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This supplement contains a detailed description of the array-picking algorithm and mod-
ified extended time multi-taper method that we used to obtain the constraints on litho-
spheric structure. Furthermore, it contains comparisons of the results obtained with and
without the array-based picker, as well as those obtained using different subsets of data.
Finally, it presents an analysis of uncertainties associated with the determination of LAB
depths and strengths in this study, and explains the bootstrapping procedure that we used
to quantify them.

1. Array-based Picking Procedure

We modify the automatic data picking algorithm developed by Abt et al. (2010) to take
advantage of dense seismic arrays present in the Western United States. Due to their focus
on single-station stacking, Abt et al. (2010) used an automatic algorithm (henceforth AP1)
based on signal-to-noise ratios in moving time-windows to identify the P and S arrival times
on vertical and transverse component waveforms, respectively, observed at an individual
station. AP1 is unreliable when noise levels are high; therefore, we typically apply it
only on waveforms with estimated signal-to-noise ratios ≥ 2. Yet, while this restriction
eliminates the least reliable P and S picks, it greatly reduces the number of waveforms for
which a P or S arrival-time is available. Furthermore, AP1 is not guaranteed to accurately
pick the P and S arrival times even when the estimated signal-to-noise ratios are ≥ 2,
especially for S waves, which arrive during the P coda. In Figure 1, we show the histogram
of the deviations of AP1-picked P (top) and S (bottom) arrival times from the predictions
of ak135 (Kennett et al., 1995). Note both the broad distribution, which suggests that the
travel time picks are affected by noise, and the large peak in the distribution at zero, which
results from reverting to the ak135 arrival time when signal-to-noise ratios in an individual
waveform falls below 2.

Because the waveform of a single teleseismic body wave does not typically vary greatly
across a dense seismic array, recordings from multiple spatially proximal stations can be
aligned and stacked to yield a single, average waveform with lower noise levels. By mod-
ifying the AP1 algorithm to operate on this average waveform, the performance of the
signal-to-noise based method can be improved dramatically.

We start with the waveforms of an earthquake recorded at a single station; waveforms
of that same earthquake recorded at stations located closer than a threshold value of
10o are then identified. For picking P arrivals, the vertical component recording is used;
the transverse component is used for picking S arrivals. A template waveform is then
defined by the trimmed-mean of the recorded waveforms, with the extreme 10% of the
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data discarded from the low and high ends. Then, cross-correlation is calculated between
the individual recordings and the template waveform, windowed to be non-zero only within
5s of the predicted P arrival time and 15s of the predicted S arrival times. These cross-
correlations are used to determine the time-shifts needed for optimal alignment of the
individual waveforms to the template waveform, and also set the timing of the template
waveform relative to the timing at the station in question. Since this template waveform
has a substantially lower noise level than the constituent individual waveforms, the AP1
algorithm is run on this record. The relative P or S arrival times obtained by this method
are then adjusted based on the cross-correlation time-shift between the master record and
the waveform of the station-event pair of interest.

The question arises as to what P and S travel-time deviations ∆tP and ∆tS to associate
with those earthquakes that are observed at a given station, but not recorded by multiple
nearby stations. We choose to deal with this circumstance by constructing an interpolation
function based on the set of observed ∆tP,S - obtained via the array-picking scheme - and
assign to each backazimuth and ray parameter a ∆tP,S . The interpolation function is a
built-in MATLAB implementation of natural neighbor interpolation.

Figure S1 shows scatterplots of travel-time deviations ∆tP (left) and ∆tS (center) ob-
tained with the AP1 algorithm against those produced by our array-based algorithm. When
successful, the two methods produce consistent picks - note that the majority of the ∆tP,S
fall on the one-to-one line (black). However, the halo of ∆tS spanning the allowable range
of travel time deviations seen with the AP1 algorithm but not seen with the array-based
one demonstrates that AP1 is substantially more prone to random deviation than the
array-based method. The fact that array-based P and S arrival picks are less affected by
noise can also be inferred from the tighter distributions of ∆tP,S in the histograms shown
in the right panels of Figure S1.

