High-precision Ru isotopic measurements by multi-collector ICP-MS

Harry Becker,* Claude Dalpe and Richard J. Walker

Department of Geology, University of Maryland, College Park MD 20740, USA

Received 18th January 2002, Accepted 27th March 2002 First published as an Advance Article on the web 29th April 2002

Ruthenium isotopic data for a pure Aldrich ruthenium nitrate solution obtained using a Nu Plasma multi collector inductively coupled plasma-mass spectrometer (MC-ICP-MS) shows excellent agreement (better than 1 ϵ unit = 1 part in 10⁴) with data obtained by other techniques for the mass range between 96 and 101 amu. External precisions are at the 0.5–1.7 ϵ level (2 σ). Higher sensitivity for MC ICP-MS compared to negative thermal ionization mass spectrometry (N-TIMS) is offset by the uncertainties introduced by relatively large mass discrimination and instabilities in the plasma source-ion extraction region that affect the long-term reproducibility. Large mass bias correction in ICP mass spectrometry demands particular attention to be paid to the choice of normalizing isotopes. Because of its position in the mass spectrum and the large mass bias correction, obtaining precise and accurate abundance data for ¹⁰⁴Ru by MC-ICP-MS remains difficult. Internal and external mass bias correction schemes in this mass range may show similar shortcomings if the isotope of interest does not lie within the mass range covered by the masses used for normalization. Analyses of meteorite samples show that if isobaric interferences from Mo are sufficiently large (Ru/Mo < 10⁴), uncertainties on the Mo interference correction propagate through the mass bias correct for these inaccuracies, but such results are generally less precise than N-TIMS data.

Introduction

The motivation for high-precision Ru isotopic studies of solar system materials is primarily linked to the study of the short-lived ⁹⁸Tc–⁹⁸Ru (half-life 10 Ma) and ⁹⁹Tc–⁹⁹Ru (half-life 0.21 Ma) chronometers in meteorites. Variable abundances of ⁹⁸Ru and ⁹⁹Ru in various solar system objects may yield evidence for extant ⁹⁸Tc and ⁹⁹Tc in the early solar system and time constraints on chemical fractionations involving metal phases in meteorites. Furthermore, because of its short half-life, ⁹⁹Tc–⁹⁹Ru may help to constrain the interval between production of *s*-process nuclides in stars and their incorporation into the solar system. Such data may also provide limits on initial abundances of ⁹⁸Tc and ⁹⁹Tc, and implications for *p*- and *s*-process models of nucleosynthesis.

High-precision Ru isotopic studies by negative thermal ionization mass spectrometry (N-TIMS) reported differences for ⁹⁸Ru between terrestrial Ru and magmatic iron meteorites of up to 40 ε units (1 ε = 1 part in 10⁴),¹ and differences for ⁹⁹Ru between terrestrial Ru and chondritic metal at the 0.7 ε level.² However, a recent multi collector N-TIMS study conducted in our laboratory revealed no differences in the Ru isotopic composition of terrestrial materials, magmatic iron meteorites and chondrites at the 0.3–1.0 ε level.^{3,4} While the N-TIMS studies yielded the highest analytical precisions so far, the drawbacks are that the analyses are time-consuming and that relatively large quantities of Ru are necessary for multiple analyses (0.5–1 µg Ru per run).

Here we report results of a study of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for high-precision Ru isotopic measurements using the Nu Plasma at the University of Maryland. This technique has the advantage of a more efficient ionization process compared to N- or P (positive)-TIMS, thus giving potentially higher sensitivity and typically a shorter analysis time compared to TIMS. Because the isotopic composition of terrestrial Ru is now known to high precision and accuracy from N- and P-TIMS studies in several

laboratories,1-6 these data can be used as a benchmark to evaluate the performance of the MC-ICP-MS for high-precision measurements in this mass region in terms of sensitivity, precision and accuracy. Of particular interest is how well the exponential fractionation law describes mass bias for the complete mass spectrum of Ru isotopes using internal mass bias corrections in ICP-MS work. We show that it is difficult to obtain precise and accurate abundance data for ¹⁰⁴Ru (and by implication for other important r-process isotopes in this mass region) by this technique. Furthermore, systematic biases appear for isotopic ratios corrected for mass discrimination, when the masses of isotopes used for this normalization lie too far off the mass range of the isotopes of interest. Another major objective has been to evaluate the effects of small isobaric interferences from Mo on Ru isotopic ratios obtained on meteorite samples and it is shown that very efficient Mo-Ru separation is necessary to obtain precise and accurate Ru isotopic data on natural samples by the MC-ICP-MS technique.

Experimental

Reagents

All H_2O used was at least of 18.2 M Ω cm purity. HClO₄, HCl and HNO₃ were double quartz distilled, HBr was distilled in PFA Teflon, H_2SO_4 was double distilled (GFS). NaOH (Baker) and Na₂O₂ (Alfa Aesar), and NaBrO₃ (Aldrich), were reagentgrade quality, and CrO₃ was Puratronic-grade (Johnson– Matthey). The chemical separation procedures were performed in a clean room environment.

Instrumentation

All Ru isotopic measurements were performed on a Nu Instruments (Wrexham, UK) Nu Plasma MC-ICP-MS. This instrument has a double focusing Nier–Johnson geometry with 12 fixed Faraday cups and three electron multipliers. The electrostatic zoom optics permits a change in mass dispersion throughout the entire mass range.⁷ Solutions of samples and reference materials were aspirated using an Aridus microconcentric nebulizer (CETAC) refitted with a PFA spray chamber (ESI) and a PFA micro-flow nebulizer (ESI) with uptake rates of *ca*. 60–100 μ l min⁻¹. Operating parameters during this study are listed in Table 1.

