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Two-dimensional temperature mapping of laser-heated diamond anvil cell samples is

performed by processing a set of four simultaneous images of the sample, each obtained

at a narrow spectral  range in the visible to near-infrared. The images are correlated

spatially, and each set of four points is fit to the Planck radiation function to determine

the temperature and the emissivity of the sample, using the gray body approximation. The

method is tested by measuring the melting point of Pt at 1 bar, and measuring laser-

heated Fe at 20 GPa in the diamond anvil cell. The accuracy and precision are shown to

compare well to standard spectroradiometry, and the effect of imaging resolution on the

measured distribution is evaluated. The principal advantages of the method are: 1) the

temperature and emissivity of the sample are mapped in two dimensions; 2) chromatic

aberrations are practically eliminated by independent focussing of each spectral band;

and 3) all of the spectral images are obtained simultaneously, allowing temporal

variations to be studied. This method of measuring temperature distributions can be

generalized to other hot objects besides laser heated spots.
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INTRODUCTION

Proper characterization of material properties and chemical reactions under high

pressure, high temperature conditions requires that the pressure, temperature conditions,

and their gradients, be accurately and precisely known. Understanding the nature of these

thermodynamic gradients has always been one of the most significant challenges facing

high-pressure experimentation. In general, technical considerations require that as the

pressure and temperature increase, the gradients in these quantities also increase. A good

example of this principle is the laser-heated diamond anvil cell, in which typical sample

dimensions are on the 101 micron scale, and the temperature gradients can reach ~102

K/µm. The diamond cell has become the instrument of choice for obtaining high

pressures (> 25 GPa) under static conditions, because of its simplicity of use, robustness

of design, and the optical access afforded by the diamond anvils. Furthermore, to obtain

the simultaneous high-pressure, high-temperature studies that are essential to geophysics

and geochemistry, laser heating has emerged as the dominant method of attaining

temperatures above 1500 K in diamond cell samples. Temperatures in laser heating are

usually measured using spectroradiometry [1].

A significant drawback to the laser heating method is the unavoidable, strong

temperature gradient. Typical laser-heated spot diameters are 25-50 µm, even with 50-

100 W lasers, because the high thermal conductance of the diamond anvils requires very

high power densities on the sample surface. Several strategies are commonly used to

address this problem. One is simply to acknowledge the large uncertainty in temperature;

many experiments (for example, synthesis of high pressure phases) are designed such that
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they require only the the temperature be high, not that it be precisely known. Obviously

this approach is unsatisfactory for many applications. Another strategy is to measure only

temperature in one area (usually the center), and to analyze the sample only in this

region. This can be a satisfactory approach in some cases, for example synchrotron x-ray

diffraction experiments in which the probe beam (x-ray) is focussed to a size (perhaps 5

µm) that is much smaller than the laser-heated spot, and comparable to the area over

which the temperature is measured. Other applications should require that the actual

gradient in temperature be known; however, these gradients are much less commonly

measured.

Early efforts to quantify the temperature of the laser heated spot involved

measuring a series of slit measurements across the sample, and inverting for the radial

gradient using Abel transforms of the measured intensities [1]. Later, pinhole apertures

were translated to measure the temperature at a series of points across the sample [2, 3].

One of the drawbacks of these methods was that the gradient was measured over several

minutes rather than simultaneously. With the advent of imaging spectrographs, the

pinhole method evolved into simultaneous measurements of temperature across the

diameter of the spot; the spectrograph entrance slit selected a strip of image centered on

the hot spot, and each row of pixels on the CCD detector ideally represented a different

point along the strip [4,5]. Related approaches used an imaging spectrometer with

multiple input fibers [6] or with no entrance slit, combined with an Abel transform to

determine the gradient [7,8]. These imaging methods require great care because of the

many difficult alignment issues and the limitations to the imaging capability of the

spectrographs [5,9].
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Ultimately all of these gradient measurement methods have two significant

weaknesses. One is the fact that they require aperturing the broadband thermal emission

image; because of this, chromatic aberrations in the optical system can introduce serious

errors in the measurement [4,5,10]. This was partly the basis for extensive debate in the

literature over early applications of laser heating at high pressures [7,11,12]. Careful

design, alignment and calibration can overcome much of the chromatic effect, but the

diamond anvils will always introduce some uncertainty if small apertures are used [4,13].

The second weakness of early thermal gradient measurements is that they only determine

temperature along a cross-section of the sample, and that cross-section is chosen before

the experiment takes place. If the sample behaves ideally, with a radially symmetric

temperature distribution, then a single radial profile is adequate. However, real laser

heated diamond cell samples frequently absorb the sample asymmetrically because of

variations in insulator thickness, sample surface conditions, etc., and a 2-dimensional T

measurement is required for accurate description of the experimental conditions.

