduce the computation time of the Markov chain, which is our
method’s main disadvantage. The problem with this idea, however,
is that the noise characteristics—and, therefore, the hyperparam-
eters describing the noise amplitude and frequency content—are
unlikely to be identical across different pairs of waveforms, so that
a stack of waveforms cannot be represented with a single set of
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Figure 11. Sp receiver functions from 20 waveform pairs contaminated
with high levels of noise. (a) Average receiver function generated using
our THBD algorithm. (b) Receiver function generated by averaging individ-
ual frequency-domain receiver functions in the time domain. (c) Receiver
function generated by simultaneous deconvolution of the waveforms in the
frequency domain. Note the absence of artefacts in the THBD result, which
yields more easily interpretable receiver functions.

noise hyperparameters. Instead, our preferred approach to stacking
redundant waveforms is to first carry out the deconvolutions, de-
termine their individual noise hyperparameters and then stack the
ensemble solutions.

Another factor that often complicates receiver function analyses
is the presence of spectral holes in the seismic waveforms, which can
lead to instability in the deconvolution. In order to test how THBD
copes with this effect, we convolved parent and daughter Ps wave-
forms with triangular source time functions of 5-s duration (whose
Fourier transform is the square of the sinc function) before adding
noise and performing deconvolution. The results of our deconvolu-
tion using three different methods—iterative time-domain, damped
spectral division and THBD—are shown in Fig. 12. Even a cursory
comparison of the receiver functions obtained from source time
functions without (left) and with (right) spectral holes shows that
both THBD and the traditional iterative time-domain deconvolution
dramatically outperform damped spectral division in the presence
of spectral holes added by the triangular source time function.

Having explored the ability of the THBD to obtain interpretable
receiver functions, we proceed to quantify how well our method
retrieves noise characteristics, given input noise spanning a range
of amplitudes and four different frequency contents. To do this, we
created random time-series of type 3 noise with ω0 values of 2.2,
4.4 and 8.8, and noise levels (σ ) from 0 to 0.18. An ω0 value of
4.4 closely models real noise and is shown in Figs 4(c) and 5. An
ω0 value of 2.2 generates lower frequency noise and an ω0 value

of 8.8 generates higher frequency noise. We added realizations of
each type of random noise to parent and daughter waveforms, and
applied the deconvolution algorithm, with the ω0 value fixed to that
used in creating the added noise, in order to estimate the noise level
and frequency content. We plot the input levels of noise (measured
after bandpassing) against the corresponding retrieved levels of
noise in Fig. 13, along with their best-fitting lines. We find that
adding correlated noise causes the noise level to be systematically
underestimated, that is, the slopes of the best-fitting lines in Fig. 13
are always less than 1. Yet, higher levels of noise are estimated
for noisier records, making the retrieved noise level (σ ) a useful
parameter for comparing noisiness of different waveform pairs. This
underestimation occurs because the misfit between the observed and
predicted waveforms, taking into account noise, is

(P + ε) ∗ G − (P ∗ G0 + η). (14)

If G = G0 + δ, where G0 is the true model and δ is the difference
between the true model and the predicted model due to the noise,
then the misfit becomes

(P + ε) ∗ δ + ε ∗ G0 − η. (15)

When the noise has a similar frequency content to that of the par-
ent signal, a δ can be introduced which will reduce the misfit and
thus also lead to a lower noise estimation. In fitting the noise, the δ

will also lead to a greater difference between G and G0, resulting
in a less accurate deconvolution. To verify that this behaviour is
giving rise to the results shown in Fig. 13, we repeat the analysis
using white noise, which is uncorrelated by construction. Following
the previous procedure, we apply the THBD algorithm to obtain
noise-level estimates, but this time using parent and daughter wave-
forms contaminated by white noise of varying levels. We modify
the algorithm to use a scalar matrix as the data covariance matrix
CD, instead of one based on the three noise parametrizations. In
Fig. 13, we plot the retrieved noise levels against input levels, and
find that the method obtains accurate estimates of the noise level.
This is consistent with our explanation for why the method system-
atically underpredicts levels of correlated noise, since expression
(15) is unlikely to be decreased by the introduction of δ when noise
time-series ε and η are uncorrelated.