Reference material

No Ru standard with certified isotopic composition is available. IUPAC has adopted the single-collector N-TIMS Ru isotopic measurements on Ru from five different commercial sources by Huang and Masuda⁵ as representative of average terrestrial Ru. Here, we use a Ru nitrate solution (in 2% HNO₃) prepared from Aldrich RuCl₃ as our terrestrial reference material. The Ru isotopic composition of this solution was determined by N-TIMS in our laboratory,^{3,4} and overlaps within $<\pm 1 \epsilon$ unit with the data in.⁵ For ICP-MS measurements, a 500 ng g⁻¹ Ru solution was used initially, but was replaced later with a 200 ng g⁻¹ Ru solution because of a substantial increase in sensitivity during the course of this study (see below).

Sample preparation and digestion

Small pieces of iron meteorites (1.540–2.708 g) were cut using a Leco 'Vari-cut' saw with diamond wafering blades, using deionized water as a coolant. The iron meteorite pieces were

Table 1 Nu Plasma MC-ICP-MS operating conditions

Gas flow rates—	
Ar cooling	13–14 l min ⁻¹
Ar auxiliary	$0.8-0.95 \ 1 \ min^{-1}$
Ar sweep ^a	$2.1-3.51 \text{ min}^{-1}$
N_2^a	7–12 ml min ⁻¹
Nebuliser pressure ^a	2.4–3.1 bar
Solution uptake rate ^a	$60-100 \ \mu l \ min^{-1}$
ESI spray chamber ^a	95 °C
Desolvation cell ^a	160 °C
Vacuum—	
Expansion chamber	2.1 mbar (Exp. 2)
I.	0.78 mbar (Exp. 3–7)
Extraction area	$\sim 2.5 \times 10^{-4}$ mbar
Transfer area	$\sim 3.5 \times 10^{-8}$ mbar
Analyzer	$\sim 2-3 \times 10^{-9}$ mbar
ICP rf, power	27.12 MHz, 1300 W
Sampler cone	Ni, 1.15 mm orifice
Skimmer cone	Ni, 0.6 mm orifice (Exp. 2,3)
	Ni, 0.6 mm wide angle (Exp. 5,7)
Extraction potentials	4000–1650 V
Sensitivity	$12-100 \text{ V} (\mu \text{g} \text{g}^{-1})^{-1}$
ESA V1 Deflection	5 V
ESA V2 Deflection	90 V
ESA Plates	229 V
Zoom lens ^c —	
	Cycle 1 (cycle 2)/V
Quad 1	-3 (8) Exp. 2, 3
-	8 (16) Exp. 5, 7
Quad 2	43 (12) Exp. 2, 3
-	32 (5) Exp. 5, 7
Lin 1	-1.5 (3.3) Exp. 2, 3
	-1.5(0) Exp. 5, 7
Lin 2	2.2 (-0.5) Exp. 2, 3
	0.5 (0) Exp. 5, 7
Q16	0 (0) Exp. 2, 3
-	-50 (-50) Exp. 5, 7
Integration time	10 s
Magnet delay time	2 s
<i>c</i> ,	

^{*a*} Aridus parameter. ^{*b*} See Table 3 for details. ^{*c*} Lin corr, cubic and Q15 set to 0. Exp. are experiments in Table 3.

abraded using carborundum and briefly leached in 11 M HCl. After dissolution in 20 ml concentrated HCl, trace amounts of carbon remained as insoluble residue. The supernatant was dried and re-dissolved in 0.1 M HCl. USNM (US Museum of Natural History) carbonaceous chondrite Allende standard reference powder (USNM 3529 Split 15, Pos. 8, 1.0304 g) and a piece of the ordinary chondrite Allegan (USNM 3279, 1.0463 g), ground in an agate mortar, were digested using the NaOH-Na₂O₂ fusion technique described in detail elsewhere.⁸ This technique has the advantage that it results in total digestion of the chondrites, including silicates and phases that are difficult to dissolve, such as spinel, platinum group element alloys, diamond, and carbides. Because of the large amount of chondrite digested, the quantities of reagents were doubled and the temperature was held at 600 °C for 60-90 min. After digestion, the cake was dissolved in H₂O and 19 N H₂SO₄.

Ruthenium separation

The PGEs were separated from the Fe–Ni matrix of the iron meteorites using four 2 ml cation exchange columns (AG 50-X8, 100–200 mesh) and 0.1 M HCl. Ruthenium was separated from the PGE and interfering elements such as Mo using a modified micro-distillation technique. A 1:2 mixture of concentrated HClO₄ and dichromate solution was used as the oxidant. RuO₄ was distilled at 80 °C for 2 h and collected in 3% H₂O₂. After micro-distillation, 13.5 \mbox{M} HNO₃ was added to the peroxide solution and carefully evaporated to near dryness under a heat lamp. The Ru fraction was dissolved in 10 $\mbox{µ}$ l of 13.5 \mbox{M} HNO₃, transferred to another Teflon beaker and diluted with 1–2 ml 2% HNO₃; it was then homogenized and was ready for analysis.