In this paper I describe a method of temperature measurement that overcomes

these two limitations to a large degree. The strategy is to trade off spectoradiometric

precision for 2-dimensional coverage; instead of measuring ~1000 wavelengths at a

single point or small number of points, the method described here involves 2-D image

collection at only a few (4 or more) spectral bands. The reduction in radiometric

precision is acceptable, because in standard spectroradiometric measurement of laser-

heated diamond cell samples the precision in fitting to the Planck function (~few K)

greatly exceeds the demonstrated reliability of the technique (~50-100 K) [4].
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The use of only a small number of spectral bands, rather than a heavily sampled

spectrum, to make temperature measurements of high pressure samples has previously

been applied in shock wave experiments (e.g., [14-16]). In that application, only a few (4

to 6) spectral bands are measured because each spectral measurement must be highly

time-resolved, so a separate photodiode detector is devoted to each band. In the present

application, an analogous trade-off is made, except here the purpose is spatial resolution

in the temperature measurement, not time resolution.

Recently Kavner and Nugent [17] have taken the important step of recording the

laser heated spot with a high dynamic range CCD camera to evaluate thermal gradients.

The present work advances that technology by introducing the simultaneous

measurement of several spectral bands, instead of only one at a time. In addition, unlike

all earlier techniques, the method reported here provides for independent focussing of

each spectral band, bypassing the chromatic aberrations that have plagued temperature

measurements of laser heated spots.

EXPERIMENTS

Two types of samples were analyzed in this study, to evaluate the performance of

the multispectral imaging radiometry system described below. The first was Pt foil at 1

bar, to gauge the accuracy and precision of the technique by comparing the measured

melting temperature of Pt with the known value of 2045 K. The second sample was Fe at

20 GPa in a diamond anvil cell, to demonstrate the performance of the system in the
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intended application of measuring T distributions across small (~30 µm) laser heated

spots on high-pressure samples.

Sample preparation

The Pt foil was mounted on an Al block and held into place with machine screws,

and then laser heated in air. The partial pressure of oxygen in air is insufficient to oxidize

Pt at its melting point. Thin samples of Fe were prepared by compressing Fe powder into

a foil in a diamond cell. A thin flake of this foil, approximately 5 µm thick and 60 µm in

diameter, was then loaded into a symmetric-type diamond anvil cell, surrounded by

NaCl, which acted as a pressure medium and insulator from the diamond anvils. The

sample assembly was dried at 90 ˚C in an oven for 1 hour before closing the sample

chamber. The sample was then compressed to 20 GPa, based on the ruby fluorescence

pressure standard [18].

Optical systems

The laser heating system is diagrammed in Figure 1. The heating laser was a Yb-

doped fiber laser, rated for 50 W of linearly polarized CW output at 1064 nm (IPG

Photonics, Inc., model YLR-50-1064-LP). The laser was focussed into the diamond anvil

cell using objective lens L1, which is an infinity-corrected 5X lens that is optimized for

the near infrared and has a working distance of 37.5 mm. The divergence of this laser

beam is small (< 0.5 mrad), which would produce an unnecessarily small laser heated

spot using only the objective lens L1, so additional divergence was introduced into the

beam by lenses L2 and L3 (Figure 1) to produce a laser spot size of ~30 µm on a
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diamond anvil cell sample. The laser spot size can be adjusted by changing the distance

between lenses L2 and L3. The laser light was aligned with the optical path of the

microscope by mirror M1 and the sample was viewed using tube lens L4 and camera C1

(Figure 1). Filters F1 and F2 restrict viewing of the sample to the 600-950 nm band,

which is similar to the wavelengths for which the temperature system is designed.

Thermal emission from the laser heated spot was deflected from the microscope to the

imaging radiometry system, and also to the standard spectroradiometry system, using

pellicle beamsplitters BS1.

The imaging radiometry system is illustrated in Figure 2. The principle of this

system is that it splits the image of the laser heated spot four ways, and each of these

images is then filtered to allow only a narrow wavelength bandpass. The four separate

images are then focussed independently onto the CCD camera C2. Before entering the

system, the light is filtered to remove scattering from the 1064 nm laser and also visible

wavelengths shorter than 600 nm. The tube lens (L5) has a nominal focal length of 500

mm, which produces nominally 12.5X magnification when used with objective lens L1.

A series of cube beamsplitters BS2 produces four separate light paths, each of which

reflect off of the mirrors M3 and then pass back through the beamsplitters BS2.