Finally, we turn our attention to quantifying our ability to esti-
mate the correct value of the noise parameter λ using the THBD
method. We do this by adding random realizations of noise time-
series—once again generated from the covariance matrix of actual
pre-event noise at ANMO (shown in Fig. 4d)—to 10 synthetic Ps
waveform pairs. The amplitude of noise (σ ) is kept the same for
all noise realizations. We run the THBD algorithm on each noisy
waveform pair, initializing each with a different starting λ value
ranging from 0.05 to 0.5. In this run of the algorithm, we kept the
probability of option 6 (changing the noise correlation parameter)
being chosen equal to that of the other options. Doing so increases
the computation time, but speeds up the convergence to an estimate
of noise parameter λ, which may be necessary when the frequency
content of pre-event noise is poorly known a priori. The results
from this test are shown in Fig. 14. Regardless of their starting λ

value, all the chains converge to a value of 0.2, which we previously
found to best fit the covariance matrix at ANMO (see Fig. 6) that
was used in generating the noise time-series for this test. This shows
that our method can successfully estimate the frequency content of
the noise, parametrized by λ, even from a grossly inaccurate starting
guess.
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Figure 12. Spectral hole deconvolution test. The panels on the left-hand side show the results of three deconvolution methods on a waveform pair with a slight
amount (σ = 0.1) of noise added. The panels on the right-hand side show the results of the same deconvolution test, but when the waveform pairs have been
convolved with a 5-s triangular source time function before the addition of noise. The spectral holes (and destruction of high frequencies) introduced by this
convolution have a larger effect on the damped spectral division than on the two time-domain methods (iterative time-domain and THBD).

Figure 13. Noise retrievals. Noise levels (σ ) were estimated by the THBD
algorithm for varying input levels of noise given a realistic parametrization
of noise frequency (ω0 = 4.4), lower frequency noise (ω0 = 2.2), higher
frequency noise (ω0 = 8.8) and white noise (an identity covariance matrix
times a scalar). When the noise has a similar frequency content to that of
the signal, the noise level is systematically underestimated. Nevertheless, at
a given value of ω0, higher levels of noise are estimated for noisier records,
making the retrieved noise level (σ ) a useful parameter for comparing nois-
iness of different waveform pairs.

5 C O N C LU S I O N

We have developed and validated a method for deconvolution
which retrieves noise levels and frequency character in addition
to obtaining receiver functions with fewer artefacts even when the
parent–daughter waveform pairs are contaminated by high levels of
noise. This method of deconvolution is especially useful in receiver
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Figure 14. Noise correlation parameter λ by iteration. Markov chains with
different starting values of λ are shown and all converge to ∼0.2, the
same λ value we found best fit the covariance matrix that was used to
generate this noise. This illustrates that our method can successfully es-
timate the frequency content of the noise, parametrized by λ, even from
inaccurate starting guesses.

function analyses for noisy stations (e.g. ocean bottom, coastal,
polar deployments) because of its treatment of noise level and fre-
quency as hyperparameters. These noise hyperparameters affect the
complexity of receiver functions, preventing the overfitting of noisy
data, while simultaneously yielding an ensemble solution which
fully quantifies associated uncertainties. The receiver functions en-
semble solutions obtained by our THBD method can then be used
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within a Bayesian framework (e.g. Piana Agostinetti & Malinverno
2010; Bodin et al. 2012), or a non-Bayesian framework, for exam-
ple, a multistep modelling procedure (e.g. Tkalčić et al. 2012), and
combined with constraints from seismic tomography. In this way,
by treating our knowledge of the structure obtained by THBD as a
random variable, uncertainties can be propagated from the receiver
function to the final model of subsurface structure.

The THBD method’s increased robustness in comparison to
more traditional damped spectral division allows it to better con-
strain receiver functions from individual parent–daughter waveform
pairs, which can improve structural inferences beneath stations with
smaller numbers of recorded waveforms. This makes it particularly
useful for constraining anisotropy beneath stations where there are
only a small number of waveforms with a high signal-to-noise ratio
available at a given backazimuth. Quantifying the reliability of fea-
tures in receiver functions, which the ensemble solution produced
by our method makes possible, is important to ensure that only those
features that are robustly constrained are interpreted in geological
analyses. In other words, the method can be used to ensure that
features in the Earth whose existence is not required by the data are
not mistakenly identified.