Ru was separated from the dissolved chondrites by oxidation and distillation of RuO_4 in a conventional distillation apparatus using 10 ml of a 20% solution of $NaBrO_3$ as the oxidant and 3 ml of 8.8 M HBr as the collector solution. The Ru fraction of the chondrites was also further cleaned by micro-distillation as previously described. Total chemistry Ru blanks for the iron meteorite and chondrite chemistries were 1.8 pg and 149 pg, respectively, and are insignificant.

Multi collector ICP-MS measurements

In the course of this study, a number of experiments aimed at increasing ion transmission and sensitivity were performed. High signal intensities are crucial for obtaining precise data on the minor isotope 98Ru (1.88%). These experiments are indicated and explained in Table 3. The most pronounced increases in sensitivity at a given uptake flow rate were noted for a decrease in vacuum pressure in the region of the extraction interface located between sampler and skimmer cone. This was achieved by interfacing a Leybold Trivac D65B rotary pump $(65 \text{ m}^3 \text{ min}^{-1})$ parallel with an Edwards E2M28 rotary pump $(32.2 \text{ m}^3 \text{ min}^{-1})$. The resulting pressure decrease from ~2.1 mbar to ~ 0.78 mbar was accompanied by nearly a factor of 2 increase in signal intensity, e.g., from ~2 V to ~4 V 102 Ru (31.6%) for a 500 ng g⁻¹ Ru solution at *ca*. 80 μ l min⁻¹ uptake rate (Table 3, Exp. 3). The pressures in source lens chamber and flight tube were not affected in a systematic way by the use of the big rotary pump. The instrument was tuned for a compromise of signal stability and high signal intensity, with preference of stability over intensity. The range of optimum Ar+N₂ sweep gas flow rates for the Aridus is indicated in Table 1. A further major improvement in sensitivity by ca. 50% was achieved by using a new-design wide-angle skimmer cone from Nu Instruments, resulting in typically ~2.4 V on 102 Ru for a 200 ng g⁻¹ Ru solution at ~60 μ l min⁻¹ (Table 3, Exp. 5, 7). The new skimmer cone required a substantial change in the

zoom lens potentials (Table 1). Higher aspiration rates and a new nebulizer used during the 10/22/01 session resulted in substantially higher signal intensities near 7 V 102 Ru.

Data were acquired in a two-cycle routine in static mode. The Faraday cup configuration and positions of the masses are indicated in Table 2. Baselines were measured for 30 s by applying 10 V ESA deflection at the beginning and end of each block (20 scans). On-peak zeros were negligible before each standard or sample introduction. For standards, typically 60-100 scans were acquired. For samples, 20-80 scans were acquired, depending on the amount of Ru available. Masses 96-102 were measured in the first cycle of each scan, with mass 97 as the monitor for Mo interferences on masses 96, 98, and 100. A second cycle (Masses 100-105) was devised to measure 104Ru (as well as 100Ru, 101Ru and 102Ru) and to monitor Pd interferences on masses 102 and 104 via 105Pd. The data were not corrected for Faraday cup biases. Interferences from Mo and mass discrimination were corrected on-line using high-precision Mo isotopic data⁹ and an exponential mass fractionation law.10 Mass bias in cycle 1 was corrected to 96Ru/101Ru = 0.324851, as in most previous work. ¹⁰⁴Ru/¹⁰¹Ru in Table 3, collected in cycle 2, was normalized to 100Ru/101Ru = 0.738482, which is consistent with ${}^{96}Ru/{}^{101}Ru = 0.324851$ and

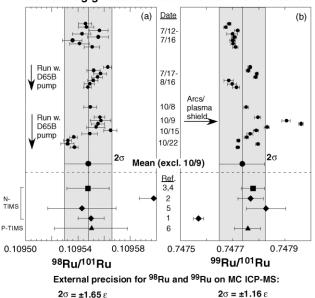
 Table 2
 Faraday cup configuration

F. cup	L4	L3	L2	L1	Ax	H1	H2	H3	H4	Н5
Cycle 1 Cycle 2		97 101			99 103		100 104		101 105	102

Table 3 Ru isotopic data for the Aldrich Ru reference solution^a

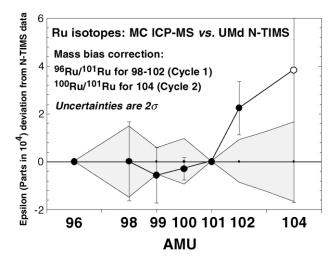
the data in Table 2 of ref. 5. However, as will be discussed below, this normalization does not yield optimal results for 102 Ru and 104 Ru.

Results and discussion


Terrestrial Ru reference material

Results for 26 analyses of Aldrich RuCl₃ ('standard') over a period of 4 months are shown in Table 3, Fig. 1 and Fig. 2. Because of higher signal intensities, in-run precisions are usually much better for MC-ICP-MS than for N- or P-TIMS. However, MC-ICP-MS shows larger fluctuations in measured and fractionation-corrected values on a day-by-day basis (Fig. 1). Improvement of the vacuum in the extraction region resulted in a minor decrease of the exponential mass fractionation factor (Exp. 3, Table 3). It also produced no systematic changes in the corrected ratios. We note, however, that a wide-angle skimmer cone not only increased sensitivity, but also significantly reduced the fractionation factor from $\sim 2.5\%$ amu⁻¹ to $\sim 1.9\%$ amu⁻¹. Mass bias effects are probably created in this region and in the plasma.11 These results suggest that changes in cone geometry and their effects on mass discrimination should be further explored. Molybdenum interferences in most of the standard runs are sufficiently small (Table 3) that corrections are insignificant or minor. Occasionally, larger Mo signals in standard runs were associated with melting in the plasma shield due to arcing in the front torch region. It is not clear if this led to vaporization of the stainless steel shield and direct con-

