Deducing the depth of origin of granulite xenoliths from zircon-rutile thermometry: A case study from Tanzania Dusty Aeiker, Roberta Rudnick, Bill McDonough & Phil Piccoli University of Maryland, College Park, MD 20742

THE **BIG** PICTURE

The Mozambique Fold Belt (MFB) of East Africa was generated by the Pan-African Orogeny

We want to better understand the evolution of the MFB and the chronology of the geologic events of the Pan-African, so samples from the MFB must be analyzed

Before analyzing the samples from MFB, we must first constrain their origin (present-day upper or lower crust)

THE PROBLEM

How to determine depth of origin of high-grade crustal xenoliths carried in Rift-basalts.

METHODS

Temperatures of samples containing coexisting zircon and rutile can be calculated using the Zr-in-rutile and Ti-in-zircon thermometers developed by Watson et al. (2006). Histories can be deduced based on the difference in temperature recorded by the zircon

and rutile :

If zircon T's > rutile T's \rightarrow slow cooling

If zircon T's \approx rutile T's \rightarrow fast cooling

Granulites from the present-day lower crust should experience slow cooling. Granulites from the present-day upper crust that experience uplift during the final phase of the orogeny should have cooled at a faster rate.

GEOLOGICAL SETTING

morphic)

SAMPLES

Sample

Xenoliths	
Mafic garnet-orthopyroxene granulite	Lak
Garnet-biotite orthogneiss	Kis
Mafic garnet-orthopyroxene granulite	Kis
Surface Samples	
Graphite schist	Loi
Garnet amphibolite	Lol

ANALYTICAL TECHNIQUES

Electron Probe Microanalyzer:

- Challenging due to small size of zircons

-Image zoning in zircons

ACKNOWLEDGEMENTS

Dr. Sorena Sorensen, Dr. Shukrani Manya, Adam Mansur and NSF

REFERENCES

Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. *Contrib Mineral Petrol* 151(4): 413.

Sample	Rutile I Ralige	ZIICOII I Ralige
	& Ave. T (°C)	& Ave. T (°C)
Xenoliths		
Mafic gt-opx gran., Labait	553-785,662±71	906-1023, 939±28
Gt-bio ortho., Kisite	590-749, 676±52	785-1030,847±6
Mafic gt-gran., Kisite	751-794, 769±18	756-881,794±10
Surface Samples		
Graph. schist, Loibor Serrit	754-810, 788±14	688-944,800±19
Gt amph., Lolikisale	651-765,710±27	713-1020, 824±43