
1. Introduction
Since December 19, 2018, Mars is the first extraterrestrial planet with seismometers deployed directly on its 
surface. The seismometers are called Seismic Experiment for Interior Structure (SEIS) and have been brought 
by the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission (Log-
nonne et al., 2020). SEIS has been designed for planetary seismology (Lognonne et al., 2019) and consists 
of six axes to measure ground motion. It contains three very broad band (VBB) oblique axes which are sen-
sitive to frequencies from tidal up to 10 Hz and three short period (SP) axes (one vertical, two horizontal) 
which are sensitive to the frequencies from about 0.1 to 50 Hz.

Before InSight, two SP seismometers were already landed on Mars with the 1976 Viking 1 and 2 missions 
(e.g., Anderson et al., 1977; Lognonné & Johnson, 2007). In contrast to InSight, both seismometers were 
mounted on the lander. While the Viking 1 seismometer did not work properly, the Viking 2 seismome-
ter picked up mostly vibrations from the lander owing to operation and wind sensitivity. The lander vi-
brations and non-ideal frequency-dependent sensitivity of the Viking SP sensor inhibited the detection of 
marsquakes and Viking did therefore fail to provide the unambiguous data for Martian seismic activity and 
subsurface structure studies.

Abstract Mars is the first extraterrestrial planet with seismometers (Seismic Experiment for Interior 
Structure, SEIS) deployed directly on its surface in the framework of the Interior Exploration using Seismic 
Investigations, Geodesy and Heat Transport (InSight) mission. The lack of strong Marsquakes, however, 
strengthens the need of seismic noise studies to additionally constrain the Martian structure. Seismic 
noise autocorrelations of single-station recordings permit the determination of the zero-offset reflection 
response underneath SEIS. We present a new autocorrelation study which employs state-of-the-art 
approaches to determine a robust reflection response by avoiding bias from aseismic signals which are 
recorded together with seismic waves due to unfavorable deployment and environmental conditions. 
Data selection and segmentation is performed in a data-adaptive manner which takes the data root-mean-
square amplitude variability into account. We further use the amplitude-unbiased phase cross-correlation 
and work in the 1.2–8.9 Hz frequency band. The main target are crustal scale reflections, their robustness 
and convergence. The strongest signal appears at 10.6 s, and, if interpreted as a P-wave reflection, would 
correspond to a discontinuity at about 21 km depth. This signal is a likely candidate for a reflection from 
the base of the Martian crust due to its strength, polarity, and stability. Additionally we identify, among the 
stable signals, a signal at about 6.15 s that can be interpreted as the P-wave reflection from the mid-crust at 
about 9.5 km depth.
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SEIS has been deployed on the ground of the Homestead hollow, 1.81 m south of the closest lander foot 
(Stutzmann et al., 2021). Homestead hollow is a degraded impact crater of about 27 m diameter in Elysium 
Planitia with a smooth sandy, granule- and pebble-rich surface with few rocks (Golombek et al., 2020). After 
leveling and functionality checks SEIS has been covered with a wind and thermal shield (WTS) to further 
protect the sensors from environmental factors such as laminar and turbulent winds which can reach about 
20 m/s, low atmospheric temperature down to below −100°C, daily temperature variability in the order of 
80°C and atmospheric pressure changes of a few Pa (Lognonne et al., 2020). The planetary boundary layer 
height is several kilometers in daytime conditions, in the nighttime its height collapses to a couple of 100 m, 
with turbulence switching from being thermally driven to being shear-driven under highly stable condi-
tions owing to surface radiative cooling.

In spite of these harsh conditions, 174 mostly small marsquakes (Giardini et al., 2020) have been identified 
until 30 September 2019 thanks to the sensitivity of SEIS and its careful deployment on the Martian surface. 
Nevertheless, due to the unfavorable deployment conditions different aseismic signals are being recorded 
together with events of the seismic origin (Ceylan et al., 2021; Lognonne et al., 2020; Scholz et al., 2020; 
Stutzmann et al., 2021). That is, the seismic recordings contain a wealth of features caused by operational 
activities at the lander, noise induced by the lander due to atmospheric perturbations as laminar and turbu-
lent winds, and artifacts caused by the response of the instruments to the variability of the severe climatic 
factors as pressure and temperature. Data processing requires therefore special care and adapted approach-
es to avoid any bias in the results and even misinterpretation of signals.

SEIS is a key instrument to reveal the internal Martian structure and to monitor its seismic activity. Howev-
er, the deployment of a seismometer at one single place limits the ample spectrum of seismological imaging 
and monitoring strategies to single-station approaches (e.g., Drilleau et al., 2020; Panning et al., 2015; van 
Driel et al., 2019). Prominent single-station methodologies are P- and S-wave receiver functions (e.g., Farra 
& Vinnik, 2000; Langston, 1979; Phinney, 1964; Vinnik, 1977; Yuan et al., 2006), noise and coda autocor-
relation functions (e.g., Buffoni et al., 2019; Claerbout, 1968; Galetti & Curtis, 2012; Pham & Tkalčić, 2017; 
Tauzin et al., 2019; Tibuleac & von Seggern, 2012), surface wave inversions (e.g., Drilleau et al., 2020) and 
Rayleigh wave ellipticity, and spectral ratio analyses (e.g., Berbellini et al., 2019; Hobiger et al., 2013; Naka-
mura, 1989; Yano et al., 2009).

So far, no unambiguous surface waves have been detected in the SEIS data (Clinton et al., 2020; Giardini 
et al., 2020; Stutzmann et al., 2021). The very shallow structure down to 20 m depth at the InSight landing 
site has been probed using the travel time of multiple hammer strokes of the HP3 (Heat Flow and Physical 
Properties Package) instrument and compliance observations (Kenda et al., 2020; Lognonne et al., 2020). 
The compliance approach employs seismic measurements of the surface deformation in response to pres-
sure loading by dust-devils. First average crustal seismic attenuation and scattering results have been ob-
tained from the body-wave coda shape of the best recorded marsquakes while first crustal layering has 
been inferred identifying body wave conversions in receiver functions (Lognonne et al., 2020). These results 
point to a crustal attenuation which is 3 times larger than on Moon and a highly variable upper crust layer 
of about 8–11 km thick with S-wave velocities of 1.7–2.1 km/s. The exact thickness of the crust is still the 
object of investigation, but receiver functions, event coda, and noise autocorrelation results suggest that the 
crust is either about 15–25 or 31–47 km thick (Knapmeyer-Endrun et al., 2021). Deng and Levander (2020) 
have also computed noise autocorrelations for Mars and observe persistent signals which they interpret as 
Moho, upper-mantle transition, and core-mantle boundary reflections. Their mantle signals have not yet 
been reproduced by other groups and can possibly be due to repeated glitches in the SEIS-data or interfer-
ence of lander resonances (Kim et al., in preparation). High-frequency autocorrelations (5–7 Hz) have been 
presented by Suemoto et al. (2020) who showed robust signals which indicate the presence of two shallow 
reflectors in the first hundreds of meters. Noise and Marsquake autocorrelations have been also presented 
by Compaire et al. (2021), who find stable autocorrelations with signals related to the crustal structure only 
during low-noise periods around 2.4 Hz.