The THBD method’s biggest drawback is that it is orders of mag-
nitude slower than other commonly used methods of deconvolution.
When run on an Intel i5-4570 3.2 GHz processor, the computation
time for iterative time-domain deconvolution was ∼7 × 103 times
longer than damped spectral division, while the THBD method was
∼1.2 × 108 times longer than damped spectral division. Of course,
this comparison is unfavourable to THBD since it does not take into
account the fact that THBD yields fully quantified uncertainties,
which neither the iterative time-domain deconvolution nor damped
spectral division do. Nevertheless, its relatively high computation
times make THBD much better suited to situations where more ro-
bust receiver function is desired from a smaller data set. It should
also be noted that by starting with a better initial model the burn-in
time can be reduced, and that by further optimizing the code or cod-
ing and compiling the algorithm outside MATLAB, the time spent
on each iteration can be reduced.

While we applied the THBD method to obtaining receiver func-
tions, it can also be used for other deconvolution problems where
the function being estimated can be parametrized by a series of
Gaussians. In addition, if the features of the function being esti-
mated via deconvolution are not suitably represented by a series
of Gaussians, the method could be modified to use a parametriza-
tion that is better suited to the expected deconvolution result. For
example, straightforward extensions of the method can be used to
improve deconvolution in studies of PP and SS precursors (Schmerr
& Garnero 2006), or for deconvolving geological structure out of
signal in order to study source complexity.
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A P P E N D I X : T H E P R I O R A N D
A C C E P TA N C E P RO B A B I L I T I E S

A1 The prior

The prior model probability distribution can be separated into three
terms

P(m) = P(t, a, w|k)P(k)P(n), (A1)

where P(t, a, w|k) is the prior on the centre times c, widths w and am-
plitudes a of the Gaussians that make up our receiver function, P(k)
is the prior on the number of Gaussians and P(h) is the prior on the
Nhp noise hyperparameters (given our parametrization, h = [σ , λ]).
To minimize the prior information imposed on the deconvolution,
we choose uniform distributions for the amplitudes and widths of
individual Gaussians (i.e. ai, wi) as well as the hyperparameters

P(ai |k) =
{

1/(�a) amin < ai < amax

0 otherwise,
(A2)

P(wi |k) =
{

1/(�w) wmin < wi < wmax

0 otherwise,
(A3)

P(hi |k) =
{

1/(� j h) j hmin < h j < j hmax

0 otherwise.
(A4)

We use (k + 1)−1 for the prior on the number of Gaussians in order
to represent complete ignorance of a positive quantity following the
reasoning in Jeffreys (1939) and in order to have a finite prior when
there are no Gaussians:

P(k) =
{

1/(k + 1) 0 ≤ k ≤ 30

0 otherwise.
(A5)

Although this prior does not normalize to unity, this does not
represent a problem because only ratios of likelihoods will be used
rather than the actual likelihoods to estimate our posteriors.

The reason that we limit the number of Gaussians to 30 in our
prior is that we do not want unnecessary complexity in our results
when the noise level is low. When there are reasonable noise levels
such as in real data, the number of Gaussians found by the code is
reduced and this maximum number of Gaussians does not appear
to affect the results.

Because the widths and amplitudes of the Gaussians are taken to
be independent of one another, as are the values of the hyperparam-
eters, the priors are given by

P(w|k) =
k∏

i=1

P(wi |k), (A6)

P(a|k) =
k∏

i=1

P(ai |k), (A7)

P(h|k) =
Nhp∏
i= j

P(h j |k). (A8)

We set up the problem so that the centre times (ci) of the Gaussians
can only take on discrete values among the Nt at which the seismic
time-series are sampled. However, since a new Gaussian of width
wk+1 cannot be placed within wk+1 + w of existing Gaussians with
width w, the effective number of possible points is N = Nt − Nb,
where Nb is the number of points blocked due to Gaussians already
in place. Therefore, giving an equal probability to each possible
configuration of Gaussian placements, the prior on t is

P(t|k) = k!(N − k)!

