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We have investigated the phase relations in the iron-rich portion of the Fe-Si

alloys at high pressures and temperatures. Our study indicates that Si alloyed with

Fe can stabilize the bcc phase up to at least 84 GPa (compared to ~10 GPa for pure

Fe) and 2400 K. Earth’s inner core may be composed of hcp Fe with up to 4 wt% Si,

but it is also conceivable that the inner core could be a mixture of a Si-rich bcc

phase and a Si-poor hcp phase.

Iron is the most abundant element in Earth’s core. However, the density of the outer

core is about 10% lower than the density of Fe at the pressure and temperature conditions

of the outer core, indicating the presence of a low-atomic-weight component (such as H,

C, O, Si, and S) in the core (1). There is also evidence that the inner core may be less

dense than pure Fe, and the amount of light elements in the inner core may be about 0-3

wt% (2-4). Silicon may be an important alloying element in the outer core, based on its

cosmochemical abundance and its measured thermoelastic properties (5, 6). Silicon was

excluded as the primary alloying element in the outer core based on the equation of state

(EOS) of the intermediate compound ε-FeSi (7). However, studying the Fe-rich portion

of the Fe-Si system is more appropriate for understanding the possible effect of Si on the

EOS and the crystal structure of Fe under core conditions. The phase diagram of Fe has

been extensively studied; body-centered cubic (bcc) Fe transforms to the hexagonal
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close-packed (hcp) phase under high pressures, and the bcc phase transforms to the face-

centered cubic (fcc) phase under high temperatures (8). In situ x-ray diffraction studies to

161 GPa and 3000 K demonstrate that hcp-Fe has a wide stability field extending from

the deep mantle to core conditions (9). We studied the Fe-rich portion of the Fe-Si alloys

in order to understand the possible crystal structures and the phase diagram relevant to

the Earth’s core.

The Fe7.9wt%Si alloy was studied in a laser-heated diamond anvil cell (LHDAC) at

pressures up to 84 GPa and temperatures up to 2400 K, and x-ray diffraction patterns

were collected in situ (see Web Fig. 1, 10) (11). The bcc phase transformed to the

bcc+hcp phases at 16 GPa and 300 K, and the phase transformation to the hcp phase was

completed at 36 GPa. When laser heated below 16 GPa, the bcc phase transformed to a

mixture of bcc+fcc phases. The hcp phase transformed to bcc+hcp phases under high

temperatures and, upon further heating, bcc+hcp phases transformed to bcc+fcc phases

(Fig. 1). Upon pressure quench, the sample reverted to the bcc phase. The quenched

samples from a LHDAC were then analyzed with a scanning electron microprobe (SEM),

and the results indicate that the starting material decomposed into two chemical

compositions at high pressure and temperature; the bcc phase was presumably enriched in

Si, and the coexisting hcp or fcc phase was depleted in Si relative to the starting

composition (Fig. 2). The partitioning of Si between bcc and hcp phases or between bcc
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and fcc phases indicates the presence of two-phase equilibria under high pressure and

temperature (P-T) conditions. Compared to the phase diagram of pure Fe (8), it is evident

that the stability field of the bcc phase can be extended to higher pressures and

temperatures with the addition of Si (Fig. 1). A Fe2.2wt%Si alloy was also studied in a

LHDAC. This lower amount of alloying Si did not have a strong effect on the phase

diagram of Fe; hcp-Fe2.2wt%Si transformed entirely to the fcc phase while laser heated

at about 34 GPa to 1400 K.

To better understand the T-composition (X) phase diagram of Fe-Si alloys at high

pressure, we also conducted in situ x-ray experiments, along with chemical analyses of

the quenched samples, on Fe4.0wt%Si and Fe7.9wt%Si in a large-volume press (LVP)

and a LHDAC (17) at about 16 GPa (Fig. 2; see Web Fig. 2, 20). Three regions of the

two-phase equilibria are observed: bcc+hcp, bcc+fcc, and hcp+fcc. As shown, adding Si

into Fe can change the phase diagram of Fe; the hcp to fcc phase transformation at lower

Si contents becomes a more complicated phase transition sequence at higher Si contents

(Fig. 3). The maximum solubility of Si in the fcc phase at zero pressure is only 1.9 wt%

(21), but the effect of pressure increases the solubility of Si in the fcc phase to over 6

wt% at 16 GPa (22) (Table 1).

Sulfur and oxygen are also considered to be two possible light elements in the core,

and the properties of FeS and FeO under high pressures and temperatures have been
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frequently used to discuss the possibility of sulfur and oxygen in the core (3). Although

the solubility of oxygen in Fe is low at ambient pressure, high-pressure experiments on

the Fe-FeO system have shown that oxygen is soluble in Fe at high P-T conditions (23).

The phase of FeS known at the highest P-T conditions has the hexagonal NiAs structure,

suggesting that S may also form solid solution with Fe under core conditions (24). As

demonstrated in the Fe-Si alloy experiments reported here, a small alloying component

can have a large effect on the phase diagram. Since the physical properties of the liquid

often mimic the properties of the corresponding solids, it is likewise possible that adding

a small alloying component to liquid Fe may also have a significant effect on the liquid

structure of Fe (25).