Translation of the M3 mirros adjusts the beam path length for each image separately,

which allows independent focus for each. This greatly minimizes chromatic aberrations,

because each wavelength is independently brought into focus. The wavelength of each

image is selected using the four interference filters F3 (670 nm), F4 (750 nm), F5 (800

nm), and F6 (900 nm), each of which have a bandpass of 10 nm width. After the images

pass through these four filters, they are nearly recombined with beamsplitters BS3 (same
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specifications as BS2), and directed to the CCD camera. An image of the sample at each

of the four wavelengths is collected in a single frame of the CCD camera.

The camera is a monochromatic CCD chip with 765 x 510 pixels, each 9 µm

square. The chip has no anti-blooming, a well capacity of 100,000 e-, and typical read

noise of 13.8 e-. The chip can be thermoelectrically cooled to ∆T = -40 ˚C, and exposure

times range from 0.040 s to 3600 s using a mechanical shutter; in practice the exposure

time is usually 0.100 to 5 s. The entire imaging radiometry system is enclosed to

minimize stray light.

An example of the image quality in the system is given in Figure 3. The inset

shows a reticle as recorded by the imaging radiometry system. For clarity, only the 670

nm image is shown here; the other 3 wavelengths were blocked to avoid overlap with this

image. The spacing between lines is 50 µm, and the width of each line is 12.5 µm. Each

pixel of the image frame represents a 0.78 µm square point at the sample position. No

variation in image magnification with wavelength was measureable; according to the

specifications of lenses L1 and L5, image magnification should be constant to <0.05%

over the wavelength range of interest. Figure 3 also shows a cross-section across one of

the lines on the reticle. If it assumed that the true profile of this line is a step function,

then the effective spatial resolution of the imaging radiometry system can be determined

by matching the measured profile against a calculated profile in which the step function

has been deteriorated by the resolving limit of the system. For this purpose it was

assumed that the image deterioration could be described as if it were diffraction limited

performance with resolving limit w; the intensity at each point can then be calculated as

the following integration of contributions from other points:
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Imeas(a,b)  =  (C/λ)2 ∫ ∫ Itrue (J1(q)/q)2 dx dy (1)

where q = 3.83 (R/w), R2 = (x-a)2+(y-b)2, C is a constant, and J1 is the first-order Bessel

function [19]. This calculation is matched to the measured profile in Figure 3, showing

that the imaging radiometry system has a spatial resolution of 4.0 µm. The resolving

power of the objective lens is nominally 2.0 µm; the practical resolution can probably be

improved with further improvement in the other optical components. However,  as shown

in the Discussion below, the resolving power of the current system introduces only

modest artifacts in the measured temperature profiles, and is a significant improvement

over earlier methods.

Procedure

Before the laser heating experiments were performed, the four mirrors M3 were

adjusted to bring each of the single-wavelength images of the diamond cell sample into

focus individually. The positions of the M3 mirrors were then left in place for subsequent

measurements, including the calibration, to ensure that the sample was focussed properly

in the imaging radiometer whenever it was in focus on camera C1 (Figure 1). The optical

response of the imaging radiometry system was calibrated using a 45 W standard lamp,

whose irradiance is traceable to NIST standards (Newport Corp. #63358). The lamp was

placed behind a 150 µm pinhole that was at the focal plane of the microscope. This

pinhole size was chosen because it is small enough that the four images do not overlap on

the CCD camera, but it is large enough that Airy diffraction rings near the pinhole edge
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do not introduce artifacts in the calibration near the center of the pinhole, where the laser-

heating measurements were located. Additionally, any chromatic effects appearing at the

edge of the pinhole (which was not focussed through a diamond anvil, as the sample was)

were far removed from the location of the laser-heating measurements and do not impact

the calibration.

In some experiments, the temperature was measured not only with the imaging

radiometry system, but also with a standard spectroradiometric system similar to those

described elsewhere [1-6]. This system used a 750 mm f.l. achromat tube lens (Thorlabs

AC512-750-B) to produce an image of the laser heated spot onto a 100 µm pinhole

aperture. The resulting 19X magnification admitted only thermal emission from the

central 5.3 µm of the laser heated spot. This light was then focussed into a 0.3 m

spectrograph (PI Acton SpectraPro SP-2356) and detected with a digital CCD camera (PI

Acton PIXIS 100F). The standard spectroradiometry system was calibrated in a similar

way as the multispectral imaging radiometer, using the same lamp and pinhole aperture.

The thermal emission spectrum from 630 nm to 930 nm was used to calculate

temperatures.