N !
. (A9)

Combining these mutually independent terms, we have for the
model prior probability distribution

P(m) = k!(N − k)!

�k N !(�a�w)k
∏Nhp

j � j h
. (A10)
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It should be understood, that P(m) is null when the prior limits on
any of the parameters or hyperparameters are exceeded.

A2 Proposal distributions

At each step of the algorithm, we choose three of the following
seven possibilities:

(1) Change the amplitude (a′) of an existing Gaussian i whose
amplitude is a. The new amplitude is chosen from the probability
distribution

qa(a′
i |ai ) = 1

θa

√
2π

exp

{
− (a′

i − ai )2

2θ2
a

}
, (A11)

where θ2
a is the variance of the distribution.

(2) Change the width (w′) of an existing Gaussian i whose width
is w. The new width is chosen from the probability distribution

qw(w′
i |wi ) = 1

θw

√
2π

exp

{
− (w′

i − wi )2

2θ2
w

}
, (A12)

where θ2
w is the variance of the distribution.

(3) Change the location (c′) of an existing Gaussian i whose
current location is c. The new location is chosen from the probability
distribution

qc(c′
i |ci ) = 1

θc

√
2π

exp

{
− (c′

i − ci )2

2θ2
c

}
, (A13)

where θ2
c is the variance of the distribution.

(4) Change the noise amplitude (σ ′) whose current value is σ .
The new noise amplitude is chosen from the probability distribution

qσ (σ ′|σ ) = 1

θσ

√
2π

exp

{
− (σ ′ − σ )2

2θ2
σ

}
, (A14)

where θ2
σ is the variance of the distribution.

(5) Change the noise correlation timescale (λ′) whose current
value is λ. The new correlation timescale is chosen from the prob-
ability distribution

qλ(λ′|λ) = 1

θλ

√
2π

exp

{
− (λ′ − λ)2

2θ2
λ

}
, (A15)

where θ2
λ is the variance of the distribution.

(6) Create a new Gaussian, whose amplitude ak+1 and width wk+1

are drawn randomly from the prior distribution, and whose position
is selected from the discrete set of possible centre times further
than wi from existing ci. We find that this choice on minimum ci

spacing works well for our purposes, though it does introduce a
slight dependence of ck+1 on existing ci and wi.

(7) Delete one Gaussian, with equal likelihood of picking any of
the existing ones.

The values of θa, θw , θ c, θσ and θλ are given in Table 1.

A3 The acceptance probability

In order for our method to converge to the transdimensional pos-
terior distribution P(m|dobs), the probability of accepting a jump
from model m to the proposed model m′ has to be

α(m′|m) = min

[
1,

P(dobs|m′)
P(dobs|m)

P(m′)
P(m)

q(m|m′)
q(m′|m)

|J|
]

, (A16)

where the first ratio gives voice to the data (through the Maha-
lanobis distance between prediction and observation), the second

ratio gives voice to the prior information on the model distributions
(see Appendix Section A1), the third ratio accounts for potential
differences in probability of going from model m to model m′ and
reversing this jump, and the final term is the determinant of the
Jacobian matrix for the transformation.

A3.1 Proposal ratios

An examination of the proposal probabilities associated with
choices 2, 3, 4, 5 and 6—that is, all choices except those involving
the birth and death of a Gaussian—involve symmetric distributions,
so that

qa(a′
i |ai ) = qa(ai |a′

i ), (A17)

qw(w′
i |wi ) = qw(wi |w′

i ), (A18)

qc(c′
i |ci ) = qc(ci |c′

i ), (A19)

qhσ,λ
(h′

σ,λ|hσ,λ) = qhσ,λ
(hσ,λ|h′

σ,λ). (A20)

This means that the contributions of these terms to the ratio of
q(m|m′) to q(m′|m) will cancel, being equal for the forward and
reverse steps. The only non-trivial terms are, therefore, the ones
associated with the birth and death of Gaussians.