In this study, we use the VBB SEIS data to further analyze noise autocorrelations through independent 
approaches. Special care is given to avoid imprints of aseismic signals and artifacts on the autocorrelation 
results. The main objective is to extract a stable and clean reflection response from the noise recordings. We 
focus on crustal scale signals from vertical component recordings within the 1–9 Hz frequency band, and 
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use differently selected subsidiary data sets. The data selection strategy is novel and we show that a stable 
noise response is built up within a few Martian days of the data and that it consists of several signals. Some 
of the signals are stable over a broad frequency band which makes them possible candidates for reflections. 
In any case, the autocorrelations are still difficult to interpret and possible ambiguities in the signal inter-
pretations are discussed.

2. Determination of P-Wave Reflection Response at SEIS
On Earth, seismic ambient noise correlations have been successfully used to map crustal scale discontinui-
ties (e.g., Becker & Knapmeyer-Endrun, 2018; Buffoni et al., 2019; Gorbatov et al., 2013; Kennett et al., 2015; 
Oren & Nowack, 2016; Romero & Schimmel, 2018; Ruigrok et al., 2011; Saygin et al., 2017; Taylor et al., 2016; 
Tibuleac & von Seggern, 2012). Strictly, the cross-correlation of a diffuse wavefield recorded at two sensors 
provides the Green's function (GF) at one of the sensors for a virtual source placed at the other sensor 
(Derode et al., 2003; Lobkis & Weaver, 2001; Snieder, 2004; Wapenaar, 2004, among others). When both re-
cordings are the same then the cross-correlation becomes an autocorrelation and provides a zero-offset GF. 
The high-frequency zero-offset GF is the reflection response which mainly consists of body wave primary 
reflections and multiples from seismic discontinuities beneath the station.

This principle has been presented already by Claerbout  (1968) for one-dimensional (1-D) media as he 
demonstrated that the full reflection response can be obtained from the autocorrelation of a plane wavefield 
which is transmitted from below the reflecting structure. Many years later, his finding has been extended 
to two-dimensional (2-D) and three-dimensional (3-D) acoustic and elastic media (e.g., Wapenaar, 2004).

The numerical determination of the zero-offset reflection response is based on the computation of auto-
correlations. For this purpose the continuous noise recordings are cut into short segments to compute the 
autocorrelations. Finally, the autocorrelations of all segments are being stacked to provide the reflection 
response. In practice, wave fields are generally not diffuse and the exact GF is unknown or only partly 
reconstructed. We therefore now refer to empirical GF (EGF) or reflection response rather than GF to em-
phasize its approximate character.

Note that outliers in the amplitudes of the data can affect correlation results and it is therefore common 
to preprocess the data before computing autocorrelations (e.g., Bensen et al., 2007; Schimmel et al., 2011). 
Different strategies exist to balance the amplitudes in the time and frequency domain. One-bit normaliza-
tion and spectral whitening are often employed methods (Bensen et al., 2007). A disadvantage of these ap-
proaches is that they reduce the information content of the signal in a non-unique manner which can cause 
a less efficient EGF extraction as shown in Schimmel et al. (2018). Here, we avoid amplitude normalization 
strategies by replacing the conventional cross-correlation and linear stack with the amplitude unbiased 
phase cross-correlation (PCC, Schimmel, 1999) and time-frequency phase weighted stack (tf-PWS, Schim-
mel & Gallart, 2007; Schimmel et al., 2011).

In the following, we highlight the main methods used to determine the reflection response at the InSight 
landing site and describe our data selection and processing.

2.1. Phase Cross-Correlation and Stacking

2.1.1. Correlations

The autocorrelation measures the self-similarity of a time series as a function of lag time. It is a special case 
of the cross-correlation where both time series are the same. There exist different strategies to measure the 
self-similarity of time series (e.g., Schimmel et al., 2018). Here, we employ the phase cross-correlation cPC-

C(τ) (PCC, Schimmel, 1999) which is based on the phase coherence of instantaneous phases as determined 
from analytic signal theory. PCC is expressed as follows:
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Φ(t) and Ψ(t) are the instantaneous phases of the two input time series, τ is the lag time of the second time 
series with respect to the first one, T is the length of the time window, and ν a parameter which permits to 
tune the sensitivity of the PCC.

eiΦ(t) is the envelope normalized analytic signal of the first time series. The analytic signal can be build with 
the Hilbert Transform and is a unique representation of a real-valued time series in the complex number 
space. PCC benefits from the fact that thanks to the analytic signal theory a real time series can be decom-
posed into an instantaneous phase and amplitude (envelope) function. PCC uses only the instantaneous 
phases and is therefore explicitly signal amplitude unbiased.

The phase autocorrelation is obtained using Φ(t) = Ψ(t). Further, we use ν = 2 since it permits to simplify 
the equations for fast computations (Ventosa et al., 2019). cPCC(τ) is, in analogy to a classical correlation, a 
real numbered functional with values ranging between −1 and 1. One of the main differences to the clas-
sical correlation is that waveform similarity is measured through the amount of phase-coherent samples 
rather than the sum of amplitude products.

2.1.2. Stacking

The obtained autocorrelations need to be averaged over larger time spans to achieve a stable noise response. 
Stacking data over larger time spans improve the azimuthal coverage of the noise wavefield and the cancel-
lation of cross terms (e.g., Medeiros et al., 2015; Snieder, 2004). Both are necessary conditions in seismic in-
terferometry. Here we employ linear stacks and tf-PWS (Schimmel & Gallart, 2007; Schimmel et al., 2011). 
The tf-PWS are based on the instantaneous phase coherence (in analogy to PCC) which is being measured 
in the time-frequency domain during stacking. The weights range between 0 and 1 to attenuate less coher-
ent signals in the time-frequency domain. Finally, linear stacks are weighted by the time-frequency phase 
coherence to build the tf-PWS.

The time-frequency representation of the data is obtained with the S-Transform by Stockwell et al. (1996) 
which is based on Fourier theory and frequency-dependent Gaussian-shaped windows. The obtained 
time-frequency representation can be made an analytic signal as shown in Schimmel and Gallart (2007) 
to enable the use of an instantaneous phase coherence measure which is the backbone of tf-PWS. Alterna-
tively, tf-PWS can be presented using the wavelet transform (Ventosa et al., 2017) to reduce redundancies 
and to increase computational efficiency. This modification is based on the fact that the S-Transform with 
Gaussian-shaped windows can be derived from the Morlet wavelet transform (Ventosa et al., 2008). Both 
strategies provide exactly the same result.

2.2. Data and Time Frame

The VBB SEIS data are recorded on three oblique axes. Data from the three axes are needed to build the 
vertical and horizontal components (Lognonne et al., 2019). For this study, we use vertical components, 
recorded from May 22, 2019 to June 30, 2020 at 20 samples-per-second and instrument corrected to ground 
velocity from 0.01 to 10 Hz. The correction is performed for the three oblique axes before rotation to the 
vertical and horizontal components. The late starting date has been chosen to avoid the initial deployment 
and testing phase. Key dates related to the seismic part of the mission are listed in Table 1.