During the laser heating experiments, the sample was viewed with both the analog

camera (C1, Figure 1) and the CCD detector (C2, Figure 2). The laser power was

increased until the sample emission reached the desired level, then a frame from C2 was

captured. In some experiments, a spectrum was collected at the same time using the

standard spectroradiometer (Figure 1). After data collection, either the laser was turned

off, or data collection continued at the same or a different laser power. Background

frames were collected both before and after data collection.
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DATA ANALYSIS

A representative data image is shown in Figure 4. The laser heated spot is

recorded at each of the four wavelengths simultaneously. There are several steps to the

data analysis procedure that converts images like these to temperature maps of the hot

spot: background subtraction, intensity calibration, spatial correlation of the four image

spots, and temperature calculation.

Background subtraction

There are three sources of background to the recorded image: detector noise, stray

light from sources other than the laser heated spot, and scattered light from the hot spot

that has been rejected by the interference filters but remains inside the imaging

radiometry enclosure. Proper background subtraction is essential to measure large

temperature gradients [9].

Detector noise includes dark and readout noise, and is easily removed. This

source of background is very repeatable as long as the detector temperature remains

constant. We normally set the thermoelectric cooling setpoint of the SBIG ST-402ME

camera to –10 ˚C, which reduces the detector noise significantly. The camera is usually

also set to automatically subtract a dark frame, which is obtained by collecting a frame

with the shutter closed, using the same exposure time as the sample frame.
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Stray light, from sources (on the optical bench or elsewhere in the room) other

than the laser heated spot, has been kept to a minimum by a series of enclosures. First, the

entire optical table is covered in an aluminum box that reduces dust and light but has

removable panels for access. Second, on the optical table the imaging radiometry system

is enclosed from the other optics by a set of black fabric curtains that are sealed with

black tape. Light from the optical table is only permitted through a 25 mm diameter x 300

mm tube that projects through the curtain (Figure 2). With these precautions, external

stray light has been reduced to negligible levels. Nevertheless, a background frame, taken

with the laser off but otherwise identical operating conditions as the sample frame, is

subtracted from the sample frame.

The most persistent source of background light in the measurement is a flatfield

background that is produced by scattered light within the imaging radiometry system.

Although a broadband source, from 600 nm to 950 nm, is introduced into the system,

only four wavelength bands, with a bandpass 10 nm wide each, are transmitted

completely through the system onto the CCD. Furthermore, even at these selected bands

the transmission of the apparatus is low, <1%, because of the numerous (5 or 6) passes

through the beamsplitters in addition to losses at the interference filters and other optical

elements. The rejected light scatters inside the enclosure; some of that light reaches the

CCD. This scattered light produces a flat (approximately) background level that is

typically ~1% of the peak intensity in the image. This background is measured in a region

that does not overlap the hot spot images, and removed as a uniform level from the entire

frame. It is this background, and not the camera characteristics, that ultimately limits the

useful dynamic range of the measurement, and consequently limits the range of
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temperatures that can be measured from a single image. The uncertainties introduced by

background subtraction are easily seen in the misfits to the thermal emission spectrum in

outer regions of the hot spot (see below). Future improvement of the system may focus

on reducing this background.

Intensity calibration

Intensities are calibrated to a standard lamp with known irradiance, as described

in the Experimental section. The pinhole aperture used in the calibration was chosen with

a 150 µm diameter because this size is large enough that Airy diffraction rings do not

appear in the central region where the hot spot image will appear, but small enough that

the four single-wavelength images of the pinhole do not overlap on the CCD detector.

After background subtraction for both, the sample frame is divided by the calibration

frame to form a lamp-corrected frame. At this point the lamp-corrected frame has not yet

been corrected for the known irradiance of the lamp, because the frame still contains

images from more than one wavelength .

Spatial correlation

The lamp-corrected frame must now be separated into four different subframes,

each containing a single-wavelength image of the hot spot. Usually a set of 50 x 50 pixel

subframes was more than sufficient to capture the useful information from each hot spot.

It is important that these images were precisely correlated spatially, to allow point-to-

point comparisons of pixel intensities so the temperature map of the hot spot was

accurately calculated. Best results for spatial correlation of the four subframes usually
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were achieved by analyzing a frame taken from the laser heated sample itself. An image

of the sample recorded using reflected or transmitted light could be used for this purpose,

and matching the peak intensities from the four laser-heated spot images worked

especially well. Interpolations between pixels were performed to attain the closest spatial

correlation possible.

One subframe (the 750 nm image subframe) was chosen as a set of 50x50 pixels

encompassing the hot spot and then held fixed. The other 3 subframes (650 nm, 800 nm,

and 900 nm images) were assigned XY offsets (numbers of pixels) relative to the 750 nm

subframe; these offsets were tuned to achieve optimum subimage mapping. The tuning of

the offsets was performed by examining horizontal (X) and vertical (Y) intensity profiles

across a recognizable feature in the image, and selecting the offset values that brought

these profiles into coincidence. An appropriate feature for this purpose could be a small

grain recorded in transmitted light, or even the laser heated spot itself (maximum

intensities should coincide at each wavelength). Interpolations were performed by

weighted averages between neighboring pixels. In practice one could usually bring all 4

subframes into coincidence within 0.1 pixels (i.e., 0.08 µm).

