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S U M M A R Y
High-resolution models of seismic velocity variations constructed using body-wave tomogra-
phy inform the study of the origin, fate and thermochemical state of mantle domains. In order
to reliably relate these variations to material properties including temperature, composition and
volatile content, we must accurately retrieve both the patterns and amplitudes of variations and
quantify the uncertainty associated with the estimates of each. For these reasons, we image the
mantle beneath North America with P-wave traveltimes from USArray using a novel method
for 3-D probabilistic body-wave tomography. The method uses a Transdimensional Hierar-
chical Bayesian framework with a reversible-jump Markov Chain Monte Carlo algorithm in
order to generate an ensemble of possible velocity models. We analyse this ensemble solution
to obtain the posterior probability distribution of velocities, thereby yielding error bars and
enabling rigorous hypothesis testing. Overall, we determine that the average uncertainty (1σ )
of compressional wave velocity estimates beneath North America is ∼0.25 per cent dVP/VP,
increasing with proximity to complex structure and decreasing with depth. The addition of
USArray data reduces the uncertainty beneath the Eastern US by over 50 per cent in the upper
mantle and 25–40 per cent below the transition zone and ∼30 per cent throughout the mantle
beneath the Western US. In the absence of damping and smoothing, we recover amplitudes of
variations 10–80 per cent higher than a standard inversion approach. Accounting for differ-
ences in data coverage, we infer that the length scale of heterogeneity is ∼50 per cent longer
at shallow depths beneath the continental platform than beneath tectonically active regions.
We illustrate the model trade-off analysis for the Cascadia slab and the New Madrid Seismic
Zone, where we find that smearing due to the limitations of the illumination is relatively minor.

Key words: Composition and structure of the mantle; Inverse theory; Body waves; Seismic
tomography.

1 I N T RO D U C T I O N

Body-wave tomography is a powerful tool for understanding the
present-day structure of the Earth’s mantle. By minimizing the
misfit between observed and predicted seismic data (e.g. travel-
times, waveforms), models of 3-D variations in seismic velocity,
anisotropy, and attenuation can be created. Although analysis of
these seismic models can be interesting in itself, ultimately we wish
to use the models as evidence to test hypotheses about Earth pro-
cesses and structure. The geometry, volume, and continuity of fea-
tures observed in tomographic models can help test hypotheses con-
cerning the character and timing of past episodes of subduction, the
preservation of chemical heterogeneity, and the viscosity structure
of the mantle. Relative variations in seismic velocity can be related
to effects from temperature (e.g. Cammarano et al. 2003), grain size
(e.g. Faul & Jackson 2005), lattice preferred orientation (e.g. Karato
et al. 2008), partial melting (e.g. Hammond & Humphreys 2000)
and volatile content (e.g. Jacobsen & Smyth 2013). In turn, the

variation in these properties informs our understanding of mantle
convection, thermal evolution, and hydration.

Recordings from USArray, the seismological component of
EarthScope, have revealed the mantle beneath North America at
unprecedented resolution, motivating the development of hypothe-
ses concerning the processes at work within. Numerous body wave
studies have been performed with USArray data on regional, con-
tinental, and global scales, with schemes ranging from ray tracing
with first arrivals (e.g. Burdick et al. 2008) to finite-frequency trav-
eltime kernels (e.g. Sigloch et al. 2008) and waveform inversion
(e.g. Schaeffer & Lebedev 2014). These tomographic models have
been used to formulate hypotheses concerning, for example, the gap
in seismicity along the Cascadia subduction zone (Roth et al. 2008;
Burdick et al. 2009), the magmatic system beneath the Yellow-
stone hotspot (Huang et al. 2015), and its connection with the deep
mantle (Schmandt et al. 2012; Tian & Zhao 2012). Models incor-
porating USArray data have tracked relict slabs in the deep mantle
beneath the eastern continental margin (Pavlis et al. 2012; Sigloch &
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Mihalynuk 2013) and, combined with geodynamic modelling,
helped constrain the geometry and timing of past subduction.

As USArray moved into the eastern half of the United States
where data were previously even more sparse, studies based on new
models addressed hypotheses concerning mechanisms that control
the length scale of structural variations (Lou & van der Lee 2014),
the connection between rift structure and deeper processes at the
Midcontinent Rift (Burdick et al. 2014) and the Reelfoot Rift (Chen
et al. 2014), and the thermochemical origins of anomalous volcan-
ism in Virginia (Schmandt & Lin 2014; Biryol et al. 2016) and at
the Great Meteor hotspot track (Villemaire et al. 2012).