Date	Exp.	A. r.	¹⁰² Ru (V	V) α ₁	⁹⁷ Mo/ ¹⁰¹ Ru	⁹⁸ Ru/ ¹⁰¹ Ru	⁹⁹ Ru/ ¹⁰¹ Ru	¹⁰⁰ Ru/ ¹⁰¹ Ru	¹⁰² Ru/ ¹⁰¹ Ru	¹⁰⁴ Ru/ ¹⁰¹ Ru
Terrestrial Ru (Aldrich RuCl ₃)—										
07/12/01	(2a)	80	1.90	-2.45	0.000009 ± 2	0.109545 ± 5	0.747687 ± 8	0.738412 ± 7	1.84987 ± 2	1.09197 ± 4
07/13/01	(2a)	80	1.94	-2.47	0.000004 ± 2	0.109546 ± 6	0.747673 ± 7	0.738413 ± 8	1.84997 ± 2	1.09203 ± 4
07/13/01	(2a)	80	1.92	-2.39	0.000004 ± 2	0.109556 ± 7	0.747717 ± 10	0.738432 ± 10	1.85019 ± 2	1.09194 ± 5
07/13/01	(2a)	80	1.88	-2.40	0.000005 ± 3	0.109543 ± 7	0.747699 ± 21	0.738405 ± 12	1.85015 ± 3	1.09192 ± 5
07/16/01	(2a)	80	1.94	-2.49	0.000005 ± 2	0.109555 ± 8	0.747706 ± 10	0.738424 ± 9	1.85016 ± 3	1.09186 ± 5
07/16/01	(2a)	80	1.96	-2.49	0.000009 ± 3	0.109536 ± 7	0.747700 ± 11	0.738423 ± 10	1.85021 ± 2	1.09187 ± 6
07/16/01	(2b)	80	2.03	-2.51	0.000012 ± 2	0.109541 ± 7	0.747702 ± 9	0.738433 ± 9	1.85022 ± 3	
07/16/01	(2a)	80	2.02	-2.48	0.000002 ± 2	0.109551 ± 6	0.747711 ± 10	0.738421 ± 8	1.85017 ± 2	1.09197 ± 6
07/17/01	(3)	80	3.70	-2.37	0.000002 ± 1	0.109563 ± 3	0.747766 ± 7	0.738437 ± 7	1.85002 ± 2	1.09175 ± 4
07/17/01	(3)	80	3.80	-2.37	0.000004 ± 1	0.109552 ± 5	0.747759 ± 8	0.738429 ± 7	1.85003 ± 2	1.09174 ± 5
07/17/01	(3)	80	3.87	-2.29	0.000004 ± 1	0.109557 ± 5	0.747792 ± 6	0.738446 ± 6	1.84997 ± 2	1.09172 ± 4
07/17/01	(3)	80	3.89	-2.29	0.000003 ± 1	0.109555 ± 4	0.747788 ± 7	0.738435 ± 6	1.84996 ± 2	1.09167 ± 4
08/16/01	(3)	80	3.61	-2.33	0.000012 ± 1	0.109551 ± 4	0.747685 ± 18	0.738442 ± 6	1.85006 ± 2	1.09275 ± 22
08/16/01	(3)	80	4.35	-2.42	0.000007 ± 1	0.109549 ± 4	0.747698 ± 18	0.738429 ± 7	1.85004 ± 2	1.09263 ± 18
08/16/01	(3)	80	4.46	-2.41	0.000006 ± 1	0.109547 ± 3	0.747714 ± 14	0.738432 ± 6	1.85002 ± 1	1.09210 ± 8
10/8/01	(5)	60	2.53	-1.97	0.000004 ± 2	0.109549 ± 5	0.747752 ± 9	0.738439 ± 10	1.85001 ± 2	1.09173 ± 6
10/9/01	(7)	60	2.40	-1.91	0.000010 ± 2	0.109557 ± 4	0.747796 ± 12	0.738432 ± 9	1.84996 ± 2	1.09165 ± 6
10/9/01	(7)	60	2.38	-1.80	0.000058 ± 14	0.109557 ± 8	0.747905 ± 16	0.738433 ± 12	1.84989 ± 3	1.09158 ± 8
10/9/01	(7)	60	2.27	-1.92	0.000009 ± 2	0.109555 ± 5	0.747962 ± 9	0.738429 ± 8	1.84998 ± 2	1.09160 ± 5
10/15/01	(7)	60	2.35	-1.86	0.000012 ± 2	0.109554 ± 7	0.747831 ± 10	0.738475 ± 8	1.84993 ± 2	1.09165 ± 6
10/15/01	(7)	60	2.46	-1.89	0.000005 ± 2	0.109565 ± 5	0.747789 ± 10	0.738433 ± 10	1.84993 ± 3	1.09164 ± 5
10/15/01	(7)	60	2.57	-1.90	0.000011 ± 2	0.109549 ± 6	0.747766 ± 11	0.738434 ± 10	1.84993 ± 2	1.09192 ± 10
10/22/01	(7)	100	7.60	-1.85	0.000016 ± 1	0.109537 ± 3	0.747753 ± 8	0.738414 ± 6	1.84996 ± 2	1.09168 ± 5
10/22/01	(7)	100	6.87	-1.92	0.000015 ± 1	0.109532 ± 3	0.747722 ± 6	0.738396 ± 5	1.85006 ± 1	1.09167 ± 5
10/22/01	(7)	100	6.65	-1.75	0.000019 ± 2	0.109532 ± 5	0.747796 ± 8	0.738446 ± 9	1.84993 ± 3	1.09155 ± 6
10/22/01	(7)	100	6.44	-1.88	0.000012 ± 1	0.109537 ± 3	0.747719 ± 6	0.738399 ± 5	1.85007 ± 1	1.09176 ± 5
7/12-10/22	Mean (exc	1. 10/9	data)		0.000008 ± 10	0.109548 ± 18	0.747736 ± 87	0.738428 ± 35	1.85004 ± 21	1.09189 ± 60
ε						0.02 ± 1.6	$5 -0.57 \pm 1.1$	$6 -0.29 \pm 0.4$	7 2.3 ± 1.1	3.8 ± 5.5
Becker and	Walker 20	02 N-T	IMS refs.	3,4	0.000019 ± 7	0.109548 ± 16	0.747778 ± 44	0.738449 ± 71	1.84962 ± 16	1.09147 ± 18
Yin 1995 N-TIMS ref. 2						0.109598 ± 11	0.747769 ± 48	0.738430 ± 25	1.84968 ± 6	1.09156 ± 11
Huang and I	Masuda 19	97 N-T	IMS ref.	5		0.109543 ± 26	0.747828 ± 75	0.738482 ± 74	1.84947 ± 15	1.09150 ± 15
Smoliar 1998 N-TIMS ref. 1						0.109550 ± 10	0.747570 ± 20			
Poths <i>et al.</i> 1987 P-TIMS Ref. 6 $0.109550 \pm 28 0.747757 \pm 49 0.738608 \pm 94 1.84998 \pm 6 1.09234 \pm 6$									1.09234 ± 63	
All among an action from individual must are 25, uncertainties on the last divite of the number Emerge on the means and the literature date are 25. Eve										