Temperature map calculation

At this stage of the data analysis, each of the four subframes contained a single

wavelength, lamp-corrected image. These subframes were each multiplied by the known

irradiance of the standard lamp at their respective wavelengths; the polynomial provided

by the lamp’s calibration was used for these irradiances. At each spatially correlated pixel
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position, the four calibrated intensities were fitted to the Planck radiation function to

calculate the temperature of the sample at that point:

I  =  c1 ε λ-5 / (exp(c2/λT)-1) (2)

 where I is the intensity of emission, ε is the sample emissivity, λ is wavelength, and T is

temperature. The constant c1 contains fundamental physical constants and geometrical

factors specific to the experiment, and the constant c2 is hc/k. The graybody

approximation, in which the sample emissivity (ε) is assumed to be independent of

wavelength,  was used as is normally the case in this application [1]. For convenience, the

Wien approximation can be used to simplify the data processing; this introduces

negligible error below 4000 K [1].

RESULTS and DISCUSSION

Melting of Pt at 1 bar

The accuracy of the method can be evaluated by using it to measure a well known

fixed point, like the melting point of platinum at 1 bar. Platinum was chosen for this test

because it absorbs the laser readily, it melts congruently, and is highly resistant to

oxidation; platinum group elements remain metallic when heated to their melting point

even in air.
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A platinum foil, 0.025 mm thick, was secured to an aluminum block and laser

heated on one side. At high temperature, the multispectral imaging radiometry system

was used to measure the temperature distribution of the laser heated spot, which was

approximately 35 µm across. The result is shown in Figure 5. The temperature

distribution in this hot spot is radial but not perfectly symmetrical, as is frequently

assumed for calculated gradients in laser heated spots. The temperature gradient is

measureable from a peak of 2440 K down to approximately 1850 K, limited by the signal

to background ratio in the recorded image frame.

The temperature range spanned by the laser heated spot encompasses the melting

point of Pt, 2045 K. The melting point can be identified in the temperature map data by a

discontinuity in the temperature-emissivity profiles across the hot spot, because the

emissivity is a material property of the sample that changes upon melting. This is

demonstrated in Figure 6, in which a sharp discontinuity is observed at 2049 K in the

temperature-emissivity data along a profile across the peak of the hot spot that was shown

in Figure 5. By examining different profiles across the hot spot, and set of emissivity

discontinuities can be identified, each related to the appearance of melt in the hot spot.

Examination of 21 such profiles generated a mean and standard deviation of 2039±42 K,

in good agreement with the known melting point (2045 K). This test of multispectral

imaging radiometry compares well with similar tests performed with earlier methods of

laser heating temperature measurement[1,4].
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Heating of Fe at 20 GPa, and comparison to spectroradiometry

Additional tests of the method, and direct comparison to the standard

spectroradiometric system, were made by heating an Fe foil at 20 GPa in a diamond anvil

cell. A typical temperature map of the Fe sample in the laser heated diamond anvil cell is

presented in Figure 5b. In the following experiments, both multispectral imaging

radiometry and spectroradiometry were used simultaneously to measure the temperature

of the laser heated spot.

In the first of these tests, the laser power was increased gradually, with

temperature measurements taken at each power step. This permitted a comparison of the

two systems with the spectroradiometer aligned with the central 5.3 µm of the laser

heated spot. These spectroradiometrically measured temperatures are compared in Figure

7 to the temperatures calculated from an equivalent region of the four single-wavelength

images in the imaging radiometry system.

In a second test, the laser beam was moved, so the 5.3 µm diameter area that was

measured by the spectroradiometer was off of the hot spot peak, where the gradients are

greater. Again, for comparison, the equivalent region was averaged for temperature

measurement by multispectral imaging radiometry. A series of adjustments to the laser

position allowed various points along the temperature gradient to be measured. These

results show an equivalent comparison between the two methods as was obtained from

the on-peak measurements (Figure 7).

In both tests, the measured temperatures are strongly correlated, but the

spectroradiometric temperature is systematically higher by an average of approximately

30 K (Figure 7). The source of this offset is unknown, but it seems possible that, despite



18

careful alignment and calibration, when using refractive optics (plus the diamond anvil)

the chromatic effects at the pinhole aperture cannot be perfectly corrected in the standard

spectroradiometer. However, in practical terms this is an acceptable level of agreement

between laser heating temperature measurement systems. Interlaboratory comparisons of

laser heated diamond anvil studies are rarely in agreement to better than 100 K.