Relating tomographic body-wave models to Earth properties is
made difficult by a number of limitations arising from standard
tomographic inversion. First, the ability to determine the size and
continuity of features such as deep slabs and plume conduits is
complicated by regularization (e.g. damping and smoothing) which
can artificially broaden or smear structures. Second, in order to infer
properties like temperature and partial melt, it is necessary to re-
cover the true amplitude of variations in seismic velocity. Damping
velocity values towards a background model can lead to an underes-
timation of the amplitude of the variations and obscure the strength
of the mechanisms causing them. Third, the scale of variations and
spatial gradients of seismic heterogeneity offer insight into viscosity
structure and tectonic development, but their recovery is affected
by uneven data coverage and choices in model parametrization.
The accuracy of these observations is further affected by spatial
smoothing.

Hypothesis-testing of Earth structure and processes requires that
a probability be assigned to a given velocity model. However, stan-
dard tomographic methods yield a single velocity model that best
fits the observed data, along with an approximated estimate of un-
certainty about that model. Therefore, in order to assign uncertainty
to inferences on the continuity of features, petrological properties,
and scale of structure that we draw from seismic models, it is im-
perative that we understand the full range of velocities that explain
the data. Yet, rigorous examination of model uncertainty is exceed-
ingly difficult, and therefore also rare, in the field of body-wave
tomography. Uncertainty is commonly assessed via ‘checkerboard’
resolution tests, wherein synthetic data are generated in a trial model
and inverted to estimate where structure can and cannot be recov-
ered. These tests are useful for giving a qualitative picture of where
the Earth is resolved by the data, but they have two important short-
comings: (1) since the synthetic data are often generated using the
same forward modelling used in the tomographic inversion, they do
not account for error in physical approximation; (2) they must be re-
peated for each scale of target heterogeneity (Leveque et al. 1993).
Formal model covariance can also be estimated, but it is commonly
assumed that error can be represented by a generalized Gaussian
centred on the best model. Therefore, the uncertainty estimates are
usually only valid in the immediate vicinity of the best fit model,
and more complicated aspects of tomographic model uncertainty—
including multimodal distributions—are often ignored.

Efforts to overcome these limitations have tended to follow prob-
abilistic approaches. For example, probabilistic tomography meth-
ods were developed to infer the distribution of chemical and tem-
perature heterogeneity (Deschamps & Trampert 2003; Trampert &
Yuen 2004). Recently, much work has been done in applying trans-
dimensional inversion methods implemented with reversible-jump
Markov Chain Monte Carlo (rj-MCMC; Green 1995; Sambridge
et al. 2006) to estimate the posterior probability distributions of
geophysical models (e.g. Bodin & Sambridge 2009; Agostinetti
& Malinverno 2010; Dettmer et al. 2010). Development has pro-

ceeded in two major directions. First, through the use of transdi-
mensional parametrizations, which allow for models of arbitrary
scale and sharpness, the numbers of model parameters are allowed
to vary based on the demands of the data coverage and actual struc-
tural variations (Malinverno 2002). Second, hierarchical parameters
have been introduced that enable the variance of the data errors to
be estimated simultaneously with the velocity structure, resulting
in probability distributions that account for the total uncertainty in
the data (Malinverno & Briggs 2004). When applied to joint inver-
sions of multiple data types, this approach yields optimal weights
for those data types (Bodin et al. 2012b). A recent overview of
Bayesian developments in geophysics can be found in Sambridge
et al. (2013).

In this paper, we follow the work of Bodin et al. (2012a) on
surface waves and apply Transdimensional Hierarchical Bayesian
(THB) tomography to the body wave problem. The algorithm does
not require damping and smoothing of the model in order to find a
solution. Instead, possible values for the model are explored through
repeated forward modelling of the data. Therefore, the output of the
algorithm is not simply the best-fit model, but a large ensemble of
possible models, which enables a more thorough understanding of
the range of velocity models that can fit the traveltimes, including
their covariance and non-uniqueness.

