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Rutile-Bearing Refractory
Eclogites: Missing Link Between

Continents and Depleted
Mantle

Roberta L. Rudnick, Matthias Barth, Ingo Horn,
William F. McDonough

A mass imbalance exists in Earth for Nb, Ta, and possibly Ti: continental crust
and depleted mantle both have subchondritic Nb/Ta, Nb/La, and Ti/Zr, which
requires the existence of an additional reservoir with superchondritic ratios,
such as refractory eclogite produced by slab melting. Trace element compo-
sitions of minerals in xenolithic eclogites derived from cratonic lithospheric
mantle show that rutile dominates the budget of Nb and Ta in the eclogites and
imparts a superchondritic Nb/Ta, Nb/La, and Ti/Zr to the whole rocks. About
1 to 6 percent by weight of eclogite is required to solve the mass imbalance
in the silicate Earth, and this reservoir must have an Nb concentration $ 2 parts
per million, Nb/La $ 1.2, and Nb/Ta between 19 and 37—values that overlap
those of the xenolithic eclogites. As the mass of eclogite in the continental
lithosphere is significantly lower than this, much of this material may reside in
the lower mantle, perhaps as deep as the core-mantle boundary.

The elements Ti, Zr, Nb, Ta, and rare earth
elements (REE) are refractory and lithophile
and therefore should exist in chondritic relative
abundances in the silicate Earth. Continental
crust and depleted mantle (DM) [mid-ocean

ridge basalt (MORB) source] generally are as-
sumed to be geochemically complementary res-
ervoirs within the Earth. However, both reser-
voirs have subchondritic Nb/La (1–4). A sim-
ilar observation is made about Nb/Ta ratios.
These elements share the same valence state
(15) and have matching atomic radii (5), and
they are thought to be geochemically insepara-
ble. However, recent analyses (6) have demon-

strated that Nb/Ta ratios are subchondritic in
MORB and near-ridge seamounts (7–9), ocean
island basalts (OIB) (7, 10), and the upper
continental crust (11, 12). Because Nb is more
incompatible than Ta in clinopyroxene during
mantle melting (13), the DM and the source of
OIB should have even lower Nb/Ta ratios. A
third element ratio that also may not mass bal-
ance in Earth is Ti/Zr. The continental crust,
MORB, and OIB have Ti/Zr ratios below 115,
the chondritic ratio (1). However, because Zr is
more incompatible than Ti (13), partial melts
should have lower Ti/Zr than their source re-
gions and the mass imbalance in this case is not
clear. The DM and OIB sources could have
chondritic or even superchondritic Ti/Zr [as
massif peridotites do (14)]. Nevertheless, the
subchondritic Ti/Zr in MORB and continental
crust suggests that another reservoir exists that
is Ti enriched relative to Zr.

The above observations require the exis-
tence of an additional reservoir that contains
appreciable Nb, Ta, and Ti with superchon-
dritic Nb/La, Nb/Ta, and Ti/Zr—features
that, until now, have not been observed in
common igneous and metamorphic rocks
(15). McDonough (1) suggested that refrac-
tory, rutile-bearing eclogite may satisfy the
mass balance requirements for Ti, Nb, and Ta
in the silicate Earth. Here we show that
eclogites, sampled in xenoliths from cratonic
kimberlites, do indeed have the requisite
trace element compositions to satisfy this
mass imbalance.

Rutile (TiO2) is a common accessory
phase in metamorphic rocks and it can have
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high concentrations of high field strength ele-
ments, particularly Nb and Ta. For this reason,
rutile has been considered by some to be the
phase that is responsible for the marked Nb and
Ta depletions seen in arc magmas (16). Rutiles
from continental crustal rocks (17, 18) have Nb
contents greater than 100 parts per million
(ppm) with Nb/Ta ratios that generally cluster
about the chondritic ratio of 17.4 6 0.5 (19) or
lower (20) (Fig. 1A). Metasomatic rutiles from
cratonic peridotites (21, 22) are characterized
by high Nb contents (0.3 to 0.5 weight %) and
chondritic Nb/Ta ratios. In contrast, rutiles from
eclogite xenoliths carried in kimberlite pipes
from Siberia (23) and western Africa (24, 25)
have more variable Nb contents and Nb/Ta
ratios and many have Nb/Ta ratios that are
chondritic to strongly superchondritic; the pop-
ulation forms a log-normal distribution and has
a geometric mean value of 24 (n 5 19) (26).

Although rutile is an accessory phase in
the eclogites (27), it dominates the budget of
Nb and Ta (28). Thus, the Nb/Ta ratio of the
whole rock eclogite equals that of the rutile,
and we can conclude that, on average, the
xenolithic eclogites have superchondritic Nb/
Ta ratios.