Error analysis of 4-color method

The first two tests of the multispectral imaging radiometry system, against the

melting of Pt at 1 bar and against the standard spectroradiometric method in a diamond

anvil cell, were ways to gauge the accuracy of the method. One must also consider its

precision, particularly the loss of precision that can be expected in a 4-color temperature

measurement compared to the hundreds or more channels commonly used in

spectroradiometry.

One measure of precision for standard spectroradiometry is the error in the fit to

the Planck function. Because of the large numbers of channels in the spectrum, the

statistical fit to the Planck function is usually quite small. For example, the statistical fit

to the spectroradiometric data presented in Figure 7 are on the order of 5 K. However,

this is only an internal precision; tests of laser heating temperature measurement systems

against melting of elements at 1 bar typically report reproduceabilities of 50 K or worse

[1,4]. Therefore, the precision provided by the large number of wavelengths in the

spectrum is not necessary to the method. As seen in Figures 6 and 7, the precision on

temperature from the 4-color fits in the imaging radiometry ranges from 10 to 70 K,

comparable to the accuracy estimated from the Pt melting experiments above.
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Analysis of image correlation

As discussed in the Experimental section, the spatial correlation of the 4 spectral

subframes is a critical part of the data analysis procedure. It is important to evaluate the

effects that one could encounter if there were misalignments between these image

subframes. To demonstrate these effects, one can use the data from the earlier example of

laser heating Fe in the diamond anvil cell (Figures 4b and 5b); this is a sensitive test

because that hot spot is relatively small, so the gradients in image intensity are large.

Figure 8a shows a temperature profile across the laser heated spot from Figure 5b.

The corresponding emissivity-temperature plot from this profile, analogous to that used

to identify Pt melting in Figure 6, is presented in Figure 8b. To demonstrate the effect of

a misalignment between the spectral subframes used to generate these data, the 900 nm

subframe was deliberately shifted by 0.5 µm; the resulting temperature profile and

emissivity-temperature plots are shown in Figure 8 for comparison to the properly

correlated data.

When the subframes were all aligned, the temperature profile was peaked in the

center, as expected (Figure 8a), and the position of the peak temperature was coincident

with the peak intensity. This sample contained no phase changes, so the emissivity was

not a strong function of temperature (Figure 8b). The deliberate misalignment of the 900

nm subframe had a noticeable effect on the temperature distribution. On the left side of

the temperature profile, the 900 nm intensity increased, so the calculated temperatures

were lower; on the right side of the profile the converse was true (Figure 8a). The error

introduced by this misalignment was ~70 K, but smaller near the peak. It should be
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emphasized that misalignment of the 900 nm subframe by 0.5 µm is unlikely in practice;

coalignment of all 4 subframes to within 0.1 µm is more typical.

In the event that misalignment of the spectral subframes were to occur, there are

indicators that could reveal to the user that this has happened. First, the position of the

peak calculated temperature is shifted (Figure 8a), and will not coincide with the

maximum intensity of the image; this is unphysical in most cases. Second, the emissivity-

temperature (ε-T) plot provides a strong indication of misalignment, shown in Figure 8b.

When the four subframes are properly aligned, the ε-T relationship is practically the same

on both halves of the profile. However, when the subframes are not properly coaligned,

the ε-T relationship is noticeably different on either side of the profile. This occurs

because the relative emissivity, obtained as a fitting parameter to the Planck function, is

more sensitive to misalignment of the images than the temperature is. Consequently,

these two indicators, that are internal to the data analysis (Figure 8), can signal the

presence of spatial misalignment during the image processing. Attention should be paid

to these indicators to maintain quality in the data processing for imaging radiometry

measurements.

Effect of spatial resolution

A concern with any measurement of laser heated spots is the effect that limited

spatial resolution has on the measured temperature. It is important to consider the

consequences of the resolving power of the imaging radiometry system (4.0 µm at 670

nm; Figure 3). Figure 9 presents a calculation illustrating the impact of this resolving

power on the measurement. The temperature distribution in this example was chosen to
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be Gaussian with a characteristic radius of 15 µm, similar to the intensity profile of the

incident laser in the laser heating system described in Figure 1. From this assumed

temperature distribution, a set of intensity distributions at 670 nm, 750 nm, 800 nm, and

900 nm were calculated from Planck’s radiation function. From each of these single-

wavelength 2-D distributions, an “blurred” distribution was calculated based on the loss

of spatial resolution from the limits of resolving power of the optical system. The

procedure was analogous to that used to evaluate the spatial resolution in Figure 3;

equation 1 was used to represent the resolving power’s effect. (Note also that the spatial

resolution is proportional to wavelength; w = w670(λ/670). [19]) Then each point in the

blurred intensity distributions was fit to Planck’s curve to generate a 4-color temperature,

similar to the way in which a real measurement is processed.

