

Lower Mantle Structure & Geo-neutrinos

Vedran Lekic University of Maryland, College Park

+ Sanne Cottaar (Cambridge) + Edwin Kite (Princeton / U Chicago) + Adam Dziewonski (Harvard) + Barbara Romanowicz (UC Berkeley / IPGP)

Geo-neutrino working group meeting, KITP July 1st, 2014

Motivation

- Variations of material properties (rigidity, incompressibility, and density) in the Earth's interior relate to compositional variations, and may represent a reservoir enriched in heat producing elements (U,Th, K)
- □ Three main types of lower mantle structure:
 - Large-scale lower mantle structure: Large Low Shear Velocity Provinces (LLSVPs, a.k.a. "superplumes")
 - Small-scale lower mantle structure: Ultra Low Velocity Zones (ULVZs)
 - Meso-scale lower mantle structures: Permian Anomaly and Mega-ULVZs.

Structure of Earth's deep interior

- Seismic waves emitted by earthquakes, explosions, and/or ocean waves travel across and through the Earth.
- Velocities of the two basic types of waves – compressional (P) and shear (S) – are affected by variations in density, rigidity (shear modulus) and incompressibility (bulk modulus).
- Travel-times and waveforms of waves taking various paths through the Earth can be used to image the structure of the deep interior.

Radial structure

- A number of 1D Earth models have been developed: PREM (Dziewonski and Anderson, 1981), ak135 (Kennett et al., 1995), IASP91 (Kennett and Engdahl, 1991).
- None of these models have wellquantified uncertainties
- Lateral variations in structure are larger than uncertainties on average structure at a given depth:
 - Some models (e.g. ak135, IASP91) are not true global averages → biased toward continental structure, and should be used with caution;
 - 3D models are better suited for mineralogical / thermal interpretation

Large scale mantle structure

- Different depths in the mantle have distinct spatial characteristics in Vs global tomographic models:
- Heterosphere upper 250 km where tectonic signals dominate: ±10% Vs variations
- Transition Zone signal of slabs in Western Pacific and slow anomalies related to hot spots: ±3% Vs variations
- Mid mantle smaller amplitudes and lengthscales of heterogeneity: ±1% Vs variations
- Lower-most mantle dominance of degree 2 structure consisting of pair of antipodal LLSVPs surrounded by a ring of faster-than-average Vs: ±5% Vs variations

Large scale lower mantle structure

(a) S362ANI – Kustowski et al 2008

(b) S40RTS – Ritsema et al 2011

(c) SAW24B16 – Megnin & Romanowicz 2000

(d) HMSL-S – Houser et al 2008

(e) GyPSuM – Simmons et al 2010

(f) Data – Manners 2008

Horizontal Gradients of Vs

LLSVPs appear to be bounded by steep lateral gradients in Vs

Remarkable uniformity of large-scale structure both within the LLSVPs and within the faster-thanaverage regions Range of Vs (m/s) within 5°

Lekic et al. EPSL 2012

LLSVPs have sharp boundaries

Deep event in Fiji recorded at Kaapvaal Array in Southern Africa

Boundary modeled with an abrupt ~4.5% velocity jump

Cluster analysis of lower mantle

into two antipodal regions (superplumes, piles, LLSVPs) and a contiguous circumpolar torus of faster-than-average Vs. Remarkable inter-model consistency, especially along LLSVP boundaries

Vs characteristics of clusters

- Average Vs profiles of fast and slow clusters differ by >0.5% 1200 km up from the CMB.
- Differences increase abruptly starting at ~2200 km depth.
- Deviation of slow clusters is more pronounced resulting in significantly reduced dVs/dz w.r.t PREM.
- Differences between average Vs profiles span the range of predictions for end-member mantle compositions (at the same T conditions)

Volume of LLSVPs

Estimates of LLSVP volume vary:

- Waveform analyses limited in depth and lateral coverage: 1.2% of mantle volume (Wang & Wen, 2004)
- Volume from tomographic models depends on Vs isocontour one chooses to define the LLSVPs.

Table 5

Šrámek et al. 2012 (EPSL)

Mass fraction and enrichment factors for the enriched mantle reservoir obtained for various δV_s cut-off contours in the TOMO model.

δV_s cut-off (%)	EM mass. frac. (%)	Enrichment factor		
	F ^{EM}	Eu	E _{Th}	E _K
-0.25	9.5	6.3	12	3.8
-0.50	4.4	13	26	7.0
-0.75	1.8	30	63	16
-1.00	0.71	72	155	38

Volume of LLSVPs

Origin of LLSVPs

 Accumulation of subducted oceanic crust

[Li and McNamara, 2013]

Remnants of a basal magma ocean

[Labrosse et al. 2007]

Ultra Low Velocity Zones

ULVZs are small (~10 km tall, ~100 km across) dense (~10%), slow (>10% reduction) anomalies

Might be preferentially associated with the edges of the LLSVPs

Origin of ULVZs

- Iron enrichment (Wicks et al. 2010), partial melt (Williams & Garnero 1996), or both
- Possible remnant from a basal magma ocean (Labrosse et al. 2007) or could be from the outer core (Otsuka & Karato, 2012)
- What processes lead to differences in size?