Previous applications of transdimensional Bayesian tomography
have primarily been limited to surface wave tomography (e.g. Bodin
& Sambridge 2009; Bodin et al. 2012a) due in part to the large
number of parameters and the computational expense of forward
modelling in 3-D. 3-D surface wave models have been constructed
using the two-step process—first performing 2-D transdimensional
inversions for phase velocity then inverting dispersion for a se-
ries of 1-D velocity models (e.g. Galetti et al. 2016). Applications
with body waves have focused on recovering 2-D layers (Young
et al. 2013; Tkalčić et al. 2015) or small regions using local seismic-
ity (Piana Agostinetti et al. 2015). Here, we present an application
of THB methodology to teleseismic body waves on a continental
scale. In order to viably create an ensemble of 3-D velocity models
using large volumes of data available from USArray, we linearize
the forward problem and perform calculations on an invariant under-
lying grid. Transdimensional parameters are then used to efficiently
project models onto the grid. In this way, we trade the ability to
create models of arbitrarily fine scale for increased computational
speed. The resulting method is fast and flexible, and will be easily
tailored for a wide variety of 3-D applications.

This article consists of three major parts. In Section 2, we de-
velop a general method for probabilistic body-wave tomography
and describe an algorithm for the fast construction of a chain of
transdimensional models. In Section 3, we apply the method to
teleseismic P-wave traveltimes from USArray Transportable Array
and other catalogues in order to create an ensemble of models of
the mantle beneath North America. Finally, in Section 4, we use
the ensemble of models to produce a mean model, PTHB_NA16,
investigate uncertainty in mantle structure beneath North Amer-
ica, assess the improvement of velocity estimation due to USArray,
and compare the scale and amplitude of velocity variation with a
model created using a more standard, Adaptive Grid (AG) method
(Li et al. 2008).

2 M E T H O D

We wish to estimate the probability that a particular velocity
model explains a set of observed traveltimes. Bayes’ Theorem
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states that the posterior probability of a model is proportional to
two quantities. First, if the model is correct, how likely is it that
we would observe the data? Second, how well does the model
agree with any prior knowledge about the values that a model can
take?

To estimate the posterior, we adapt the THB surface wave tomog-
raphy method of Bodin et al. (2012a) and sample model space using
rj-MCMC. An overview of the algorithm is shown in Fig. 2. At each
step in the Markov chain, a new model is proposed by changing one
parameter of the velocity model. The proposed model is accepted
or rejected based on the change in posterior probability according
to the Metropolis–Hastings algorithm (Metropolis et al. 1953). At
regular intervals, the current model is saved to an ensemble, and
after many iterations the frequency with which a model appears in
the ensemble will be proportional to the probability that it fits the
data.

In order to efficiently sample the model space with rj-MCMC,
we reduce the effective dimensionality of the model by using a
transdimensional approach that allows the number, shape, and po-
sition of parameters to vary based on the demands of the data.
For flexibility, we use 3-D Voronoi volumes (Okabe et al. 1992),
whose shapes and positions are defined by a set of Voronoi nuclei,
though transdimensional sampling over tree structures (Hawkins &
Sambridge 2015) provides another way forward. Previous tomo-
graphic algorithms using transdimensional Voronoi parametriza-
tions performed forward calculations either by ray tracing in each
model (Galetti et al. 2015; Piana Agostinetti et al. 2015) or by
finding the intersections between the volumes and precomputed
rays (Bodin & Sambridge 2009; Bodin et al. 2012a). Continental
scale tomographic models (e.g. Burdick et al. 2008, 2014) are con-
structed using millions of seismic traveltimes and typically com-
prise hundreds of thousands of model parameters, making these
approaches computationally impractical. In order to develop a vi-
able method for the body wave problem, we take a two part ap-
proach to parametrizing the problem. First, we set up a linearized
forward problem with the velocity model and sensitivity matrix
defined on an underlying ‘regular grid’. Second, we merge ele-
ments of this regular grid according to the nearest Voronoi nu-
cleus, yielding a model and sensitivity matrix based on the Voronoi
parametrization.

Although a solution and uncertainty estimate of the linearized
tomography problem can be found with matrix inverse methods, rj-
MCMC has three major advantages. First, since it does not require
model regularization, it more accurately retrieves the amplitude of
variations and allows for sharp velocity gradients in the model. Sec-
ond, it can yield both Gaussian and non-Gaussian posterior distribu-
tions on model parameters, allowing us to analyse non-uniqueness
in the tomography problem. In contrast, most standard least-squares
methods only recover the Gaussian approximation to the true un-
certainty in the vicinity of the solution, which can underestimate
true uncertainty if multiple minima are present. Third, we need not
assume a normal prior on model values, which is implicit in inverse
methods using quadratic misfits. In this study we will begin from a
uniform prior, weakening the assumption that the model values are
distributed about zero.