As time frame, we employ the Local Mean Solar Time (LMST) throughout the entire study. The Martian day, 
called Sol, is about 40 min longer than a day on Earth with a Martian year being about 687 Earth days. Thus, 
using LMST is justified since the time on Mars differs from Earth time. The Martian dates, as usual in other 
missions, are defined as simple numerical counts using Sol 1 for the first significant Mars-day which for In-
Sight corresponds to November 27, 2018. The data used here are from Sol 172 (May 21, 2019 at 22:39:52.795) 
to Sol 567 (June 30, 2020 at 19:16:54.23). Our initial database has been obtained cutting the instrument-cor-
rected, vertical component records within every Sol into 7,400 s segments which overlap by 600 s.

2.3. Data Segmentation and Selection

We filter the seismic recordings to a broad frequency band, 1.2–9.8 Hz, and determine the relative RMS 
variability for sliding data windows. A maximum RMS variability threshold is then defined to obtain a mask 
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and to extract data segments with RMS variability below the threshold through a minimum time duration. 
We use this procedure to build subsidiary data sets which contain less data problems such as glitches and 
outlying amplitude events. The approach and the subsidiary data sets are described in the following.

The moving window RMS r is determined for window i and length N using
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where n stands for the time index and an for the seismic record. i marks the center sample of the sliding 
window. In a next step the relative variance s2 of the RMS amplitudes is computed during a second moving 
window analysis with window length M > N. The relative variance s2 of window j is expressed as

 



 

 


 






/2 2

/2
/22

2
/2

1with ,
( 1)

j M

i j j M
i j M

j j i
i j Mj

r R
s R r

MM R
 (3)

where Rj is the non-zero mean RMS amplitude within the analysis window j. We define the relative variance 
s2 as the variance divided by the square of the mean to obtain a dimensionless (scale invariant) measure-
ment of variability. This definition permits to compare data segments with variable RMS mean and to adjust 
to different seismic background noise levels which may happen along the Sol.

In a next step, data segments are determined with 2 2
js S , where S2 is a chosen maximum RMS variability. 

A new subsidiary data base is then built accepting only data chunks with time duration larger than a min-
imum time duration, say tmin.

Thus, the free parameters of this data selection and segmentation approach are the window length (N and 
M of Equations 2 and 3) and step intervals (i and j) for the two analysis windows, the maximum RMS-vari-
ability S2 and the minimum data segment length tmin.

On one hand, the analysis windows should be several times longer than the largest period as defined by 
the lowest corner frequency of the bandpass filter to warrant statistical significance. On the other hand, the 
windows should not be too long to permit tracking RMS-variability changes with time. Throughout this 
study, we used window length and step interval of 5 and 0.1 s for the sliding-window RMS measurements 
(Equation 2) and 20 and 1 s for the RMS-variability determination (Equation 3). Further, the shortest ad-
mitted data segment length (tmin) is 300 s and the chosen RMS-variability thresholds (S2) are 0.1 and 0.2. 
Using these parameters two subsidiary data sets have been set up which consist of data volumes of about 
3% (RMS-variability threshold 0.1) and 30% (RMS-variability threshold 0.2) of the total data base. In the 
following, we will refer to these data sets as the total or 100%, 30%, and 3% data sets.

Different other parameters have been tested. The thresholds on data segment lengths and RMS-variability 
have a direct influence on the amount of the selected data while varying the analysis window parameters 
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May 5, 2018 InSight launched from Vandenberg Air Force Base (California)

November 26, 2018 (SOL 0) Landing near Elysium Planitia at 4.5024°N, 135.6234°E

December 19, 2018 (SOL 22) Deployment of SEIS on Martian ground

February 2, 2019 (SOL 66) SEIS is covered by Wind and Thermal Shield (WTS)

May 19, 2019 (SOL 169) SEIS heating system has been switched on

August 28, 2019 (SOL 267) Start of Mars Solar conjunction, that is, no data transmission

September, 19, 2019 (SOL 289) End of Mars Solar conjunction, that is, start of data transmission

Abbreviation: SEIS, Seismic Experiment for Interior Structure.

Table 1 
Summary of Key Dates and Works Related to SEIS Deployment and Operation on Mars
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within reasonable bounds has a minor or insignificant impact on the subsidiary database. In any case, there 
exists a trade-off between the selected amount of the data and tolerance of RMS-variability changes. A fine 
tuning with the parameters may make sense for data sets where outlying noise is clearly separated from the 
rest of the data. In our case, aseismic noise exists at any amplitude level and therefore, it seems easiest to 
just analyze the results for more or less restrictive subsidiary data sets.

We expect that a small RMS variability is more compatible with a diffuse wavefield than a high RMS varia-
bility. A high RMS variability indicates non-stationarity due to transients (in time localized seismic or aseis-
mic signals) rather than intensity fluctuations in a diffusive wave propagation regime due to scattering and 
mode conversions. Thus, the benefits of this data selection approach can be multi-fold as we discard data 
segments with non-stationary noise, ballistic signals, artifacts, and instrument disturbances which may bias 
the noise correlation function and as the selected data are likely closer to the theoretical requirement of a 
diffuse wavefield. Our data selection based on RMS variability may also be useful for analyzing the Earth 
seismic data of poor quality containing many glitches or other artificial transient signals.

Examples of the data selection and segmentation procedure are shown in Figure 1. The top traces of Fig-
ures 1a–1c show seismic recordings with a duration of about 2 h. The start time of each trace is given in 
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Figure 1. Three data selection and segmentation examples. (a) The top trace shows the vertical component record 
with the selected segments in red. The two bottom traces are the normalized RMS and the relative RMS variability. The 
horizontal red line marks the threshold RMS variability used for the segment selection. The begin time (LMST) of the 
time series is written to the top left. (b and c) show the same as (a), but for different time records. More examples are 
shown in Figure S1 of the Supporting Information.



Earth and Space Science

the figure. The second and third traces of each panel are the corresponding RMS (ri) and RMS-variability 
(sj, Equations 2 and 3). The horizontal red lines mark the RMS-variability threshold (0.2) to find the data 
segments with low RMS-variability. Segments with a duration larger than tmin = 300 s are drawn in red and 
form part of the 30% data set.

It can be seen from Figure 1 that the selected red segments are data stretches with low-amplitude variability. 
That is, outlying amplitude signals have been avoided by the approach. Figure 1c also shows that segments 
with different amplitudes are selected inherent to the use of relative variance 2

js . Further examples are 
shown in Figure S1.

Figure 2a shows the evolution of the relative RMS variability as a function of Sol. Plotted are mean (red 
dots), one standard deviation uncertainty (gray bars), minimum, and maximum value (black triangles) per 
Martian-day. All these values stay stable until about Sol 450. From about Sol 450 a slight but systematic 
increase of the maximum and mean RMS variability is being observed. A more rapid increase of the mini-
mum RMS variability is evident from about Sol 500 to Sol 530. At the end of the analyzed period all values 
are increased with respect to the beginning of the studied period. The RMS variability increase correlates 
with a systematic increase in bad weather attributed to the start of local winter with more storms (Spiga 
et al., 2020). For example, Figure 2b illustrates the measured mean wind speed (red dots), its one standard 
deviation uncertainty (gray bars), and minimum and maximum wind speed as function of sol. It can be seen 
that the minimum wind speed increases fast from about Sol 500 on, which is in concordance with the rise 
of the minimum RMS variability caused by the presence of winds at the lander site at all times. The highest 
wind speeds and standard deviation values decrease from about Sol 420 which reflects that the wind char-
acteristics and distribution changed at the lander as also recorded by SEIS.