Our results show that a light element alloyed with iron can change the topology of the

subsolidus phase diagram of iron under high P-T conditions. Adding Si into Fe stabilizes

the bcc phase to much higher pressures and temperatures. However, only 2-4 wt% Si is

not enough to change the phase diagram of Fe (Fig. 3). Therefore, if the inner core only

contains 2-4 wt% of Si, then it is likely to have the hcp structure. It is also conceivable

that the inner core could be a mixture of a Si-rich bcc phase and a Si-poor hcp phase. The

existence of two phases with different compositions may influence interpretation of the

observed seismic anisotropy of the inner core (26, 27).
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Table 1. Chemical analyses of the quenched Fe-Si samples. The measured Si contents

were averaged from at least three analyses. Numbers in parentheses represent the

standard deviation. These results indicate the width of the bcc+fcc or the bcc+hcp phases

at the specific P-T conditions.

________________________________________________________________________________________________

Run # P (GPa) T (K) Starting materials bcc (Si wt%) fcc (Si wt%) hcp (Si wt%) Remarks

T0250 9.4 1200 (10) Fe7.9wt%Si 11.44 (0.13) 5.32 (0.09) LVP; x-ray

T0258 14.1 1100 (10) Fe7.9wt%Si 10.30 (0.08) 6.71 (0.07) LVP; x-ray

Fe9Si#17 14.2 1501 (105) Fe7.9wt%Si 9.42 (0.11) 5.93 (0.09) LHDAC*

Fe9Si#18 13.9 1387 (38) Fe7.9wt%Si 9.82 (0.12) 5.91 (0.09) LHDAC*

Fe9Si#11 30.6 1976 (69) Fe7.9wt%Si 11.33 (0.22) 7.19 (0.18) LHDAC; x-ray

Fe9Si#15 42.2 1804 (17) Fe7.9wt%Si 10.92 (0.12) 7.69 (0.10) LHDAC*

* indicates that Figure 1 was used for the phase identification for experiments that were conducted without x-ray.
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Figure Captions:

Figure 1.  Phases observed in LHDAC experiments with the starting materials of

Fe7.9wt%Si. Green open diamonds: bcc only; blue open circles: hcp only; red open

triangles: fcc+bcc; brown crosses: bcc+hcp; black rectangular dots: bcc+hcp+fcc; grey

dashed curve: phase transformation from hcp to bcc+hcp; grey dashed curve with dots:

phase transformation from bcc+hcp to fcc+bcc; solid grey lines: the phase diagram of

iron (8). The slope of the phase transformation from hcp to bcc+hcp decreases with

increasing pressure. Mixed phases are commonly observed in the heating process,

indicating broad regions of two phase equilibria between bcc+hcp and bcc+fcc phases.

The coexistence of the bcc+hcp+fcc phases may be due to the thermal gradient,

temperature fluctuation, or slight misalignment of the laser beam with respect to the x-ray

beam in the LHDAC.

Figure 2. Back-scattered electron image of the quenched LHDAC sample from 31 GPa

and 1976 K. The laser beam was about 20 µm. The average Si concentration is 11.3

(+0.3) wt% in dark areas (bcc phase) and is about 7.2 (+0.1) wt% in bright areas (fcc

phase), while the average Si concentration remains at about 8.1 (+0.2) wt% in the

surrounding unheated area. The black bar on the picture is 10 µm.

Figure 3.  Schematic T-X phase diagram (grey dashed lines) of iron-rich Fe-Si alloys at

about 16 (+2) GPa. Crosses: bcc+hcp; open circles: hcp only; open squares: fcc+hcp; X:
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fcc only; solid squares: bcc+fcc+hcp; open triangles: bcc+fcc; Tie lines indicate

coexisting compositions in quenched samples that were analyzed by SEM. The

experiments for Fe4.0wt%Si and Fe7.9wt%Si in a LVP were conducted at about 18 GPa

and 14 GPa, respectively. For Fe7.9wt%Si alloy, two LHDAC experiments at 1387 K

and 1501 K help establish the trend of the bcc+fcc phase region.
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Web Figure Captions:

Web Figure 1 (A). Representative energy-dispersive x-ray diffraction patterns of

Fe7.9wt%Si at 39 GPa upon heating. F: the fluorescence peak of Pb; e: Ge detector

escape peak; b1: NaCl in b1 structure; b2: NaCl in b2 structure. NaCl was used as the

thermal insulator and the pressure calibrant (13, 14). The sample was in the hcp structure

at 39 GPa and 300 K. The hcp phase transformed to the bcc+hcp phases at 1324 K and,

upon further heating, to bcc+fcc+hcp phases at 1999 K. (B). Representative angle-

dispersive x-ray diffraction patterns of Fe7.9wt%Si at 76 GPa. A monochromatic beam

(wavelength = 0.4246 Å) was used as the x-ray source. Re represents the rhenium gasket

peak. The sample was in the hcp structure at 76 GPa and 300 K. The hcp phase

transformed to the bcc+hcp phases at 1772 K and 1937 K.

Web Figure 2. Back-scattered electron image of the quenched LVP sample from 14.1

GPa and 1100 K. The Si contents of the bcc and fcc phases were presumably preserved

by turning off the power supply at high pressure. Chemical analyses of the sample

indicate that the bcc phase contains 10.3 (+0.1) wt% Si in dark areas and the fcc phase

contains 6.7 (+0.1) wt% Si in bright areas. Black areas are the MgO matrix. As shown, no

reaction between the sample and the MgO matrix was observed in a SEM. The white bar

on the picture is 20 µm.
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