2.1 Tomographic problem

We set up a linearized forward problem to model body wave trav-
eltimes from seismic slowness. We first determine the ray path be-
tween each earthquake source and seismic station through a back-

ground model using ray theory. The data are defined as a set of
traveltime residuals, di = Ti − T obs

i , i = 1, M, that is, the difference
between the observed traveltimes and traveltimes calculated in the
background model. The Earth is divided up into N regular volumes,
and we construct the sensitivity matrix Gij where each entry is the
length of the ith ray in the jth grid volume. We can then model each
traveltime residual as

di =
M∑

j=1

Gi j m j , (1)

where model parameter mj, j = 1, N is the difference in seismic
slowness, (e.g. s = 1/VP, where VP is seismic velocity) from the
background slowness in the jth volume.

We seek models of seismic slowness that explain our traveltime
data, so we choose a function to evaluate the misfit between ob-
served and modelled traveltimes. If the residuals are independent
and normally distributed about a mean of zero, the misfit will follow
the χ 2 function:

χ 2 =
N∑

i=1

(
Ti − T obs

i

σi

)2

, (2)

where σ i is the variance of the data errors, also referred to here as
the data variance.

The likelihood function is then given by:

p({di }|{m j }, I ) = C exp

(−χ 2

2

)
, (3)

where I is relevant background information. The normalization fac-
tor C = (2π )−N/2

∏N
i=1 σ−1

i ensures that the likelihood integrates
to one. Note that the likelihood thus depends not only upon the
traveltime residuals, but also upon the data variance, σ i. The trade-
off between σ i terms in C and in the exponent will determine the
choice of data variance in this method (see Supporting Information
Section S1).

Finally, we relate the likelihood to the posterior according to
Bayes’ Theorem. The posterior probability, p({mj}|{di}, I), for
model {mj} and observed data {di}, is commonly written as a
proportionality:

p({m j }|{di }, I ) ∝ p({di }|{m j }, I )p({m j }|I ), (4)

where p({mj}|I) is the prior, or the probability of the model given all
that we know about it beforehand. The choice of prior has implica-
tions for the character of models in THB methods in poorly sampled
regions. I contains assumptions about the physics, parametrization
and data corrections. The background assumptions for this study
are discussed below.

We reduce the effective number of parameters involved in the
forward calculation by using transdimensional sampling. The un-
derlying regular grid parameters and sensitivity matrix are merged
according to a set of 3-D Voronoi volumes determined within the
inversion (see Fig. 1). For a set of Nvor nuclei, we have a model mvor

k ,
k = 1, Nvor and an M × Nvor sensitivity matrix, Gvor

ik . Each underly-
ing grid volume j lies within the Voronoi volume corresponding to
the nearest nucleus, and mj will take the value of mvor within that
volume. Similarly, we compute Gvor

ik by summing the columns of
Gij corresponding to elements of the underlying grid within Voronoi
volume k, i.e. by finding the total lengths of rays within each Voronoi
volume. Thus we can equivalently model the data as

di =
M∑

k=1

Gvor
ik mvor

k . (5)
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Figure 1. Schematic of model parametrization. Voronoi cells (blue lines)
defined by a set of nuclei (blue dots) are projected onto a regular grid (black
lines). Regular grid volumes whose centre points (black dots) lie within the
cell defined by Nucleus k are coloured grey. An example ray path i is shown
in red. Gvor

ik is then defined by the total length of the ray within the grey
region.

This formulation will all for efficient transitions between
parametrizations in rj-MCMC.

2.2 THB tomography with rj-MCMC

To find the posterior probability distribution, we use rj-MCMC
to explore the model space by varying the model one parameter
at a time. The subsequent models are then accepted or rejected
based on their affect on the posterior probability according to the
Metropolis-Hastings algorithm (Metropolis et al. 1953). After an
initial ‘burn-in’ period, the frequency with which models appear
will be proportional to their probability. By evaluating the ensemble
of models thus derived, we estimate the posterior probability and
compute the statistical properties such as the model mean, standard
deviation, and covariance.

To assess the effects of data and modelling uncertainty on the
uncertainty of the retrieved velocity models, we follow a hierar-
chical approach that estimates the variance of data errors simul-
taneously with the seismic velocity. The data variance vector is
parametrized according to a set of noise hyperparameters that spec-
ify the standard deviation associated with the traveltime picks for
each subset of data (i.e. different P phases, different data sources).
As the velocity model varies, the noise hyperparameters vary in
response to the changing misfit, keeping the data variance similar
in magnitude to the residuals. As a result, uncertainty in the data
and forward-modelling scheme is correctly mapped into the pos-
terior probability. Although in this study we assume that the noise
is independent and normally distributed, it is possible to improve
estimates of data uncertainty by using more accurate parametriza-
tions of the data covariance (e.g. Dettmer et al. 2012; Kolb &
Lekic 2014).