The relative performance of the AP1 and array-based algorithms is also apparent in
the comparison of the scatterplots of ∆tP versus ∆tS shown in Figure S2. Travel-time
anomalies of S waves are typically ∼2 times larger than those of P waves. Yet, while very
clear in the array-based scatterplot (Figure S2b and c), this relationship is barely visible
in the plot obtained by the AP1 algorithm (Figure S2a). The trend of the ∆tP versus
∆tS does not pass through the origin because the P and S waves have different travel-
time offsets when analyzed with the new picking algorithm. This offset can result from
differences in the Vp/Vs ratio between the regional mantle and the reference (ak135) model,
and has implications for the relative deviations of Vp and Vs from the reference structure.
Of particular importance is the streak apparent in Figure S2a, which corresponds to the
thousands of waveforms whose signal-to-noise ratios were too low for the AP1 algorithm
to estimate an S arrival. The absence of this streak in the array-based results (Figure S2b
and c), demonstrates that the array-based algorithm has the added advantage of yielding
a larger number of arrival-time estimates than is possible with AP1.

In Figure S3 we plot the average and standard deviation of ∆tS for all events observed at
each individual station. The mean station ∆tS should reflect the average velocity difference
between the crust and upper mantle structure beneath the station and that of the reference
model ak135, which also implies that nearby stations should have similar mean ∆tS . With
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respect to both these characteristics of reliable arrival picks, the array-based algorithm
outperforms AP1. For one, the regional trend of faster Vs beneath the Colorado Plateau,
the Wyoming Craton, and the Great Plains Craton to the east and slower Vs beneath
the northern Great Basin and the southern Basin and Range is more clear in the map of
mean station ∆tS obtained using the array-based algorithm. Furthermore, the standard
deviation of ∆tS for all events observed at an individual station is substantially smaller
when the array-based algorithm is used.

2. Deconvolution

The deconvolution of S waveforms from the P waveforms is accomplished for each pair
of P and SV waveforms using a MATLAB implementation of the extended-time (Helffrich,
2006) multiple-taper correlation method (Park and Levin, 2000). Unlike Helffrich (2006),
we follow the recommendation of Shibutani et al. (2008) and adopt a time-bandwidth prod-
uct of 4 and a moving window length of 50 s, though we use 7 instead of 3 Slepian tapers
and overlap moving time windows by 90%. The total length of our data windows is 100 sec-
onds, as in Abt et al. (2010). We choose to use large overlap in order to compensate for the
degradation of signal at longer delay times that results from the reduced spectral resolution
associated with using a higher time-bandwidth product. If we denote by uP,SV (tn) the P

or SV waveform in the nth moving time window, where a window t0 corresponding to n = 0
is centered on the S arrival in the case of Sp receiver functions, then the frequency-domain
Sp receiver function RFn(ω) corresponding to time window n is obtained by:

(1) RFn(ω) =

∑7
k=1F [Y k(t0)uSV (t0)]∗F [Y k(tn)uP (tn)]∑7

k=1F [Y k(t0)uSV (t0)]∗F [Y k(t0)uSV (t0)] + λ2
,

where F denotes the Fourier Transform, and Y k(tn) is the kth Slepian taper spanning
tn. The time-domain receiver function RF (t) is obtained by an inverse Fourier Transform
followed by averaging across times sampled by multiple moving windows. The damping
parameter λ is chosen to minimize the sum of the receiver function size and misfit between
the observed daughter component and that predicted by the convolution of RF with P,
both calculated with the L-1 norm.

3. Effects of the Array-based Picking Algorithm

Do the improvements in the accuracy of P and S onset times translate into a more
reliable 3D model of crustal and mantle discontinuities? In order to quantitatively answer
this question, we compare the variance σ2 of the receiver functions (RF) - obtained with
the two auto-picking techniques - contributing to the value of the CCP stack at every
(rk, θk, φk). If we have N receiver functions contributing to the value of the CCP stack at
a location (rk, θk, φk), and their weights in the CCP stack are given by wi, the variance is
given by:

(2) σ2
k =

1

N − 1

N∑
i

(
RFi,k −

1

N

N∑
i

RFi,k

)2
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Then, in Figure S4, we plot the distributions of the σ2 at a set of depths. With a single
exception (at 60 km depth), the RFs obtained with the array-based picking algorithm are
more coherent (smaller variances), indicating that the array-based algorithm outperforms
the AP1 algorithm, especially at greater depths, which are important for robustly con-
straining lithospheric structure. The substantial reduction in variance among the receiver
functions going into the CCP stack obtained with the array-based algorithm suggests that
the improved picking accuracy improves the coherence and reliability of the CCP stacks.