[McNamara et al. 2010, Hutko et al. 2009, Rost et al. 2010, Thorne et al. 2013]

Lekic et al. EPSL 2012

"Perm Anomaly" – a mini LLSVP

Transversecomponent velocity waveforms from the 4/11/2010 Spain event

- Stations in 91° -102° epicentral distance range
- S/Sdiff waveforms show amplitude focusing and traveltime delays
- Lack of anomalous amplitudes/traveltimes to the North confirms that Perm Anomaly is not connected to the African LLSVP

Mega Ultra LVZs!

Perm Anomaly – "SLSVP"

- Size of Texas
- ~6% Vs reduction
- Hundreds of km high
- Visible in all tomographic models

Hawaiian Puddle - "HULVZ"

- Size of Texas
- ~20% Vs reduction
- Tens of km high
- Only visible at shorter periods (+hints!)

Predicting Geo-v Flux

- Start with bulk silicate Earth abundance of U, Th, K
- Subtract out the contribution of the continental crust
- Assume mantle contains two reservoirs:
 - Depleted Mantle from Salters & Stracke (2004)
 - Enriched reservoir that makes up the difference in heat production between BSE and DM
- Predict geo-v flux for three candidate enriched reservoirs
 - LLSVPs as defined by different tomographic models and different isocontours
 - ULVZs as defined by waveform studies
 - "Aureoles" as defined by boundaries of LLSVPs

Geo-v Signature of LLSVPs

- U, Th, and K enrichment in LLSVPs introduces lateral variations in geo-v flux
- Variations are ~20% of surface mean
- Largest fluxes on top of LLSVPs

Where to site a geo-vdetector?

- Substantial lateral variations in geo-v flux at the surface due to spatial variations in U, Th, and K enrichment may:
 - Bias estimates of Earth's budget of heat producing elements
 - Offer a means of constraining the origin of lower mantle structures
- Uncertainty in seismic imaging of structure introduces uncertainty in the pattern of predicted geo-v flux
- Locations with small inter-model variability in predicted geo-vflux are ideal
- Locations with small bias & variability are ideal for constraining average heat budget (many exist)
- Locations with high bias & low variability are ideal for constraining LLSVP / ULVZ enrichments (none exist)

Single Detector – LLSVPs

- At a single detector, there is trade-off between geo-v flux from LLSVPs and the "background" mantle
- Blue lines define the tradeoff at a single, low variability, location
- No matter how long you count, you will not eliminate the trade-off (green ellipses)
- Don't pay attention to numbers [©]

Two Detectors - LLSVPs

- Multiple, well-sited detectors can reduce the trade-off between geo-v flux from LLSVPs and the "background" mantle
- Blue (Macquarie) and red (Manihiki) lines define different tradeoffs
- As you count more geo-v, you can separate the LLSVP vs "background" mantle signal
- Don't pay attention to numbers [©]

Two Detectors - ULVZs

- Multiple, well-sited detectors can reduce the trade-off between geo-v flux from ULVZs and the "background" mantle
- Blue (St. Helena) and red (Manihiki) lines define different tradeoffs
- As you count more geo-v, you can separate the ULVZ vs "background" mantle signal
- Don't pay attention to numbers [©]

Four Detectors – "Aureoles"

- Even multiple, well-sited detectors canNOT reduce the trade-off between geo-v flux from "aureole" model and the "background" mantle
- Colored lines define similar tradeoffs and high variability at all locations
- As you count more geo-v, you CANNOT separate the "aureole" vs "background" mantle signal
- Don't pay attention to numbers [©]

LLSVP geo-neutrino signature

High geo-v flux above the African and Pacific superplumes requires measured fluxed to be corrected before interpretation in terms of average Earth values

High variability regions (due to inter-model differences) are large on top of the LLSVPs

ULVZ geo-neutrino signature

Average signature is weaker and very different from that of the LLSVPs, with a pronounced peak in the Pacific and reduced emissions over the South Atlantic

High variability regions (due to uncertainty in locations of ULVZs) are not colocated with high flux regions

"Aureole" geo-neutrino signature

Geo-v signature of hypothesized "aureole" structures is weakest and has a pattern qualitatively similar to that of the LLSVPs

High variability (due to changing the location and width of the aureole regions) regions are co-located with high flux regions

W

A seismologist's dream detector

A directional detector placed half-way between the superplumes would be ideal for discriminating between various hypotheses regarding lower mantle reservoirs.

Conclusions

- Lower mantle has large, small, and intermediate scale structures with reduced Vs that may be enriched in U, Th, and K
- Geo-v signatures of these structures are large in comparison to average mantle flux
- Lateral variations in geo-v flux may bias estimates of average radiogenic heat budget
 - To avoid this, a single detector must be sited in low bias / low variability areas
 - Or, multiple detectors must be sited in regions with different tradeoffs between average and enriched signatures
- Multiple (two) oceanic detectors can constrain ULVZ and LLSVP enrichment in U, Th