^{*a*} All errors on ratios from individual runs are $2\sigma_m$ uncertainties on the last digits of the number. Errors on the means and the literature data are 2σ . Exp., experiments; (2a) no D65B pump, 500 ng g⁻¹ Ru; (2b) like 2a, but 1-cycle experiment; (3) D65B pump, 500 ng g⁻¹ Ru; (5) wide-angle skimmer cone, no D65B pump, 200 ng g⁻¹ Ru; (7) wide-angle skimmer cone, D65B pump, 200 ng g⁻¹ Ru. A. r., approximate aspiration rate in μ l min⁻¹; α_1 , cycle 1 exponential fractionation factor, calculated using ⁹⁶Ru/¹⁰¹Ru = 0.324851. ¹⁰⁴Ru/¹⁰¹Ru was measured during cycle 2, and mass discrimination was corrected to ¹⁰⁰Ru/¹⁰¹Ru = 0.738482. ε = (Ratio_{ICP-MS}/Ratio_{N-TIMS} -1) × 10⁴). Uncertainties on ε are 2σ errors for MC-ICP-MS data only.

tamination of the plasma. A more likely explanation for the enhanced Mo signals could be indirect contamination from the deposits that develop on the sampler cone in the course of failed ignition due to a burned shield. As a consequence of these problems, deteriorated stability may have affected Ru isotopic ratios and mass bias correction on 10/9/01 (Fig. 1, Table 3). For this reason, standard data obtained on 10/9/01 were excluded from long-term means and 2σ reproducibility in Table 3. Interferences from ¹⁰²Pd and ⁹⁶Zr (monitored on mass 91 before each run) were insignificant. The interference from ¹⁰⁴Pd on average comprised about 0.6 ε (range between 0.3 and 1.3 ε) and was corrected using ¹⁰⁵Pd. We found no evidence for

200-500 ng g⁻¹ Aldrich Ru on MC ICP-MS 7-10/2001

Fig. 1 98 Ru/{}^{101}Ru (a) and 99 Ru/{}^{101}Ru (b) data obtained by MC-ICP-MS for 200–500 ng g⁻¹ of Aldrich Ru in 2% HNO₃, analyzed between 7/2001 and 10/2001. Small symbols are individual runs and their $2\sigma_m$ errors. Large circles are means and and gray band $\pm 2\sigma$ external precisions over this period (excluding the data collected on 10/9). 'D65B pump' refers to additional use of a large-volume mechanical pump to improve the vacuum pressure in the sampler–skimmer cone area. Also shown are data obtained by N-TIMS^{1–5} and P-TIMS.⁶ Analysis dates are indicated between the two panels.

Fig. 2 Epsilon (parts in 10⁴) deviations of the means of Ru isotopic data measured by MC ICP-MS from N-TIMS data obtained on the UMD SECTOR 54 instrument.^{3,4} The gray field indicates the $\pm 2\sigma$ uncertainties of the N-TIMS data in ϵ units. Note that ϵ 96 and ϵ 101 are 0 because these are used for normalization in both N-TIMS and the first cycle of the MC-ICP-MS measurements. ¹⁰⁴Ru (open circle) was normalized to ¹⁰⁰Ru/¹⁰¹Ru in cycle 2.

significant production of Ar molecular ions (*e. g.*, ⁵⁶Fe⁴⁰Ar, ⁶⁰Ni⁴⁰Ar) that might cause interferences in this mass region.