Determining the Nb/La ratio of the eclogites
is more difficult. Whole rock data are unreliable
because of variable degrees of large-ion litho-
phile element (29) enrichment produced by in-
teraction with the host kimberlite (30). Thus,
the preentrainment eclogite compositions must
be calculated from primary mineral composi-
tions and modes (31). This requires relatively
precise knowledge of the modal abundance of
rutiles, which cannot be determined from point-
counting these coarse-grained rocks. We there-
fore calculated modal rutile from Ti mass bal-
ance (32), which yields proportions of 0.1 to
0.9% by weight, with a relative error of #10%.
The resulting Nb/La of all but five of the re-
constructed eclogites are superchondritic, with
a geometric mean Nb/La of 2.7 (n 5 17) (26)
(Fig. 1B).

In a similar fashion we calculated the Ti/Zr
ratio of the bulk eclogites. All but one of our
samples have superchondritic ratios (Fig. 1C).
These eclogites are thus distinct from MORB,
continental crust, and OIB, which have sub-
chondritic Ti/Zr ratios. Interestingly, this fea-
ture is a result of Zr (and Hf ) depletion in the
eclogites rather than Ti enrichment; that is, on
mantle-normalized plots, Ti is not anomalous
relative to REE of similar incompatibility such
as Eu and Gd, but Zr and Hf are distinctly
depleted (relative to Sm and Eu).

The above data demonstrate that xenolithic
eclogites have, on average, superchondritic Nb/
Ta, Nb/La, and Ti/Zr ratios and thus support the
contention that refractory, rutile-bearing
eclogites may be important in the mass balance
of Nb, Ta, and Ti in Earth. The mass of this
reservoir is not easily constrained from the
trace-element compositions of the eclogites,

given the rather large standard deviations of
Nb/Ta, Nb/La, and Ti/Zr observed for these
samples. We have therefore calculated its mass
as a function of the mass fraction of DM by

using the Al2O3 contents of continental crust
(2), primitive mantle (33), median worldwide
eclogite (34), and DM, assuming that the DM
contains between 80 and 95% of the Al2O3

present in the primitive mantle. Al2O3 was
chosen for this calculation because it is the only
major element that meets all of the following
criteria: (i) its concentration is well defined in
the continental crust, (ii) its concentration is
markedly different between DM and eclogites,
and (iii) it exhibits a relatively narrow range of
variability in eclogites (34). An Al2O3 deficit
exists in Earth if the DM is 40% or more of the
mantle (Fig. 2A), a likely minimum proportion
based on the concentrations of incompatible

Fig. 2. (A) Gray field shows the deficit in Al2O3
that exists in the silicate Earth as a function of the
proportion of DM. Calculated Al2O3 composition
of the silicate Earth is derived from the sum of
Al2O3 contributed from the DM, continental crust
(CC), and primitive mantle (PM) (mantle that has
not differentiated 5 1 2 MCC 2 MDM, where M is
mass fraction). Continental crust is assumed to
contain 2% of the Al2O3 in the silicate Earth
(0.0057 3 15.8/4.45); there is little variation in
this value for different published estimates (2).
The DM composition, which is more poorly con-
strained, is allowed to vary from a moderately
depleted composition with 95% of the Al2O3 of
the primitive mantle to a strongly depleted com-
position, containing 80% of the Al2O3 of the
primitive mantle. Primitive mantle composition is
from (33). (B) Gray field shows range of Al2O3
contents in the silicate Earth needed to eliminate
the Al2O3 deficit shown in (A), calculated from
mass balance as a function of the mass of a
refractory eclogite reservoir. In this calculation,
the mass of the DM is allowed to vary between
50 and 80% of the silicate Earth. Moderately
depleted and strongly depleted mantle composi-
tions are as defined above. Intersection of the
gray field with the Al2O3 content of the primitive
mantle defines the upper and lower bounds on
the mass of eclogite that might exist in the
Earth—that is, between 0.5 and ;6% by mass, if
it accounts for the missing Al2O3.