The just mentioned rise of RMS variability causes a decreased amount of the selected data toward the last 
analyzed Sols as also documented in Figure S2. This figure shows the LMST of the selected data segments as 
a function of Sol for the 30% and 3% data sets. It can be seen that most of the selected data segments are from 
the evening and morning hours. This is expected since lander and wind activity are low during the night. 
Still, glitches and other aseismic abrupt signals may happen during night which makes our data adaptive 
selection and segmentation approach different from any time dependent (e.g., day/night) selection. It is also 
seen that less data has been selected during the last 60 Sols owing to the increase of bad weather during 
this period.

The data segment length distribution for the 30% subsidiary data set is shown in Figure 3a. One third of 
the data segments has lengths smaller than 10 min. The number of segments decays quickly as a function 
of the segment length. Figure 3b illustrates a normalized RMS amplitude distribution. The vertical axis 
now shows the total time duration rather than the number of individual segments. The gray histogram is 
for the 100% data set while the red histogram corresponds to the 30% data set. The RMS normalization is 
the same for both data sets. The absolute RMS amplitude is not important here, but the comparison of both 
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Figure 2. (a) Evolution of seismic signal RMS variability as function of Sol measured on Z-component filtered from 1.2 to 9.5 Hz. Red dots and gray error 
bars mark the mean and one standard deviation uncertainty per Sol. Black triangles point to the minimum and maximum RMS variability encountered per 
Sol. (b) Wind speed as function of Sol. In analogy to the seismic signal RMS variability plot, red dots and gray bars mark the mean and one standard deviation 
uncertainty while black triangles point to the minimum and maximum RMS variability encountered per Sol.

0.0

0.1

0.2

0.3

0.4
re

l. 
R

M
S

200 300 400 500

Time [sol]a)

0

5

10

15

W
in

d 
[m

/s
]

200 300 400 500

Time [sol]b)



Earth and Space Science

histograms shows that the 30% data set consists mostly of small-amplitude segments. The 100% data set 
RMS amplitudes have been obtained for 2-h windows where each window likely contains sections of high 
RMS amplitude which influence the RMS of that data window. Conversely, the 30% data set is a subsidiary 
data set with variable window length as data stretches of high amplitude variability (which means high 
RMS) are excluded due to the data selection. This exclusion translates into a lowering of the RMS for the 
30% data set and explains the increased total time duration for small RMS.

2.4. Phase Autocorrelation Spectra for Selected Data Sets

The Fourier Transform of the conventional autocorrelation of a time series equals its energy spectral den-
sity (ESD) for a time series which have finite duration and are square integrable. In analogy to the ESD, we 
compute here the Fourier amplitude spectra of phase autocorrelations. The obtained spectra do generally 
not equal the ESD of the data as we use PCC to determine autocorrelations. Dissimilarities are often small 
and inherent to the different measure of signal coherence with each autocorrelation approach. However, 
outlying amplitude signals do not bias PCC which permits a fast convergence to the EGF and stable auto-
correlation spectra as shown in Schimmel et al. (2018).

Figure 4 shows the Fourier amplitude spectra of the linear stack of the phase autocorrelations using the 
100% (black line), 30% (red line), and 3% (blue line) data sets. The data have been band-pass filtered between 
0.8 and 9.5 Hz before computation of the autocorrelations. Different spectral lines and bumps are visible in 
these spectra. The spectral lines at integer frequencies are related to the “tick noise“ which is an aseismic 
signal caused by electrical coupling during the SEIS temperature acquisition at 1 sps (sample per second). 
The spectral amplitude bumps are related to lander modes and/or resonance of the seismic subsurface 
structure (e.g., Ceylan et al., 2021; Dahmen et al., 2021). The main bumps have been labeled along the spec-
trum for the 100% data set.

Bump 1 and spectral lines at integer frequencies appear to be enhanced in the data sets with less RMS am-
plitude variability, that is, for the 30% and specially 3% data sets. This is partly due to the attenuation of oth-
er signals and noise with higher RMS amplitude variability. The origin of bump 1 is still under investigation. 
It is centered at about 2.4 Hz and could be caused by the superposition of lander and structural resonances. 
The corresponding lander modes at bump 1 are expected to arise as a response of the solar array oscillations 
during laminar wind flow, that is, at wind speeds below about 3 m/s. This may explain why this bump 1 
appears to be enhanced for the data sets with less RMS amplitude variability. Conversely, bumps 2–6 are 
systematically attenuated in the 30% and 3% data sets. These data sets consist mostly of seismic recordings 
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Figure 3. (a) Histogram of segment length distribution for the 30% subsidiary data set. The inset is a zoom for segment length between 30 and 130 min. 
Vertical axis contains the number of segments in percentage while horizontal axis shows the segment length in minutes. (b) Histogram of normalized RMS 
distribution for the 100% (gray) and 30% (red) data sets. Vertical axis is cumulative time in hours and horizontal axis is the base 10 logarithm of the normalized 
RMS distribution. The increase of cumulative time for the subsidiary data set with respect to the total data bases is due to the RMS variability and data 
segmentation.
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during the local evening hours (Figure S2) which is when there are less wind and less air pressure pertur-
bations (e.g., Lognonne et al., 2020; Stutzmann et al., 2021). Bumps 2 to 6 correspond to resonances that are 
related to different lander modes which are mostly excited by turbulent winds above a threshold speed of 
about 3 m/s (Dahmen et al., 2021). In the following we will work in the 1.2–8.9 Hz frequency band to avoid 
resonances at 1 and 9 Hz.

2.5. Attenuation of Tick Noise, Lander, and Shallow Structure Resonances

Figure 5a shows vertical-component phase autocorrelations stacks as a function of the autocorrelation lag 
time and recording date. The entire data set has been used without any selection criteria, cut into 2-h data 
segments and frequency band passed between 1.2 and 8.9 Hz before computation of the phase autocorre-
lations. The autocorrelations have been stacked linearly for recording dates within non-overlapping sliding 
3-Sol data windows. In this figure, the positive amplitudes have been filled with red color and the positively 
correlated signals seen at every full second are tick noise (Figure 5a). We have chosen a window at large lag 
time to avoid the interference with reflections from shallow discontinuities to permit a visual judgment on 
the tick noise attenuation. Throughout this work, time is increasing downward as generally done in the field 
of seismic exploration since travel time is a proxy of depth.

The tick noise is caused by electro-magnetic coupling during the SEIS temperature acquisition at 1 sps with 
a recorded waveform which does not resemble an impulsive signal (Compaire et al., 2021). On vertical com-
ponents and within the here considered frequency band, most of its energy is at 4, 7, and 2 Hz (Figure 4).

Recorded tick noise and lander modes may interfere with seismic weak-amplitude reflections and should 
ideally be removed from the data to warrant the detection of weak amplitude reflections. Similarly, struc-
tural resonances should also be attenuated as their dominant signals may impede the detection of weak 
amplitude reflections. Structural resonances are caused by seismic energy which is trapped in a shallow 
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Figure 4. Normalized Fourier amplitude spectra of autocorrelation stacks based on phase cross-correlation and 
linear stacking. Black, red, and blue lines show the spectra for the total data set, the 30% and 3% subsidiary data sets, 
respectively. Italic numbers 1–6 mark features discussed in the main text.
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subsurface layer due to strong impedance contrasts at the limits of the layer. Only little energy leaks to 
deeper layers which therefore can inhibit the imaging of deeper structures with frequencies in the structural 
resonance band.