Following Bodin et al. (2012a), new models are generated by
randomly varying one parameter according to normal ‘proposal’

distributions with a standard deviation defined for each of five
operations:

(i) Update slowness. Change slowness value in one Voronoi
volume.

(ii) Birth parameter. Add new Voronoi nucleus with randomly
selected location and slowness value drawn from proposal distribu-
tion.

(iii) Kill parameter. Randomly remove one Voronoi nucleus.
(iv) Move nucleus. Move one Voronoi nucleus in a random direc-

tion with Cartesian distance drawn from move proposal distribution.
(v) Update noise hyperparameter. Change one noise hyperpa-

rameter in order to update the data variance.

Parameter values are constrained to be within the uniform prior.
The prior ranges and the proposal distributions used in this study
can be found in Supporting Information Table S2.

In order to produce a viable algorithm for the 3-D tomography
problem, we seek to minimize the computational cost by updating
only the parts of mvor and Gvor affected by each model operation.
We find that by taking this approach we are able to reduce the
compute time by an order of magnitude. The acceptance criteria for
new models and efficient algorithms for updating mvor and Gvor for
each model operation are described in depth in the supplementary
material.

3 A P P L I C AT I O N T O T H E N O RT H
A M E R I C A N M A N T L E

3.1 Data and AG inversion

As a starting point and reference for comparison, we perform a
global AG inversion in addition to the THB inversion. We use the
data set described by Burdick et al. (2014) with two additional
years of data from USArray Transportable Array (TA). The up-
dated USArray TA data set includes 500 000 new P-wave onset
arrival times hand-picked by the Array Network Facility, available
at http://anf.ucsd.edu/tools/events/. The new data were observed at
800 stations, primarily in the Eastern US, from 4000 earthquakes
occurring between January 2013 and May 2015.

In order to reduce the effects of uneven sampling due to the irreg-
ular distribution of global seismicity and seismic stations, summary
rays are created for multiple co-located sources and receivers. In
both the AG and THB inversions, the data variance term in the mis-
fit is weighted by the square root of the number of data included in
each summary ray. For the THB inversion, we divide the summary
data into bins by data set and phase, and assign to them differ-
ent noise hyperparameters in order to investigate their relative data
uncertainty.

In addition to the USArray data, we create two roughly equally
sized bins from the global data sets. The first comprises data from
the EHB catalogue (Engdahl et al. 1998), largely from stations in
the western hemisphere, and the second mainly comprises EHB data
from the eastern hemisphere plus data from the Annual Bulletin of
Chinese Earthquakes (see Li et al. 2008). Overall, the AG inversion
uses ∼4 million global summary rays compared to ∼1 million
for the THB inversion, while both inversions include ∼1.3 million
USArray summary rays. A breakdown of the data can be found in
Supporting Information Table S1.

We perform an AG inversion according to the methodology of
Li et al. (2008). Rays are traced through the mantle using the 1-D
reference model ak135 Kennett et al. (1995). Starting from a regular

http://anf.ucsd.edu/tools/events/
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Figure 2. Flow chart of 3-D Transdimensional Hierarchical Bayesian tomography method.

global grid of 0.7◦ × 0.7◦ × 45 km, grid volumes with inadequate
ray-path density are iteratively merged. We include correction terms
for source mislocation. Finally, we regularize the inversion via norm
and gradient damping, the parameters for which are determined by
L-curve test (Supporting Information Fig. S1). The tomographic
problem is solved via LSQR (Paige & Saunders 1982). The result-
ing model is shown in Fig. 3 given as per cent difference from
ak135.

3.2 THB inversion

For the THB inversion, we limit our analysis to a region surround-
ing North America. The underlying grid consists of a nested set
of regular grids. The finest inner grid is 0.7◦ × 0.7◦ from 25–
50◦N and 235–295◦W, the middle grid is 1.4◦ × 1.4◦ from 20–
55◦N and 230–300◦W and outer grid is 2.7◦ × 2.7◦ from 12–60◦N
and 225–308◦W. The depth spacing is 45, 90 and 180 km down
to a depth of 1100 km, 2000 km and the core–mantle boundary,
respectively.

