What are Geoneutrinos?

electron anti-neutrinos from the Earth, products of natural radioactivity

Geoneutrino flux - typical flux 6*10⁶ cm⁻² s⁻¹

β^- decay process (e.g., U, Th, K, Re, Lu, Rb)

MeV-Scale Electron Anti-Neutrino Detection

Reines & Cowan

Key: 2 flashes, close in space and time, 2nd of known energy, eliminate background

- Standard inverse β-decay coincidence
- E_v > 1.8 MeV
- Rate and spectrum no direction

Reactor and Earth Signal

- <u>KamLAND</u> was designed to measure reactor antineutrinos.
- Reactor antineutrinos are the most significant contributor to the total signal.

Present Liquid Scintillator Detectors

from Mar '02 to Nov '12

from Dec '07 to Aug '12

Can Physics Help Geoscience?

TNU: geo-n $\overline{\upsilon}$ event seen by a kiloton detector in a year

Summary of geoneutrino results

<u>Cosmochemical</u>: uses meteorites – 10 TW <u>Geochemical</u>: uses terrestrial rocks –20 TW <u>Geodynamical</u>: parameterized convection – 30 TW

TW scales relative to U 10, 20, 30 TW ≈ 10, 20, 30 ppb

Predicted Global geoneutrino flux based on our new Reference Model

arXiv:1301.0365 10.1002/qqge.20129

Early Earth differentiation followed by 4 billion years of plate tectonics

Geoneutrino contributions to detectors

Near Field: six closest $2^{\circ} \times 2^{\circ}$ crustal voxels Far Field = bulk crust – near field crust

A Deep Ocean $\overline{\mathcal{V}}_e$ Electron Anti-Neutrino Observatory

What's hidden in the mantle?

Seismically slow "red" regions in the deep mantle

Ritsema et al (Science, 1999)

Testing Earth Models

Mantle geoneutrino flux (²³⁸U & ²³²Th)

Šrámek et al (2013) EPSL <u>10.1016/j.epsl.2012.11.001;</u> <u>arXiv:1207.0853</u>

Predicted geoneutrino flux

Total flux at surface

dominated by Continental crust

55

50

45

40

35

- 30

25

20

Yu Huang et al (2013) G-cubed <u>arXiv:1301.0365</u> <u>10.1002/ggge.20129</u>

Mantle flux at the Earth's surface

dominated by deep mantle structures

Šrámek et al (2013) EPSL <u>10.1016/j.epsl.2012.11.001</u>; <u>arXiv:1207.0853</u>

Ocean based experiment!

- Neutrino Tomography... 😳
- Pacific Transect
- Avoid continents
- 4 km depth deployments
- Map out the Earth's interior
- Test the models Šrámek et al (2013) EPSL <u>arXiv:1207.0853</u>

SUMMARY Earth's radiogenic (Th & U) power 22 ± 12 TW - Borexino 11.2 + 7.9 - 5.1 TW - KamLAND

<u>Prediction</u>: models range from 8 to 28 TW (for Th & U)

On-line and next generation experiments:

- SNO+ to come online in 2014 \odot
- JUNO: great experiment, big bkgd, geonu application...
- Hanohano: FUNDAMENTAL for geosciences Geology must participate & contribute to the cost

Future:

-Neutrino Tomography of the Earth's deep interior ③

Geoneutrinos: ongoing efforts and wish list

- Main page Contents Featured content Current events Random article Donate to Wikipedia Wikimedia Shop
- Interaction
 Help
 About Wikipedia
 Community portal
 Recent changes
 Contact Wikipedia
- Toolbox
- Print/export

Out-reach efforts

Article Talk

Read Edit View history

noutrino

Geoneutrino

From Wikipedia, the free encyclopedia

Geoneutrino is an electron antineutrino emitted in β^- decay of a radionuclide naturally occurring in the Earth. Neutrinos are the lightest of the known subatomic particles. They lack measurable electromagnetic properties and dominantly interact via the weak nuclear force. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively geoneutrinos carry the integrated information about the abundances of their radioactive sources inside the Earth. Extracting a geologically useful information (e.g., abundances of individual geoneutrino producing elements and their spatial distribution in Earth's interior) from geoneutrino measurements is a major objective of the emerging field of *neutrino geophysics*.

Most geoneutrinos originate from β^- decay branches of ⁴⁰K, ²³²Th and ²³⁸U. Together these decay chains account for more than 99% of the present day radiogenic heat generated inside the Earth. Only geoneutrinos from ²³²Th and ²³⁸U decay chains are detectable by the inverse beta decay mechanism because these have the highest energies, i.e., >1.8 MeV (megaelectronvolts), the energy needed to transform a proton into a neutron and a positron. The flashes of light generated from this interaction are recorded by large underground liquid scintillator detectors of neutrino experiments. To date, geoneutrino measurements at two sites, as reported by the KamLAND and Borexino collaborations, begin to place constraints on the

- Directionality
 - ⁴⁰K geonus
- Detecting hidden
 - objects in the Earth