Here, we attenuate the tick noise together with other resonances using band-rejection filters. First, we try 
two band-rejection filters (3.9–4.4 Hz and 6.8–7.2 Hz) to remove the two strongest tick noise peaks at 4 
and 7 Hz and neighboring lander modes (bumps 4 and 6). Figure 5b shows in full analogy to Figure 5a the 
autocorrelations after the application of the two just mentioned band-rejection filters. Bump 3 has not been 
included into the first rejection band since this signal is already attenuated for the 30% data set (Figure 4, 
middle panel).

It can be seen from Figure 5b that there exist still some lower-frequent tick noise which justifies employing 
a third band-rejection filter from 1.9 to 2.5 Hz. The resulting autocorrelation section Figure 5c is finally not 
dominated by tick noise anymore. Besides, the data has been cleaned from other resonances (bumps 1, 4, 
and 6).

An alternative approach is to measure the tick waveform through stacking of 1 s data segments for sub-
sequent subtraction from the data (Compaire et  al.,  2021). Here we chose a different and independent 
approach to further show stability in our results.
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Figure 5. (a) Vertical-component autocorrelation stacks for sliding 3-Sol data windows. The frequency band is 1.2–8.9 Hz, data windows do not overlap, 
and positive amplitudes are in red. Shown are linear stacks of phase autocorrelations for the entire data set at lag time without reflections from shallow 
discontinuities. The tick noise are the positive amplitude signals at every full second. (b) Same as (a), but two band-rejection filters, 3.9–4.4 Hz and 6.8–7.2 Hz 
have been applied before computation of the phase autocorrelations. (c) Same as (b), but the data have been filtered with a third band rejection filter 1.9–2.5 Hz. 
See Figure S3 for another example employing the 3% data set and time-frequency phase weighted stack.
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3. Reflection Response and Interpretations
Figure 6 shows autocorrelations computed using PCC and stacked with the tf-PWS approach. The employed 
seismic recordings belong to the 30% data set. We bandpass filtered these data from 1.2 to 8.9 Hz and applied 
the three band-rejection filters explained in the previous section. The autocorrelations have been stacked 
within non-overlapping 3-Sol windows and negative amplitudes are plotted in blue. Note that P-wave re-
flections at seismic discontinuities with an impedance increase are expected to have negative amplitudes. 
The autocorrelation section of Figure 6 has been split into three lag-time windows to apply an independent 
amplitude normalization in each window for visual purposes. The earliest lag time starts at 5 s as the first 
seconds are dominated by zero-lag autocorrelation sidelobes (e.g., Romero & Schimmel, 2018; Ruigrok & 
Wapenaar, 2012). The amount of stacked data is shown to the top of each autocorrelation. The maximum 
duration of the data used per autocorrelation is about 1 Sol rather than 3 Sol which is the length of the data 
window. This is because of the applied data selection which reduced the data used here to about 30%. The 
corresponding linearly stacked autocorrelation section is displayed in Figure S4 of the Supporting Informa-
tion. As also shown further below, the tf-PWS approach provides cleaner results as incoherent signals and 
noise have been attenuated during the stacking.

The autocorrelation section of Figure 6 contains signals repeated on most autocorrelations at specific lag 
times. These signals are stable as they show up for independent autocorrelations along the entire analyzed 
time interval. One of the most outstanding signals is seen at about 10.6 s. We measured its lag time on the 
individual autocorrelations (Figure 6) and determined a mean lag time and standard deviation of 10.612 
and 0.054 s, respectively. Similar values are found for the 100% (10.627 s, 0.061 s) and 3% data sets (10.63 s, 
0.04 s) using the processing of Figure 6. Standard deviations are in the order of the 0.05 s sample interval. 
If we interpret this arrival as a P-wave reflection and assume an average crustal P-wave velocity of 4 km/s 
then the reflector is expected to be at about 21 km depth. Note that the assumed average P-wave velocity 
is slower than for Earth as indicated by receiver function inversions (Knapmeyer-Endrun et al., 2021; Log-
nonne et al., 2020).

As the raw data consists also of different other aseismic signals, an autocorrelation signal is not a synonym 
of a seismic reflection. Some of the signals are expected to be part of the seismic reflection response while 
other signals can be due to any coherent and repeated feature in the data or due to beating of resonating 
frequency components from the lander. Resonances with slightly different frequencies f1 and f2 > f1 cause an 
interference pattern (wellknown in music) with beat frequency fb = f2 − f1 (e.g., Kinsler et al., 1999). That is, 
the addition of two cosine waves of different frequency is equivalent to a cosine wave with carrier frequency 
0.5(f1 + f2) whose amplitude varies at the frequency 0.5(f2 − f1). The envelope modulation, in the sense of 
intensity of the wave, oscillates at fb = f2 − f1 and is in music the frequency at which beats are heard. The 
beats of the interfering signals manifest in time-domain autocorrelations as distinct and repeating signals 
of maximum amplitude at lag times tn = n/fb with n ∈ N which bring the beats to overlap. Similarly, glitches 
or other signals which are repeated systematically with the same time interval are expected to show up in 
autocorrelations at lag time which corresponds to the time separation of the repeated features.

Indeed, the interpretation of autocorrelations without any further a priori information is difficult. However, 
receiver function studies of marsquakes (Knapmeyer-Endrun et al., 2021; Lognonne et al., 2020) provide the 
first a priori information of the underlying structure and expected crustal-scale P-wave reflections on Mars. 
In this respect, the strong arrival at 10.6 s lag time interpreted as a P-wave reflection seems to be consistent 
with P-to-S wave conversions observed with receiver functions (Knapmeyer-Endrun et al., 2021). Indeed, 
the 10.6 s signal is quite robust and a likely candidate for a P-wave reflection from the crust-mantle bound-
ary. Note that Compaire et al. (2021) also report a signal at 10.6 s using a different approach.

The 10.6 s signal is discernible in linear and tf-PWSs of the three data sets as shown in Figure 7. This figure 
contains the linear stacks in black and the tf-PWSs in red for all autocorrelations from the 100% (top traces), 
30% (middle traces), and 3% (bottom traces) data sets. The traces have been normalized by their RMS am-
plitudes measured between 8 and 20 s lag time. Further, amplitudes are clipped during the first seconds to 
favor the visibility of later arriving signals. It can be seen that the 10.6 s signal is visible with amplitude of 
about twice the amplitude of neighboring signals and noise. Its shape resembles more a zero-phase wavelet 
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Figure 6. Vertical-component autocorrelation stacks for sliding 3-Sol data windows. The frequency band is 1.2–8.9 Hz 
and data windows do not overlap. Shown are time-frequency phase weighted stacks of phase autocorrelations 
computed for the 30% data set. Blue marks negative amplitudes. The three lag-time windows have been used to improve 
the visibility through independent amplitude normalization. Top panel shows the total duration of the selected data 
used to compute autocorrelations within each of the 3-Sol data windows. Linear stacks for the same data are shown in 
Figure S4.
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than a wave train. The direct comparison of the stacks also shows that the 
tf-PWS approach provides cleaner autocorrelations through the attenua-
tion of incoherent signals and noise.