In Table 3, the mean of the data on 23 runs of Aldrich Ru are normalized to our N-TIMS data^{3,4} and shown in the ε notation $[\epsilon = (ratio_{ICP-MS}/ratio_{N-TIMS} -1) \times 10^4])$ as parts in 10⁴ deviations from our N-TIMS data. The agreement of the MC-ICP-MS data with N-TIMS and P-TIMS data are better than ± 1 ε unit for ⁹⁸Ru/¹⁰¹Ru and ⁹⁹Ru/¹⁰¹Ru (Table 3, Fig. 1) and, by implication, also for the normalizing ratio 96Ru/101Ru. (The origin of the high 98Ru/101Ru in ref. 2 and the low 99Ru/101Ru in ref. 1 is not clear). Long-term external precisions are comparable to N-TIMS for ${}^{98}Ru/{}^{101}Ru$ (±1.65 ε), but poorer by a factor of 2 for ⁹⁹Ru/¹⁰¹Ru (±1.16 ε) in MC-ICP-MS. Low relative precision of 98Ru/101Ru compared to 99Ru/101Ru reflects the low abundance of 98Ru. The agreement with N-TIMS is also excellent for 100Ru/101Ru, with a factor of 2 better external precision for MC-ICP-MS (±0.47 ε) than for N-TIMS. Compared to N-TIMS data, ¹⁰²Ru/¹⁰¹Ru and ¹⁰⁴Ru/¹⁰¹Ru are too high by +2.3 and +3.8 ε units in MC-ICP-MS, respectively, with relatively large 2σ uncertainties (Fig. 2, Table 3). It should be noted that P-TIMS data for 100Ru/101Ru, 102Ru/101Ru and 104 Ru/ 101 Ru are also too high by +2 to +8 ε units. This has been attributed to possible isobaric interferences from complex ions.6 Agreement between MC-ICP-MS data obtained for the mass range 96-101 and other techniques indicates that no interferences other than Mo affected this mass range. Because isobaric interferences from Pd are insignificant for mass 102, and were corrected for 104, the most plausible explanations for the deviations found for these Ru masses in MC ICP-MS are either unknown interferences or, more likely, inappropriate mass bias correction.

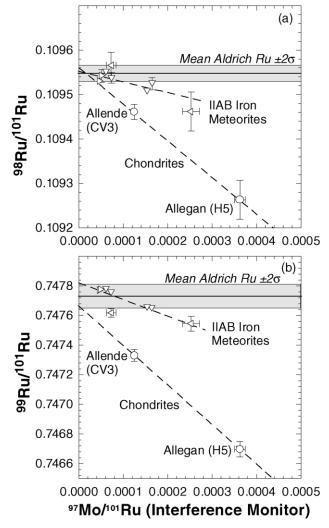
The fractionation factors, α_1 in Table 3, show that MC-ICP-MS is characterized by a relatively large mass bias (1.8-2.5% amu⁻¹), compared to N-TIMS (typically between 0.1 and 0.25% amu-1). Excellent agreement of the MC-ICP-MS data with data obtained by other techniques for Ru isotopes in the mass range between m = 96 and 101 (Fig. 2) indicates that for these masses the exponential law and the normalizing ratio 96Ru/101Ru provide an accurate description of instrumental mass discrimination. Using a power law instead of the exponential law results in ratios that are too high (98Ru/101Ru, ⁹⁹Ru/¹⁰¹Ru, ¹⁰⁰Ru/¹⁰¹Ru) or too low (¹⁰²Ru/¹⁰¹Ru, ¹⁰⁴Ru/¹⁰¹Ru) by +4 to +8 ε units compared to N-TIMS data. The mass bias correction employed in the first cycle is optimized for 98Ru and ⁹⁹Ru, and hence does not cover ¹⁰²Ru appropriately because the mean of the masses covered by the normalizing ratio is 98.5 amu. Consequently, 102Ru/101Ru measured in the first cycle is $2.3 \pm 1.1 \epsilon$ units too high and slightly less precise than the N-TIMS data. The effects of improper mass bias corrections are more pronounced in MC-ICP-MS because of the large mass bias. It is less evident in our N-TIMS data in the form of a correlation of long-term 2σ errors and mass number in the numerator of Ru isotopic ratios between 99Ru and 104Ru.12 The fractionation-corrected 104Ru/101Ru data in Fig. 2 and Table 3

Table 4 Results for alternative normalization procedures of cycle 2 rawdata (Aldrich Ru standard) a

	¹⁰⁰ Ru/ ¹⁰¹ Ru	¹⁰² Ru/ ¹⁰¹ Ru	¹⁰⁴ Ru/ ¹⁰¹ Ru
A. Noi	malization to 104Ru/10		
	0.738547 ± 102	1.84997 ± 32	
ε	1.32 ± 1.39	1.90 ± 1.71	
B. Nor	malization to 102Ru/10	1 Ru = 1.84947 ^b	
	0.738751 ± 224		1.090719 ± 42
ε	4.1 ± 3.0		-6.9 ± 3.9

^{*a*} The isotopic ratios are the means and associated 2σ uncertainties (last digits) collected during cycle 2 of the Aldrich Ru standard runs in Table 3, using different corrections for mass discrimination. ^{*b*} Consistent with ⁹⁶Ru/¹⁰¹Ru = 0.324851 and the data in Table 2 of ref. 5. ε calculated as in Table 3.