Does the decreased variance of the RFs that contribute to each voxel in the CCP stacks
yield more easily interpretable images? To answer this question, in Figure S5 we plot
vertical slices through the CCP stacks constructed using the AP1 algorithm and those
constructed using the array-based algorithm. For example, a strong negative Sp arrival
(blue) appears to be generated across the base of the lithosphere in the southern Basin
and Range (profile H) in the CCP stack obtained with the improved phase-picking and
deconvolution approaches; this remarkable feature is washed out and barely visible in
the CCP stacks constructed with the AP1 algorithm. Further to the north (profile J),
the new methods yield a prominent negative Sp arrival that extends beneath the Great
Basin, abruptly weakening beneath the Wyoming Craton. This behavior is much less clear
with the AP1 algorithm. We attribute the larger and more coherent negative Sp arrivals
obtained with the array-based algorithm to more accurate phase windowing and a reduction
in waveform scatter.

4. Effects of the Transportable Array

How well-suited are the station spacing and length of deployment of the Transportable
Array (TA) for constraining lithospheric structure using CCP stacking of Sp receiver func-
tions? As a site of numerous temporary, dense seismic deployments, the western U.S. offers
a variety of different lithospheric and crustal structure settings in which we can address
this question through direct comparisons of CCP stacks obtained with and without the
TA. In Figure S6, we show vertical sections through our 3D mantle discontinuity model
that parallel the line of the broadband LARISTRA deployment (Gao et al., 2004), which
had an average station spacing of 18 km and a deployment duration of just under 2 years.
We find that CCP stacks constructed with TA data by themselves (middle) show clear and
coherent NVG phases across the region; in comparison, Sp CCP stacks constructed with
temporary deployment data alone (top) show weaker and less coherent NVG phases. TA
spacing appears to be dense enough to enable the retrieval of variations in Moho depth; on
the other hand, it does not enable reliable imaging of intra-crustal discontinuities, which are
only coherent and continuous in the CCP stacks supplemented with data from temporary
deployments.

5. Uncertainty Analysis

In order quantify the uncertainties in the CCP stacks due to random noise in the data
and outliers, we carry out a bootstrapping analysis in which we generate and analyze 50
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different datasets by resampling our actual dataset. We start by drawing, with replace-
ment, N integers from a uniform distribution between 1 and N. The integers 1 to N are
taken to represent the Sp receiver functions used to construct our stacks in the main text,
so that a single resampled dataset consists of the set of N receiver functions identified by
the N randomly drawn integers. Each randomly resampled dataset is analyzed in precisely
the same way that the original dataset is analyzed, and a CCP stack is constructed. The
process is repeated 50 times, yielding 50 different CCP stacks. Then, for each CCP stacks,
we run the same automatic algorithm used in Figure 5 of the main text to determine the
depths and amplitudes of the negative velocity gradient (NVG) phases, which may repre-
sent a seismically defined lithosphere-asthenosphere boundary (LAB) or mid-lithospheric
discontinuities (MLD).

In Figure S7, we plot maps of the mean (top) and standard deviation (bottom) of the
NVG phase depth and amplitude calculated for the 50 CCP stacks. The mean depth map
(a) is very similar to the map for the actual dataset shown in Figure 5, confirming that
the depths to the LAB/MLD phases are robustly constrained by our dataset, and are not
the result of random errors and outliers. We note that the LAB phase remains shallow
beneath the Great Basin, the Basin and Range, and is of intermediate depth beneath the
High Rockies. The shallowing of the LAB phase from depths of 100–120 km in the northern
and central Colorado Plateau to depths of 60–80 km along its margins is also clear. Deeper
and more laterally-variable depths are once again seen beneath the Wyoming Basin, and
the Great Plains craton.

Looking at the standard deviation of LAB/MLD depths (c), we see that beneath much
of the Basin and Range, the Great Basin, and portions of the High Rockies, the uncertainty
on the LAB/MLD depths is <5 km. However, very large apparent uncertainties are seen
in localized areas, often associated either with the edges of the study region (e.g. Salton
Trough) or with boundaries between regions with deep and shallow NVG phases (e.g.
southeastern New Mexico). Nevertheless, it appears that there might be an association
between areas with deeper-than-average MLD/LAB phases and uncertainty. Is this because
the CCP stacks are highly variable in these regions, or because of small changes in relative
amplitudes of multiple NVG phases that cause the automatic algorithm to jump around
in a range of depths?