3.1. Convergence

We now look at the convergence of autocorrelation stacks toward a stable 
seismic noise response. In seismic interferometry, the minimum amount 
of data needed is controlled by the cancellation of noise-cross terms (e.g., 
Snieder, 2004) and the abundance, distribution, quality, and duration of 
signals to build up a stable EGF.

Under the assumption of stationarity and minimum frequency of 1 Hz, 
cross-terms cancel out within the confidence level ϵ ≈ 0.01 after about 3 h 
(Equation 9 in Medeiros et al., 2015). The SEIS data are highly variable 
and the assumption of stationarity is not valid. Nevertheless, the estimat-
ed 3 h can be taken as a guide value. This value is shorter than the used 
data length of each autocorrelation shown in the figures for the 30% and 
100% data sets.

The total data length needed to extract a robust reflection response can be estimated by a convergence 
analysis. In this approach the evolution of autocorrelation stacks of random subsidiary data sets is being 
inspected as function of amount of data used for the autocorrelations in each of the stacks. For this purpose 
the individual autocorrelation stacks are being compared with a reference waveform obtained by stacking 
all available data. The waveform similarity of the two stacks can be determined with the zero-lag cross-cor-
relation of the two time-series. Here, we employ PCC and the geometrically normalized cross-correlation 
(CCGN, e.g., Schimmel, 1999). The reference traces are those shown in Figure 7.

There exist different data sampling strategies to draw the random autocorrelation stacks. We tested two 
strategies, random sampling without replacement and Bootstrapping which uses random sampling with 
replacement (Efron & Tibshirani, 1986). Without replacement means that no autocorrelogram is used more 
than one time in a draw. We repeated the random drawing 40 times to enable the determination of mean 
and standard deviation for the similarity to the reference waveform.

Figure 8 and Figure S5 demonstrate our results using the Bootstrapping resampling, PCC, and CCGN, re-
spectively, to measure waveform similarity in moving windows of 0.5 s length. The 30% data set has been 
used for Figures 8a and 8b. Figure 8a shows the waveform similarity while Figure 8b contains the standard 
deviation of the similarity. The similarity (red line) and corresponding standard deviation (gray error bars) 
at 10.6 and 19.5 s are shown in Figures 8c and 8d. Nineteen and five tenths seconds has been chosen arbi-
trarily for comparison. A plateau in the similarity curve means that stacking more autocorrelations is not 
changing significantly the waveform similarity. The figures illustrate that the 10.6 s signal converges faster 
than a signal at 19.5 s lag time. Using CCGN (Figure S5) an apparent overall faster waveform similarity is 
measured than using PCC. This is expected as PCC is the more waveform sensitive measure due to the em-
ployed instantaneous phase coherence.

From Figure 8a and Figure S5a we also observe that signals at shorter lag time tend to converge faster than 
signals at larger lag time. For a P-wave reflection response a larger lag time means longer wave paths owing 
to a deeper discontinuity or multiple reverberation. Such signals may need more data to stabilize in the EGF 
since the corresponding waves are more susceptible to the different types of attenuation.

A comparison of the similarities for the 100%, 30%, and 3% data sets is shown in Figures 8e and 8f and Fig-
ures S5e and S5f. It can be seen that slowest signal convergence is achieved using the 100% data set (black 
curves). This means that a high amplitude variability is not contributing significantly to the extraction of 
the EGF. Note that this result does not change when using only the data until Sol 410. That is, the increasing 
RMS variability after Sol 450 (Figure 2) is not causing the slower convergence.

The 3% and 30% data sets seem to provide more similar results. The 3% and 30% data sets have a total 
length of 151.8 and 1557.1 h. The 3% data set results are therefore obtained with a higher replacement rate. 
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Figure 7. This figure shows the stacked autocorrelations for the 100% 
data (top panel), 30% data (middle panel), and 3% data (bottom panel). The 
linear stacks are plotted in black and the corresponding time-frequency 
phase weighted stack in red. The amplitudes of each stack have been 
normalized for visual purposes. The 10.6 s signal (marked by an arrow) 
appears with in impulsive shape for the three data sets and stands out from 
its immediate surroundings.
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Figure 8. (a) Autocorrelation waveform convergence as function of lag time and total length of data using the 30% data set. Colors are used to contour the 
mean similarity of randomly stacked autocorrelations with the reference trace. The reference trace is the linear stack of all autocorrelations from the 30% 
data set (black trace, middle panel of Figure 7). The total data length is 2350.2 h. (b) Standard deviation of the similarity shown in (a). (c) Similarity (red) 
and standard deviation (gray) of the 10.6 s signal for the 30% data set. (d) Same as (c) but for a signal at 19.5 s lag time. (e) Same as (c) but showing also the 
results for the 3% (blue) and 100% data sets (black). The reference traces are based on a total data length of 201.2 and 8355.6 h for the 3% and 100% data sets, 
respectively. (f) Same as (e) but for the 19.5 s signal.
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Drawing the random data sets without replacement (not shown here) illustrates that the similarity curves 
for the 3% and 30% data are still more similar than for the 100% data set.

3.2. Stability of Reflection Response Over Time

The autocorrelations for the three data sets are shown in Figure 9. The only differences to Figure 6 are the 
respective data sets (from left to right: 100%, 30%, and 3%) and the use of non-overlapping 30-Sol windows 
rather than 3-Sol windows. The top panels show the amount of the data used for each of the stacks. The 
vertical axes need to be multiplied by 0.3 and 0.03 to obtain the duration in Sol for the 30% and 3% data sets. 
30-Sol windows have been employed to reduce the number of autocorrelations to permit a comparison of 
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Figure 9. Vertical-component noise autocorrelation stacks for sliding 30-Sol data windows. The frequency band is 1.2–8.9 Hz and data windows do not 
overlap. Shown are time-frequency phase weighted stacks of phase autocorrelations. Blue marks negative amplitudes. The three lag-time windows have been 
used to improve the visibility through independent amplitude normalization. The top panel shows the total duration of the selected data used to compute 
autocorrelations within each of the 30-Sol data windows. The axis for the duration of the 30% and 3% data set are scaled by the number to the top left. Linear 
stacks for the same data are shown in Figure S6.
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the three autocorrelation sections at one glance. A welcomed side effects is that these autocorrelations are 
more robust resulting from the increased amount of the data used in each of the stacks. The corresponding 
linear stacks are demonstrated in Figure S6 for completeness.

The most striking observation is that the 100% autocorrelations show systematically changing noise re-
sponses, that is, the autocorrelations from about Sol 450 toward the end of the section look different with 
respect to the autocorrelations obtained for the first Sols. This variability is likely due to changing climatic 
conditions with stronger storms and corresponding responses of the lander. In fact, the statistical properties 
of the seismic recordings start to change simultaneously at about Sol 450 as testified with the observed daily 
RMS variability shown in Figure 2. In contrast to the 100% data, the 30% autocorrelations (middle panel 
of Figure 9) show stable signals for all Sols. This is because the RMS variability threshold retained most of 
the seismic recordings with imprints of climate and lander response variability. This result reinforces that 
a thorough data selection is essential to warrant a minimum influence of aseismic signals which may bias 
any autocorrelation result. In this respect, a data adaptive approach is better than simply selecting the data 
through LMST slots.