This blurred distribution is compared to the input temperature distribution in

Figure 9. The increase in peak temperature is principally a consequence of the fact that

spatial resolution at long wavelengths is poorer than at shorter wavelengths, so the peak

loses infrared light preferentially over red light, which increases the apparent

temperature. The apparent temperatures at positions far from the peak also increase, but

for a different reason; here, the measured signal is contaminated more by blurring from

the intense high-T neighboring region (at low radii) than it is by blurring from the less

intense low-T neighboring region (at higher radii). Regardless, the blurring effect with

this level of resolving power is not very large, only 30 to 60 K across the central 20 µm

diameter region of the hot spot. However, at points far from the peak, the error becomes

significantly greater; for example, at a radius of 14 µm the misfit reaches 130 K in Figure

9. Additional calculations show that these differences between the true and apparent
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temperature do not change much as the peak temperature is varied, and can be greatly

reduced by increasing the laser beam diameter.

The effect of spatial resolution on measured temperature profiles from laser

heated spots is not confined to the imaging radiometry system described here. It applies

to all laser heating systems, whether the gradients are measured explicitly or the aperture

method is used to measure only a central temperature. Of course the magnitude of the

effect depends strongly on the resolving power of the system. However, the true spatial

resolution of temperature measurement systems for laser heating is often not reported, in

part because it is less straightforward to quantify the resolving power in non-imaging

systems.

CONCLUSIONS

A multispectral imaging radiometry system has been described that measures the

temperature distribution in laser heated diamond anvil samples. The method is not

specific to laser heating nor to diamond anvil cell samples, and can be applied to

measuring temperature distributions of any hot spot with suitable adaptation of the

delivery optics that transmit the sample image into the system. The method is also easily

adaptable to a greater number of wavelengths, although there is a tradeoff between

number of wavelengths and transmitted intensity.

There are several significant advantages of multispectral imaging radiometry over

earlier methods of temperature measurement in the laser heated diamond anvil cell:
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1. Two-dimensional maps of temperature and emissivity across the hot spot are

both obtained. Knowledge of the temperature distribution is essential to proper

interpretation of other measurements that may be obtained from the sample, such as x-ray

diffraction measurements or chemical microanalysis by electron microscopy.

Furthermore, determining the temperature without assuming that the emissivity is

constant across the hot spot makes the measurement much more robust, not only when

measuring a single phase sample, but especially when there may be a phase transition

within the hot spot. In addition, phase changes can sometimes be recognized by a

discontinuity in the temperature-emissivity relationship (Figure 6).

2. Chromatic aberrations are avoided because each wavelength is focussed

independently. All polychromatic images obtained from a diamond anvil cell bear

chromatic aberrations because of the high dispersion of diamond, and usually other

elements in the optical path too (e.g., microscope objectives, beamsplitters). These

chromatic aberrations have been the source of much consternation around temperature

measurement of laser heated spots, because the pinhole or slit apertures (or pixel rows)

that select portions of the image necessarily behave differently at different wavelengths

[4,5,10,13]. A key advantage of the multispectral imaging radiometry system described

here is that it frees the laser heating system from these concerns. Not only does this

provide a more accurate temperature measurement, it also permits the experimenter to

make different design decisions in other aspects of the laser heating system, without

concern for the chromatism that might be introduced.

3. All single-wavelength images are obtained simultaneously. Temperature

distributions in laser heated diamond cell samples are often not constant with time,
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especially in the important circumstance of a sample undergoing a phase transition. It is

essential that temperature calculations be performed on images that were obtained

simultaneously to avoid significant errors due to temporal variations in intensity.

Some weaknesses persist in the current design, but these are relatively minor.