Table 5	Ru isotopic	data for iron	meteorites and	chondrites ^a
---------	-------------	---------------	----------------	-------------------------


Date	Sample	A. r.	¹⁰² Ru(v)	α_1	⁹⁷ Mo/ ¹⁰¹ Ru	⁹⁸ Ru/ ¹⁰¹ Ru	⁹⁹ Ru/ ¹⁰¹ Ru	¹⁰⁰ Ru/ ¹⁰¹ Ru	¹⁰² Ru/ ¹⁰¹ Ru
Iron meteorites—									
07/16/01	CM1a	80	0.48	-2.49	0.000073 ± 11	0.109566 ± 29	0.747619 ± 30	0.738405 ± 25	1.85029 ± 6
07/16/01	CM1b	80	0.32	-2.50	0.000253 ± 19	0.109462 ± 44	0.747546 ± 50	0.738380 ± 37	1.85045 ± 8
10/9/01	C1A1	60	1.21	-1.98	0.000165 ± 4	0.109524 ± 14	0.747653 ± 14	0.738341 ± 16	1.85007 ± 4
10/22/01	C1A1	100	3.72	-1.95	0.000155 ± 3	0.109508 ± 8	0.747659 ± 18	0.738324 ± 9	1.85005 ± 5
10/9/01	C1A2	60	2.60	-1.98	0.000074 ± 5	0.109537 ± 12	0.747760 ± 17	0.738397 ± 14	1.84995 ± 5
10/9/01	C1A2	60	2.57	-1.98	0.000062 ± 2	0.109551 ± 6	0.747784 ± 11	0.738410 ± 10	1.84991 ± 3
10/15/01	BC1a	60	2.06	-1.83	0.000051 ± 5	0.109542 ± 14	0.747780 ± 25	0.738432 ± 24	1.84979 ± 7
10/22/01	BC1a	100	5.72	-1.93	0.000047 ± 1	0.109530 ± 6	0.747769 ± 11	0.738385 ± 10	1.84995 ± 2
10/22/01	BC1b	100	4.39	-1.94	0.000085 ± 1	0.109518 ± 5	0.747716 ± 9	0.738362 ± 10	1.85001 ± 2
Chondrites—									
08/16/01	Alg1	80	0.45	-2.31	0.000363 ± 12	0.109263 ± 44	0.746699 ± 52	0.737697 ± 31	1.85186 ± 8
08/16/01	All1	80	1.09	-2.44	0.000125 ± 6	0.109461 ± 17	0.747332 ± 41	0.738064 ± 22	1.85068 ± 4
^{<i>a</i>} Meteorites: CM, Central Missouri; C, Coahuila; BC, Bennett County; Alg, Allegan; All, Allende. Other abbrevations, see Table3. All errors on ratios from individual runs are $2\sigma_m$ uncertainties on the last digits of the number.									

were obtained by normalization to 100Ru/101Ru in cycle 2. This normalizing ratio is clearly inappropriate, because ¹⁰⁴Ru is neither included in the mass range covered by the normalizing ratio (mean mass 100.5 amu), nor does it lie close to these masses. Table 4 shows results for long-term reproducibilities of the Aldrich standard in the mass range m = 100-104, using alternative normalization schemes for data collected in cycle 2. Normalization to 104Ru/100Ru covers a large enough mass range that should allow the acquisition of precise data for ¹⁰¹Ru and ¹⁰²Ru. Thus normalized, ¹⁰⁰Ru/¹⁰¹Ru and ¹⁰²Ru/¹⁰¹Ru collected in cycle 2 overlap with the N-TIMS data, albeit with relatively large 2σ errors (Table 4). This implies that there are no interferences on ¹⁰⁴Ru, other than the corrected interference from Pd. An alternative normalization scheme that employs ¹⁰²Ru/¹⁰¹Ru (Table 4) works less well. It overestimates ¹⁰⁰Ru/ ¹⁰¹Ru by 4.1 \pm 3.0 ϵ units and underestimates ¹⁰⁴Ru/¹⁰¹Ru by $-6.9 \pm 3.9 \epsilon$ units, most likely because the mean mass covered by both ratios is lower or higher than that of ¹⁰²Ru/¹⁰¹Ru. A recent high-precision study of Nd isotopes using MC-ICP-MS also reported systematic inaccuracies and degradation of precisions of isotopic abundances for masses significantly different from the mean mass covered by the ratio used for mass bias correction.¹³ These results highlight the limitations imposed by the large mass bias in MC-ICP-MS for high-precision isotopic measurements. This requires much more attention towards the proper choice of normalizing isotopes than in most TIMS studies. In some cases such inaccuracies may be corrected by second-order mass bias corrections.13 We note that some isotopes of cosmochemical relevance, such as 142Nd, 96Zr, ¹⁰⁰Mo and ¹⁰⁴Ru, lie either at the lower or upper end of the mass range of multi-isotopic elements. Because of the mass bias effects in MC-ICP-MS, these isotopes are more difficult to measure to high precision and accuracy than other isotopes of the same elements.