Amplitude spectra of the just discussed autocorrelations are shown in Figure 10. The amplitudes have been 
normalized at 6 Hz for visual purposes. Spectra for linearly stacked autocorrelations are shown in Figure S7 
for comparison. It can be seen from both figures that the 100% data set suffers at about 3.8 Hz and Sols larger 
than 500 from energy which appears at the corner of one of the applied band-rejection filters. These signals 
are more pronounced in the spectra of the linear stacks and are likely lander resonances in response to the 
bad weather. Amplitude spectra for linearly stacked autocorrelations computed for data without application 
of band-rejection filters (Figure S8) reveal that the strongest amplitude changes indeed occur around 4 Hz. 
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Figure 10. Amplitude spectra of time-frequency phase weighted stack autocorrelations shown in Figure 9 as function of Sol for the 100% (left panel), 30% 
(middle panel), and 3% (right panel) data sets. Each amplitude spectrum is placed at its window center time and has been normalized at 6 Hz. Spectra of linear 
stacks are shown in Figure S7.
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Broader band-rejection filters could attenuate these signals, but unnecessarily reduce the band width of the 
autocorrelations for the data recorded before Sol 450.

As expected from the time-domain autocorrelations of Figure 9 the corresponding spectra (Figure 10) for 
the 30% and 3% data sets show less variability than for the 100% data set. The strongest resonances have still 
been attenuated by the data selection approach and three band-rejection filters.

3.3. Stability of Reflection Signals Over a Broad Frequency Band

Finally, seismic signals related to structural discontinuities are expected to be detected for a rather broad 
than narrow frequency band, that is, possible frequency-dependent reflectivity generally varies smoothly. 
Besides, at small lag time, sidelobes of the zero-lag autocorrelation peak may affect early structural arrivals. 
The autocorrelation sidelobes are caused by the autocorrelation of the noise source time function (e.g., 
Ruigrok & Wapenaar, 2012) and are expected to change faster with frequency than a reflection pulse (see 
Figure 6 in Romero & Schimmel, 2018).

We therefore inspect the signal stability across different frequency bands. The first three panels in Figure 11 
show autocorrelations for the 30% data set and different one-octave frequency bands. From top to bottom 
these are 1.5–3.0 Hz, 2.4–4.8 Hz, and 3.6–7.2 Hz. The effective bandwidth, nevertheless, is smaller than an 
octave owing to the employed band-rejection filters. The tf-PWS of all autocorrelations is illustrated in red 
while the black lines show tf-PWSs of 10% randomly drawn autocorrelations. The fourth panel shows the 
red color stacks of the top three panels plotted on top of each other. The lowermost panel contains the tf-
PWS (red line) and linear stack (blue line) for the wide 1.2–8.9 Hz band.

It can be seen from this figure that some signals are persistent or in a phase along different frequency 
bands. Labels a-f mark some of these signals at lag times of 6.15, 6.85, 8.66, 10.6, 16.85, 23.8, and 24.49 s. 
The dashed vertical lines have been added to aid the visual inspection. Signals a and c are not seen for the 
lowest frequency band and have therefore been marked at the base of the figure. None of the signals is being 
observed for only one frequency band. For example, signal b is in phase for the three frequency bands while 
signal d is in phase for the two lower bands. The latter signal, however, appears only in the middle frequency 
band as a clear signal. It is seen from the top two panels that the amplitude maxima of signal d are not co-
herent while its minimum amplitude occurs at the same lag time to build up the observed negative polarity 
when filtering over a broader frequency band. Features a and c are in phase for the two higher frequency 
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Figure 11. Vertical-component noise autocorrelation stacks for the 30% data set. Time-frequency phase weighted 
stacks (tf-PWSs) are shown in red and black. Red traces are based on the entire 30% data set while black traces mark 
stacks for only 10% of the data. Lag-time windows correspond to those of Figure 6 and have been chosen to improve 
signal visibility. The first three panels are for 1.5–3.0, 2.4–4.8, and 3.6–7.2 Hz band-passed filtered noise. The fourth 
panel compares the stacks from the top three panels. The lowermost panel shows the linear stack (blue line) and tf-PWS 
(red line) for the frequency band 1.2–8.9 Hz. Arrows mark signals which are stationary over a broader frequency band 
as mentioned in the text. Signals a and d could be reflections from the mid-crust and base of the crust.
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bands. Signals e and f are also in phase and show also up as slightly distinctive features in the 1.2–8.9 Hz 
correlations. e and f are less impulsive as d, that is, in the 1.2–8.9 Hz correlations they seem to be part of 
a larger waveform. F has been marked twice, at the first minimum amplitude and 0.6 s later at the lowest 
minimum. We use only one letter, as it is not clear if this are several signals which arrive at a similar time.

In any case, a visible interference of zero-lag sidelobes or their misinterpretation is not expected owing to 
the stationarity of these signals over a broader frequency band (Romero & Schimmel, 2018). That is, ze-
ro-lag sidelobes are expected to be shifted in time for different frequency bands while reflections from sharp 
discontinuities appear at the same time lag.

4. Discussion and Conclusion
The 10.6 s signal, if interpreted as P-wave reflection, would point to a discontinuity at about 21 km depth 
considering expected Mars's crustal average seismic velocities of 4 km/s. We observe the 10.6 s signal ro-
bustly on the 100%, 30%, and 3% data sets with amplitudes which can reach twice the amplitude of other 
nearby signals and noise. The shape of the waveform resembles more a zero-phase wavelet with negative 
polarity than a wave train. The negative polarity is consistent with a reflection from a discontinuity with a 
seismic impedance increase while the wavelet shape can be explained by a sharp discontinuity and lack of 
other interfering signals as reflections from strong nearby discontinuities.

Indeed, the 10.6 s signal is a likely candidate for a reflection from the base of the crust owing to its two-way 
travel time, negative polarity, strengths, and robustness. Energy at similar lag time has also been reported 
by Deng and Levander (2020) and Compaire et al. (2021) and interpreted as P-wave Moho reflection. Com-
paire et al. (2021) also observe energy on autocorrelations for the North components in the frequency band 
around 2.4 Hz which could be S-wave reflections from the same discontinuity if one assumes a P-to-S wave 
velocity ratio of 2.1.

The 10.6 s signal seems to be consistent with models obtained for receiver functions from the marsquake 
data (Knapmeyer-Endrun et al., 2021; Lognonne et al., 2020). Knapmeyer-Endrun et al. (2021) present two 
model families resulting from receiver function inversions where the 10.6 s signal can be explained either 
as a P-wave Moho or internal crustal discontinuity reflection. More events from different distances or other 
geophysical constraints are needed to further limit the model space and to aid the identification of autocor-
relation signals. We prefer the first model class which can explain the 10.6 s signal as a Moho reflection since 
we observe no other, at least equally strong signal at a later time to explain a deeper Moho. This is based on 
the assumption that the crust-mantle boundary is stronger than a mid-crust discontinuity.