In Figure S8, we plot north-south vertical sections coincident with those shown in Figure
3 of the main text, but this time through the mean of the 50 CCP stacks. Then, to illustrate
the variability across the CCP stacks, we blank out all regions where the mean amplitude of
the stack is significant to less than 95%, that is, where its absolute amplitude is smaller than
2 standard deviations calculated across the 50 CCP stacks. The remarkable consistency
between these sections and those shown in Figure 3 implies that the uncertainties in the
LAB/MLD depths (Figure S7c) result from minor changes in the relative amplitudes of
multiple NVG phases, rather than major differences between CCP stacks obtained with
different random dataset realizations. Particularly clear is the first-order difference between
the relatively shallow and large amplitude phases that we interpret as the seismically-
defined LAB, and weaker, more distributed in depth phases that we observe beneath stable
regions and interpret as the MLD.
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As the vertical sections of Figure S8 suggest, the mean amplitude map (Figure S7b)
is also highly consistent with the results obtained with the full dataset (Figure 5). In
particular, the large-scale contrast in amplitude of the NVG phase —and, therefore, also
in the velocity contrast and or depth range across which it is distributed —between re-
gions that have undergone recent extension and/or magmatic activity and those that have
remained relatively stable, remains clearly discernible in the mean amplitude map. The
map of standard deviations associated with each of the amplitude estimates (Figure S7d)
shows both that the amplitudes are not strongly affected by noise, and, more importantly,
that the spatial distribution of the errors is uncorrelated with this large-scale contrast
in LAB/MLD amplitudes. Interestingly, the streaks of very low amplitude uncertainties
are seen beneath some of the temporary deployments (the LARISTRA line is particularly
striking), suggesting that the dense temporary deployments can dramatically improve the
reliability of amplitude recovery in Sp studies of lithospheric structure.
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Figure 1. (left) Scatterplots of the travel time deviations from the pre-
dictions of ak135 (Kennett et al., 1995) of P (top) and S (bottom) arrivals
(∆tP,S) obtained using the AP1 algorithm (Abt et al., 2010) and the array-
based picking algorithm described here. (right) Histograms of the ∆tP,S
obtained using the AP1 algorithm (black) and the array-based picking al-
gorithm described here (red).The array-based picker produces much more
reliable S picks, and can be applied to a much larger subset of the data,
as indicated by the disappearance of the ∆tS = 0 peak, to which value the
picking algorithm defaults when the signal-to-noise ratio is too low.
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Figure 2. Scatterplots of the travel time deviations of P vs S arrivals
(∆tP,S) from the predictions of ak135 (Kennett et al., 1995). (left) AP1
algorithm. (middle) Array-based picking algorithm presented in this paper.
(right) Array-based algorithm applied only to stations of the Transportable
Array.
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Figure 3. Station average S travel time deviations (∆tS) from the predic-
tions of ak135 obtained using the AP1 algorithm (a) and the array-based
picking algorithm described here (b). Standard deviation of ∆tS for each
station obtained using the automatic picking algorithm of Abt et al. (2010)
(AP1) (c) and the array-based picking algorithm described here (d). Note
the substantial reduction in the variance of picks for individual stations,
and the systematically faster arrivals seen beneath the Colorado Plateau,
the Wyoming Craton, and the tectonically stable eastern margins of the
study region.

References

Abt, D., K. Fischer, S. French, H. Ford, H. Yuan, and B. Romanowicz (2010), North
American lithospheric discontinuity structure imaged by Ps and Sp receiver functions,
J. geophys. Res, 115 (B09301), doi:10.1029/2009JB006914.
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Figure 8. Vertical sections through the mean of the 50 Sp CCP stacks,
spatially coincident with those shown in Figure 3 of the main text. Portions
of the stacks that are significant to less than 95% confidence are whited out.
Note the similarity between these vertical sections and those obtained with
the full dataset (Figure 3), demonstrating that the features analyzed in the
main text are reliably imaged.