Better rejection of scattered light from the multispectral image (Figure 4) could lead to

improved signal-to-background, thus expanding the temperature range over which each

hot spot can be measured (Figure 5). However, with finite spatial resolution there is a

limit to the temperature range that can be measured accurately (Figure 9). Further

improvements in image quality will slightly enhance the accuracy of the temperature

maps, but as discussed above the current design is satisfactory given other limitations of

the laser heating method.
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FIGURE CAPTIONS

Figure 1. Laser heating system. DAC: Diamond anvil cell, symmetric-type, Princeton

University. LASER: 50 W fiber laser, 1064 nm, polarized, IGP Photonics YLP-50-1064-

LP. L1: NIR 5X objective lens, Mitutoyo 378-822. L2: Achromat concave lens, -51.5 mm

at 1064 nm, CVI Laser PCB-25.4-51.5-C-1064. L3: Achromat convex lens, 65.4 mm at

1064 nm, CVI Laser PXB-25.4-65.4-C-1064. L4: Achromat NIR lens, 200 mm, Thorlabs

AC254-200-B. M1: Laser mirror, 1064 nm, Newport 10QM20HM.15. BS1: Pellicle

beamsplitter, 700-900 nm coating, Thorlabs BP145B2. C1: CCD observation camera,

Hitachi KP-D20A. F1: 950 nm short pass filter, Thorlabs FES0950. F2: red dichroic

filter, Thorlabs FD1R. Not shown in this figure are additional optics that allow double

sided laser heating by splitting the laser beam and focussing it onto both sides of the

sample; this feature was not used for the experiments described here.

Figure 2. (Color online) Multispectral imaging radiometry system. The beamsplitters and

interference filters split the incoming light into four spectral bands, which are focussed as

separate images and recorded simultaneously by the CCD detector. L5: Achromat NIR

lens, 500 mm, Thorlabs AC254-500-B. M2 and M3: Silver mirror, Thorlabs PF10-03-

P01. BS2 and BS3: Low-polarizing cube beamsplitters, coated for 600-900 nm,

OptoSigma 039-0265. F3: 670 nm interference filter, OptoSigma 079-1490. F4: 750 nm

interference filter, OptoSigma 079-1590. F5: 800 nm interference filter, OptoSigma 079-

1780. F6: 900 nm interference filter, OptoSigma 079-2770. C2: CCD detector, SBIG ST-
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402ME. The four M3 mirrors are mounted on separate translation stages, that permit

independent focussing of each of the four narrow-bandpass images.

Figure 3. Evaluation of spatial resolution of imaging radiometry system. Inset: Image of a

reticle recorded by the imaging radiometry system. Only the 670 nm wavelength image is

shown; the other 3 wavelengths were blocked to avoid overlap. The spacing between

lines is 50 µm, and the line width is 12.5 µm. Plot: Measured intensity profile (crosses)

across a reticle line from the inset picture, compared to a calculated profile (open circles)

using a resolving power of 4.0 µm. See text for details.

Figure 4. Multispectral imaging of laser heated spots using the imaging radiometry

system. Each strip is from a single CCD camera frame, and contains four single-

wavelength images, from left to right: 670 nm, 750 nm, 800 nm, 900 nm. Calibration of

these frames permits temperatures to be calculated at each pixel. a) Platinum foil at 1 bar.

b) Iron in a diamond anvil cell at 20 GPa.

Figure 5. (Color online) Temperature maps of laser heated spots, measured using

multispectral imaging radiometry. Calibration bars labelled in Kelvin. a) Platinum foil at

1 bar, shown in Figure 4a. The map is 40 µm across, and each line represents a row of

0.78 µm square pixels. b) Iron in a diamond anvil cell at 20 GPa, shown in Figure 4b.

The map is 24 µm across, and each line represents a row of 0.78 µm square pixels.
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Figure 6. Temperature vs. emissivity plot along a peak-to-rim transect of the Pt hot spot

in Figure 5a. The sharp discontinuity at 2049 K is associated with melting.

Figure 7. Comparison of temperatures measured by standard spectroradiometry vs.

multispectral imaging radiometry. Temperatures were made simultaneously from the

same laser heated spot, on iron in a diamond anvil cell at 20 GPa. Circles: measurements

made at center of laser heated spot, varying laser power. Squares: measurements made

along the gradient of a laser heated spot, at fixed laser power but moving laser beam.

Figure 8. Effect of misalignment of spectral images on the calculated temperature

distribution. Solid circles: temperatures across laser heated spot shown in Figures 4b and

5b, with spectral images in correct spatial coalignment. Open circles: temperatures

obtained from the same raw data, with the 900 nm image deliberately misaligned by 0.5

µm. a) Temperature profile. b) Emissivity vs. Temperature plot. The disturbance in the ε-

T relationship is a symptom of misalignment of the spectral images.

Figure 9. Effect of spatial resolution on measured temperature distribution from a laser

heated spot. The input distribution (dashed curve) assumed a Gaussian profile with a

radius of 15 µm, a peak temperature of 2500 K, and a background of 300 K. The apparent

temperature distribution (squares) was modelled to illustrate the effect of a resolving

power of 4.0 µm at 670 nm (Figure 3). Measured graybody temperatures overestimate the

true temperature by only 30-60 K over the central 20 µm of the hotspot. See text for

details.
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