Fig. 1. (A) Nb versus Nb/Ta for a variety of rock
types and model compositions: xenolithic
eclogites (black dots), crustal igneous and meta-
morphic rocks (open squares), and metasomatic
peridotite xenoliths from Tanzania (pluses). Stars
represent geometric mean (26) for the eclogitic
and crustal populations. Field of MORB from (9).
Diamonds, various estimates of bulk crust com-
position (2); UC, field of upper crust derived from
GLOSS (12), loess, and PAAS (11). Only three
crustal rutile samples have Nb/Ta significantly
above the chondritic ratio and two of these are
from a carbonatite complex (Magnet Cove, Ar-
kansas) (20); the third is from a South Carolina
beach sand deposit of unknown provenance. Ec-
logite whole rock compositions are calculated
from modal mineralogy (32); crustal and metaso-
matic mantle whole rock compositions are calcu-
lated assuming that rutile makes up 0.5% of the
rock and is the sole contributor of Nb and Ta to
the whole rock budget. (B) Nb versus Nb/La for
reconstructed whole rock eclogites (solid circles),
field of MORB, average continental crust (black
squares on gray field), and OIB (triangles). Data
sources are as listed for (A) and from the litera-
ture. Star, geometric mean of the eclogite popu-
lation. (C) Ti versus Ti/Zr for reconstructed
eclogites (solid circles), field of MORB, continental
crust, OIB, and Massif peridotites (open squares).
Data sources are as listed for (A) and from the
literature. Star, geometric mean of the eclogite
population.
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elements present in the continental crust (2).
The mass fraction of eclogite needed to com-
pensate for this deficit ranges between 0.5 and
6% of the silicate Earth, equal to or greater than
the mass of the continental crust and approxi-
mately equivalent to the mass of oceanic crust
subducted through time (1, 35) (Fig. 2B). This
mass overlaps that of the continental litho-

spheric mantle (1.5 to 2.5% of silicate Earth) (1,
36) and, although these and other eclogite sam-
ples originate from the lithospheric mantle,
population studies of xenocrysts and xenoliths
in kimberlites demonstrate that eclogite is a
minor component of the continental litho-
sphere, probably below 1 to 2% by volume
(37). Thus, our estimates suggest that much of
this eclogitic reservoir exists at deeper levels of
the mantle, possibly in the lower mantle (38).

Given the mass of refractory eclogite cal-
culated above, some constraints on its trace
element composition can also be obtained
from mass balance calculations (39) (Fig.
3A). The mean eclogite lies near the low end
of the Nb concentration range of the calcu-
lated eclogitic reservoir and within its range
of Nb/La. In view of the large spread in
concentrations and ratios observed in the
eclogites, this agreement is good. Likewise,
the range in Nb/Ta ratios for the eclogites is
large, but the mean eclogite falls within the
range of Nb/Ta calculated for the missing
reservoir (Fig. 3B).

We propose that the eclogite reservoir forms
a missing link between continental crust and
DM. We envisage that fractionation of Nb from
La and Ta (and possibly Ti from Zr) is pro-
duced as altered oceanic crust transforms to
eclogite, giving up a melt or fluid phase during
subduction. During the Archean [when the
eclogites we examined here are likely to have
formed (40)] higher mantle temperatures result-
ed in a thicker and more mafic oceanic crust
that underwent dehydration melting upon sub-
duction (41). The major and trace element com-
positions of xenolithic eclogites are consistent
with them being residues of tonalite-trondhjem-
ite-granodorite production from a higher MgO
oceanic crust (42). As Earth cooled, dehydra-
tion melting of slab basalts in subduction zones
may have given way to dehydration only. Be-
cause the partitioning of Nb and Ta between
fluid and rutile is extremely low (43), dehydra-
tion should not fractionate Nb from Ta. Thus
the Nb/Ta ratio of rutiles in Phanerozoic
eclogites reflects that of their protolith. For

example, if the rutiles are in metamorphosed
MORB, their Nb/Ta should be low (7–9).

Finally, a relevant question is whether the
refractory eclogite reservoir, once transported
into the deep mantle, is ever seen again. A
number of persuasive arguments have been
made for incorporation of recycled oceanic
crust into the source regions of OIB (44).
Although some OIB [particularly the HIMU
family (45)] exhibit high Nb/La, they appar-
ently do not have elevated Nb/Ta (10). This
observation suggests that the amount of re-
fractory eclogite in the OIB source is small.
For example, if OIB are derived from sources
that are mixtures of refractory eclogite and
peridotite (DM or primitive mantle), #10%
eclogite is able to dominate the Nb and Ta
contents of the mixture, giving rise to super-
chondritic Nb/Ta in the source. However,
because recycled oceanic lithosphere is likely
to contain both oceanic crust (now eclogite)
and sediment, which will have high concen-
trations of Nb and Ta and low Nb/Ta (11, 12),
one expects to see a range of Nb/Ta in OIB,
depending on the amount and nature of the
recycled component in their source (one
would predict HIMU to have high Nb/Ta and
EM I (45) to have low Nb/Ta). Therefore, a
search for systematics in Nb and Ta contents
of well-characterized OIB offers an addition-
al test of the importance of recycled oceanic
lithosphere in the source regions of OIB (46).
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