Birth

When a Gaussian is born, the dimension of w′, a′ and c′ increases
from k to k + 1. Since the choices of the width wk+1 and amplitude
ak+1 of the new Gaussian are independent of one another and of the
Gaussian location, the proposal ratio can be separated as

q(m|m′)
q(m′|m)

= q(c|m′)
q(c′|m)

q(w|m′)
q(w′|m)

q(a|m′)
q(a′|m)

. (A21)

When a new Gaussian is created, its amplitude ak+1 and width
wk+1 are chosen from uniform distributions that do not change with
current model location, and are therefore independent of the model
m. Therefore,

q(w′|m) = q(wk+1) = 1/(�w) (A22)

and

q(a′|m) = q(ak+1) = 1/(�a). (A23)

The probability of birth at a specific centre time c′
k+1 is

q(c′|m) = 1/(N − k), (A24)

where N is used instead of Nt due to the prohibition of placing a new
Gaussian with width wk+1 within wk+1 + w of existing Gaussians
with centre times c and widths w. The reverse of birth is death, and
the probabilities that removing a width and amplitude associated
with killing a Gaussian is equal to unity

q(w|m′) = q(a|m′) = 1. (A25)

The probability of deleting a Gaussian at position c′
k+1 is

q(c|m′) = 1/(k + 1), (A26)

since the chance of killing any particular Gaussian is equal to that of
killing any other Gaussian, and there are k + 1 Gaussians to choose
from. Combining terms, we get that the reverse to forward proposal
ratio associated with birth is given by[

q(m|m′)
q(m′|m)

]
birth

= �a�w(N − k)

(k + 1)
. (A27)
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Death

Following the logic stated in the birth subsection, when a Gaussian
is killed the probability a width or amplitude is removed is unity:

q(w′|m) = q(a′|m) = 1, (A28)

and the probability a Gaussian centred at time c′
k is killed is

q(c′|m) = 1/k. (A29)

The reverse of death is birth and the amplitudes are once again
independent of the model, giving

q(w|m′) = 1/(�w) (A30)

and

q(a|m′) = 1/(�a). (A31)

The probability of birthing a model at time c′
k is

q(c|m′) = 1/(N − k + 1), (A32)

because there will be one more position to add a Gaussian in the
reverse birth step. Combining terms, we get that the reverse to
forward proposal ratio associated with death is given by[

q(m|m′)
q(m′|m)

]
death

= k

�a�w(N − k + 1)
. (A33)

A3.2 The Jacobian

Following the discussion in Bodin et al. (2012), the Jacobian only
needs to be calculated when the proposed model m′ involves a
change in dimension with respect to the current model m. In other
words, we need only worry about the birth and death of Gaussians.
When a Gaussian is born, the transformation going from m to m′

involves a discrete transformation of Gaussian position and contin-
uous transformation of its width and amplitude. The Jacobian term
associated with discrete transformations is equal to unity (Denison
et al. 2002), while that associated with the transformation of the
widths and amplitudes is also unity since all widths and amplitudes
are drawn from the same distribution and do not involve changes in
scale. Therefore, the Jacobian terms are unity and can be neglected
for both birth and death steps.

A3.3 Putting it together

For birth, combining terms and simplifying, we have

P(m′)
P(m)

q(m|m′)
q(m′|m)

|J| = (k + 1)

(k + 2)
, (A34)

which is a fortunate result that greatly simplifies the implementation
of the deconvolution algorithm that we propose, since the acceptance
ratio is independent of the proposal ratios and only depends on the
prior in terms of the ratio of the prior of the number of Gaussians,
that is,

α(m′|m)birth = min

[
1,

P(dobs|m′)
P(dobs|m)

(k + 1)

(k + 2)

]
. (A35)

For death, we have

P(m′)
P(m)

q(m|m′)
q(m′|m)

|J| = (k + 1)

k
. (A36)

So, we can once again simplify the acceptance ratio since it is
independent of the proposal ratios and only dependent on the prior
in terms of the ratio of the number of Gaussians, resulting in

α(m′|m)death = min

[
1,

P(dobs|m′)
P(dobs|m)

(k + 1)

k

]
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