
 
Dusty Aeiker, Roberta Rudnick, Bill McDonough & Phil Piccoli

University of Maryland, College Park, MD 20742  

GEOLOGICAL SETTING

RESULTSTHE BIG PICTURE

CONCLUSIONS
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SAMPLES
Sample               Locality

Xenoliths

 Mafic garnet-orthopyroxene granulite  Labait

 Garnet-biotite orthogneiss       Kisite

 Mafic garnet-orthopyroxene granulite  Kisite

Surface Samples

 Graphite schist           Loibor Serrit

 Garnet amphibolite          Lolikisale

WHY WILL ZIRCON AND RUTILE RECORD 

DIFFERENT TEMPERATURES?

Blocking temperature (Tc):  a function of both cooling rate 
and grain size. 

Cooling rates decrease → Blocking T’s decrease → More Zr 
diffuses out of rutile → Rutile will record lower temperatures. 

Zircon will retain most Ti (Ti diffusion is very slow) and record 
the temperature at which it crystallize.

ANALYTICAL TECHNIQUES
Electron Probe Microanalyzer:

- Zr in rutile and BSE images

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer:
- Ti in zircon
- Challenging due to small size of zircons

Cathodoluminescence (CL) Petrography Techniques:
-Image zoning in zircons
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XENOLITHS SURFACE SAMPLES

Sample       Rutile T Range Zircon T Range

         & Ave. T (ºC)  & Ave. T (ºC)

Xenoliths

 Mafic gt-opx gran., Labait 553-785, 662±71 906-1023,  939±28 

 Gt-bio ortho., Kisite   590-749, 676±52 785-1030, 847±6

 Mafic gt-gran., Kisite   751-794, 769±18 756-881, 794±10

Surface Samples

 Graph. schist, Loibor Serrit 754-810, 788±14 688-944, 800±19

 Gt amph., Lolikisale   651-765, 710±27 713-1020, 824±43

TEMPERATURES RETURNED BY RUTILE AND ZIRCON
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A A. ) Time-resolved spec-
trum of a zircon analysis 
from the mafic gt-opx 
granulite from Kisite.  Ti 
concentration = 12 ppm. 
B. ) Time-resolved spec-
trum of a zircon analysis 
from the  garnet-biotite 
orthogneiss xenolith from 
Kisite.  Ti 49 peak concen-
tration =114 ppm.

2 crustal xenoliths return zircon T’s > rutile T’s
Cooled slowly and isobarically in the present-day lower crust

1 crustal xenolith returns zircon T’s = rutile T’s
Cooled relatively quickly as it was uplifted during the final stages of the orogeny

Surface samples return zircon T’s  ≈ rutile T’s 
Large range in zircon T’s due to Ti zoning and possible multiple populations (detrial vs. meta-
morphic)

Zircon Rutile Zircon T calculated from 
peak in Ti (Ti zoning)

THE PROBLEM

METHODS

How to determine depth of origin of high-grade crustal xenoliths 
carried in Rift-basalts.

Temperatures of samples containing coexisting zircon and rutile can be calculated using 
the Zr-in-rutile and Ti-in-zircon thermometers developed by Watson et al. (2006).

Histories can be deduced based on the difference in temperature recorded by the zircon 
and rutile :
  If zircon T’s > rutile T’s → slow cooling
  If zircon T’s ≈ rutile T’s → fast cooling

Granulites from the present-day lower crust should experience slow cooling.
Granulites from the present-day upper crust that experience uplift during the final phase  
 of the orogeny should have cooled at a faster rate.
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 The Mozambique Fold Belt (MFB) of East Africa was generated by the 
Pan-African Orogeny

We want to better understand 
the evolution of the MFB and 
the chronology of the geologic 
events of the Pan-African, so 
samples from the MFB must be 
analyzed

Before analyzing the samples from MFB, we must first constrain their 
origin (present-day upper or lower crust)
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Deducing the depth of origin of granulite xenoliths from zircon-rutile thermometry:
A case study from Tanzania