Meteoritic Ru

The samples analyzed here (Table 5) are the Group IIAB magmatic iron meteorites Bennett County (BC1a and b), Coahuila (C1A1 and 2), and Central Missouri (CM1a and b), the H5 ordinary chondrite Allegan (Alg1) and the CV3 carbonaceous chondrite Allende (All1). Except for CM, all samples were analyzed before at least once or multiple times by N-TIMS.^{3,4} Signal intensities on ¹⁰²Ru (0.3–3.7 × 10⁻¹¹ A) for samples were comparable or lower than for standards. All samples show a small and variable Mo interference that is significantly larger than the Mo interference in standard runs. This is surprising since all samples were micro-distilled and care was taken to collect only liquid from the tip of the conical area of the beaker. The source of the Mo may be either the

Effect of interfering ⁹⁶Mo on Ru isotopic ratios via mass bias correction

Fig. 3 Interference- and mass discrimination-corrected 98 Ru/ 101 Ru (a) and 99 Ru/ 101 Ru (b) data for chondrites and iron meteorites vs. 97 Mo/ 101 Ru (see Table 5). The meteorite data shows negative correlations with different slopes for chondrites vs. iron meteorites. The intercept at 97 Mo/ 101 Ru = 0 indicates that these meteorites have normal Ru isotopic compositions.

sample itself, or the oxidant mixture, fine drops of which may have contaminated the trap area, or the H_2O_2 . We note that the same techniques were used for Ru separations in our N-TIMS study, without resulting in enhanced Mo signals. This is most certainly a result of the different ionization conditions for Ru vs. Mo in N-TIMS.

Because the amounts of sample Ru were limited, the data were collected in a single-cycle routine on masses 96-102, without ¹⁰⁴Ru (Table 5), but other conditions were identical to standard runs. Analyses of sample aliquots with the lowest 97Mo/101Ru such as C1A2 or BC1a show mass bias- and interference-corrected ratios that are close to or overlap with the values for the Aldrich standard. Precise N-TIMS measurements of the Ru isotopic composition of these samples are consistent with these results.^{3,4} However, corrected ratios for other aliquots of samples measured by MC-ICP-MS are either too low (98Ru/101Ru, 99Ru/101Ru, 100Ru/101Ru) or too high (102Ru/ ¹⁰¹Ru). Fig. 3 shows that interference- and fractionationcorrected 98Ru/101Ru and 99Ru/101Ru ratios of meteorites show negative correlations with the magnitude of the Mo interference as monitored by 97Mo/101Ru. Similar relationships exist for ¹⁰⁰Ru/¹⁰¹Ru and ¹⁰²Ru/¹⁰¹Ru (positive correlation). Even at a very modest level of Mo in the sample, the interference correction on ⁹⁶Mo and associated uncertainties propagate into the mass bias correction, resulting in systematic offsets of the corrected isotopic ratios. In Fig. 3, the slopes for the chondrite and iron meteorite lines are different. Because the amount of data is limited, it is unknown whether this represents a matrix effect or just an increase in scatter at higher ⁹⁷Mo/¹⁰¹Ru. Linear extrapolation towards ${}^{97}Mo/{}^{101}Ru = 0$, using separate linear regressions, yields 98 Ru/ 101 Ru = 0.10956 ± 4 and 0.10955 ± 1, 99 Ru/ 101 Ru = 0.74766 ± 7 and 0.74783±1, 100 Ru/ 101 Ru = 0.73826 ± 4 and 0.73843 ± 1 , ${}^{102}Ru/{}^{101}Ru = 1.85006 \pm 9$ and 1.84985 ± 3 , for the chondrite and iron meteorite data, respectively. These values are close to or indistinguishable from the terrestrial Ru isotopic composition. In the case of samples of unknown isotopic compositions, Mo must either be separated nearly quantitatively ($Ru/Mo > 10^4$), or a number of aliquots must be measured that show some variability in 97Mo/101Ru to permit linear regression of the data. The latter approach will introduce additional uncertainties. The results suggest that Mo impurities in the Ru fraction represent the largest obstacle to

obtaining precise and accurate Ru isotopic data on natural samples by MC-ICP-MS.

Acknowledgements

We thank Bill McDonough for his enthusiastic advice in the course of this study and Ian Bowen and Nu Instruments for help and advice to get the Nu Plasma going and for providing the free wide-angle skimmer cone. Thanks also go to Roy Clarke and Glenn MacPherson (USNM) for providing the meteorite samples. The manuscript was improved by comments from Bill McDonough, Roberta Rudnick and an anonymous referee. This work was supported by NASA grant NAG 54769 and and NSF grant EAR-0001921.

References

- 1 M. I. Smoliar, *Lunar and Planetary Science XXIX Conference*, Houston, 1998, Abstract #1202.
- 2 Q. Yin, PhD thesis, University of Mainz, 1995.
- 3 H. Becker and R. J. Walker, *Chem. Geol.*, submitted for publication.
- 4 H. Becker and R. J. Walker, *Lunar and Planetary Science XXXIII* Conference, Houston, 2002, Abstract #1018.
- 5 M. Huang and A. Masuda, Anal. Chem., 1997, 69, 1135.
- 6 H. Poths, S. Schmitt-Strecker and F. Begemann, *Geochim. Cosmo-chim. Acta*, 1987, 51, 1143.
- 7 N. S. Belshaw, P. A. Freedman, R. K. O'Nions, M. Frank and Y. Guo, Int. J. Mass Spectrom., 1998, 181, 51.
- J. W. Morgan and R. J. Walker, *Anal. Chim. Acta*, 1989, 222, 291.
 Qi Lu and A. Masuda, *Int. J. Mass Spectrom. Ion Process.*, 1994, 130,
- 65.
 10 W. A. Russell, D. A. Papanastassiou and T. A. Tombrello, *Geochim. Cosmochim. Acta*, 1978, 42, 1075.
- 11 G. R. Gilson, D. J. Douglas, J. Fulford, K. W. Halligan and S. D. Tanner, Anal. Chem., 1988, 60, 1472.
- 12 H. Becker and R. J. Walker, manuscript in preparation.
- 13 D. Vance and M. Thirlwall, Chem. Geol., 2002, in the press.