The seismic data acquisition conditions are harsh on Mars and there exist a wealth of different aseismic sig-
nals (Ceylan et al., 2021; Lognonne et al., 2020; Scholz et al., 2020; Stutzmann et al., 2021) which also may 
show up on autocorrelations (Kim et al., in preparation). For instance, regularly repeated glitches (long du-
ration pulses typically with frequencies below 1 Hz) and donks (short duration pulses typically at frequen-
cies above 8 Hz, Ceylan et al. 2021) with similar waveforms can manifest, depending on their abundance 
and coherence, at their repeat time. To attenuate the effect of glitches and donks, Deng and Levander (2020) 
determine the absolute mean amplitude in moving data windows of 100 s length which then are used to 
weight the seismic data (e.g., Bensen et al., 2007). Finally, they observe at 11.5 s a signal which appears 
robustly on their Martian daytime and night-time data and which they interpret as Moho P-wave reflection.

Conversely, Compaire et al. (2021) removed the tick noise and attenuated glitches using an algorithm by 
Scholz et al.  (2020). High-frequency components of glitches remain in the data and the algorithm does 
not remove donks. Overall, they use data recorded during the evening hours for which autocorrelations 
have the highest signal-to-noise ratio (SNR) and find a signal at 10.6 and at 21 s ,which they interpret as 
reflections from crustal layers. They also show that glitches cannot interfere with these reflections as they 
are separated by more than 30 s. The repeat time of donks, however, can be much smaller with maximum 
at about 10 s around 17–18 h LMST (Compaire et al., 2021). The authors argue that the observed stability 
of the 10.6 s signal with time is not correlated with the overall distribution of donks, which finally makes a 
donk origin of these reflections unlikely.
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Here, we use a different data processing strategy. For instance, we do not de-glitch the records as high 
frequency glitch signatures seem to remain in the cleaned data. Further, we refrain from selecting data by 
choosing fixed time slots and design a data-adaptive approach to segment and pick seismic records based on 
their RMS amplitude variability. Our 30% and 3% data sets have been built selecting stretches of data with 
low RMS variability which also led to an attenuation of most lander resonances as seen from the spectra in 
Figure 4. We further attenuated strong resonances using three band-rejection filters (1.9–2.5, 3.9–4.4, and 
6.8–7.2 Hz). These band-rejection filters were also chosen to remove jointly the strongest components of 
the tick noise.

Our data selection procedure is expected to avoid large amplitude donks and glitches and should be less 
affected by aseismic features, which are related to bad weather lander and SEIS responses. However, small 
amplitude donks which do not affect the ,RMS variability can still be present in the selected data. Concern-
ing the 10.6 s signal, a donk origin would require a sharp repeat time distribution of opposite polarity donks 
to explain the negative correlation peak and zero-phase shaped wavelet. A smooth distribution of donks 
is expected either to cancel out or to produce wave train shaped signals at lag times which correspond to 
their repeat times. In any case, at present we are not aware of hidden donks, but can also not rule out their 
existence.

Finally, large amplitude donks and glitches do not seem to have a dominant imprint on the autocorrelations 
as can be seen by comparing the autocorrelation sections for the 100% and 30% data sets (Figure S9). This is 
because randomly distributed or incoherent glitches and donks, as well as other outlying signals and noise 
do not affect the amplitude unbiased PCC. Therefore, PCC is an adequate approach for the data from unfa-
vorable deployment and detection conditions as shown in Schimmel et al. (2018).

Another source of aseismic signals can be beats produced through interfering resonances (Kinsler 
et al., 1999). Beats can manifest in autocorrelations at lag time, which equals the inverse of the difference 
in frequency of the two resonances and multiples. That is, a 10.6 s autocorrelation signal could be due to 
a 0.094 Hz beat. The 10.6 s signal does not show a seasonal variability and would therefore require stable 
resonances throughout the analyzed data. We believe that the autocorrelations are not dominated by strong 
beats as the main lander resonances have been attenuated through rejection filters and data selection on fre-
quency band pass filtered data. Still, the presence of weak amplitude beats in the data cannot be ruled out.

Further, the fast convergence of the 10.6 s signal which can be extracted with about 2 Sol of the data is 
remarkable. There are no oceans on Mars, and all seismic energy is supposed to be released by weak mag-
nitude events (the largest observed Marsquake has a magnitude of 4; Clinton et  al.,  2020) and through 
atmospheric phenomena. In spite of the absence of strong sources, the low level of natural Martian noise 
(Lognonne et al., 2020) may favor the detectability of low-amplitude signals and therefore aid the conver-
gence of the reflection response.

We focused the discussion on the 10.6 s signal, as it appears to be a likely candidate for a reflection from the 
base of the crust. Nevertheless, the obtained reflection response contains also other signals which likely are 
reflections and multiples from other discontinuities. Some of them have been marked in Figure 11 (labels 
a to f) owing to their appearance over a broader frequency band. The lag times are 6.15, 6.85, 8.66, 10.6, 
16.85, 23.8, and 24.49 s. Specifically for the earlier arrivals the frequency stability is an important criterion 
to avoid misinterpretations or interferences with zero-lag autocorrelation sidelobes as shown in Romero 
and Schimmel (2018).

Concerning inter-crustal discontinuities, receiver function studies (Knapmeyer-Endrun et al., 2021; Log-
nonne et al., 2020) provide stable estimates on a discontinuity at about 8–11 km depths with S-wave veloc-
ities Vs of about 1.7–2.1 km/s. If we assume a mean discontinuity depth of 9.5 km and that our signal a at 
6.15 s lag time (Figure 11) is a reflection from this discontinuity then the expected P-wave velocity Vp and 
Vp/Vs ratio for the 9.5 km layer are 3.1 km/s and 1.48–1.82 considering the Vs range. Under same assump-
tions, the close by signal b at 6.85 s lag time, would lead to Vp = 2.8 km/s and Vp/Vs ratio of about 1.33–1.65. 
We believe that signal a provides a more realistic Vp/Vs ratio than signal b and could therefore likely be the 
reflection from the base of the upper crust layer. The lower Vp/Vs bound of 1.48 is very low with respect 
to expected values. For comparison, the Vp/Vs ratio for the very shallow regolith layer has been estimat-
ed to 1.67 (Lognonne et al., 2020). Nevertheless assuming the upper bound of 11 km for the intercrustal 

SCHIMMEL ET AL.

10.1029/2021EA001755

19 of 22



Earth and Space Science

discontinuity (Knapmeyer-Endrun et al., 2021; Lognonne et al., 2020) and our 6.15 s lag time leads to a more 
realistic Vp/Vs range of 1.7–2.1 based on the Vs values estimated from receiver functions.

Finally, the estimated lag time dependent convergence of the autocorrelations shows that more data are 
needed to build the reflection response at later lag times. This makes sense, as waves propagating over a 
longer time interval are more prone to scattering and attenuation which needs to be compensated by stack-
ing more autocorrelations. In any case, we see no reason for aseismic signals to show a systematic lag time 
dependent convergence.

Data Availability Statement
We acknowledge NASA, CNES, their partner agencies and Institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, 
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providing SEED SEIS data. Seis raw data are available at https://doi.org/10.18715/SEIS.IN,SIGHT.XB_2016. 
Processed data corresponding to this article are in Schimmel et al. (2021). PCC and tf-PWS software are 
available at http://diapiro.ictja.csic.es/gt/mschi/SCIENCE/tseries.html#software. Figures have been done 
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