Because the majority of the ray paths travel outside of the THB
model domain, we correct the data for variation outside of the do-
main based on the AG model. Underestimation of heterogeneity
by the damped inversion likely contributes to the data uncertainty
inferred by THB. Furthermore, the large number of source coor-
dinates used makes it computationally difficult to include the mis-
location terms in the THB inversion, although it is theoretically
possible (Myers et al. 2007; Piana Agostinetti et al. 2015). We in-

stead include a data correction for source mislocation from the AG
result.

Within the model domain, we choose an initial set of Voronoi
nuclei. In practice, we find that the rj-MCMC algorithm achieves
convergence more quickly when starting from an overly complex
model and discarding unnecessary parameters, rather than starting
from a constant model and adding nuclei. Olugboji et al. (2015)
show that the results of THB inversions of surface wave dispersion
do not depend on the starting model, and we expect the same to hold
true for body-wave inversions. We therefore choose as our initial
Voronoi nuclei a random selection of one eighth of the adaptive
grid centre-points within the domain (∼3900 nuclei for the model
without USArray and ∼6800 for the model with it). Their respective
slownesses are retained as the initial model values. One such starting
parametrization is shown in Supporting Information Fig. S2. This
choice has the effect of giving our starting models complexity based
entirely on ray-path density.

We build an ensemble of models from 100 rj-MCMC chains run in
parallel on the DeepThought2 Cluster at the University of Maryland.
Each chain is run for 1.5 ± 0.1 million iterations. The chains initially
run for a burn-in period (approximately 400 thousand iterations)
before the number of dimensions and the noise hyperparameters
stabilize and the algorithm begins to search around a mean value or
values for slowness within each background grid volume. Following
the burn-in period, we save every 1000th model to the ensemble,
approximately 100, 000 models in total. The mean and 1σ error bar
for the model ensemble are displayed in Fig. 4.
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Figure 3. Adaptive Grid model selected depths.

4 R E S U LT S A N D D I S C U S S I O N

4.1 Background assumptions

The model probability distribution presented in this study and the
statistical values we derive from it are not universal—that is, they
do not apply to all velocity models of North America or those
constructed with comparable data sets—but rather are dependent
both on the data and the particular background assumptions used in
this study. These assumptions include:

(i) The arrival times of teleseismic P-waves can be adequately
modelled by ray theory.

(ii) The traveltime residuals can be expressed as perturbations
around rays traced through a 1D spherical model.

(iii) The distribution of data error is Gaussian and uncorrelated.
(iv) The underlying grid is sufficiently fine for expressing the

target heterogeneity.

(v) Out-of-domain traveltime delays and source mislocation can
be accounted for by a correction from the AG model.

These background assumptions represent common approxima-
tions for P-wave traveltime tomography. Nevertheless, by refining
the assumptions (i.e. using more accurate forward modelling and
finer parametrization) it may be possible to decrease the uncer-
tainty in the model. Additional hierarchical inversions could help
isolate the relative effects of individual assumptions. For example, a
comparison between posterior distributions for models created us-
ing rays traced in 1-D and 3-D background models will illuminate
how much the 1-D assumption contributes to uncertainty in seismic
slowness. Such investigations will provide the basis for future work.

4.2 Characteristics of the ensemble solution

In spite of the coarse Voronoi parametrization of models in the
ensemble, we find that each model yields an equivalent or better
fit to the data than the AG solution. This is mainly due to the
fact that the AG inversion minimizes model regularization terms
in addition to the data residuals. Note that different choices of
regularization could lead to improved data fit. The mean properties
of the model ensembles further improve the data fit. The misfit in the
mean model for each chain is ∼1.2 per cent lower than the average
misfit for individual models, and the ensemble mean outperforms
the individual chains by ∼0.1 per cent.

The hierarchical approach allows us to build an ensemble of val-
ues for the data variance, and thereby compare the relative uncer-
tainties associated with data subsets. Fig. 5 (left) shows the posterior
distributions for the noise hyperparameters in the ensemble. Each
peak shows the range of values the variance had during inversion,
indicating how well each data set was fit by models in the ensemble.
The mean data variance for the USArray P is significantly smaller
than the other P data sets. This is likely because of the consis-
tent instrumentation and traveltime picking, and because the THB
model domain encompasses a larger number of summary data from
USArray. The pP and Pn data sets are relatively poorly fit in the
inversion.

In addition to enabling the analysis of data uncertainty, the THB
approach allows us to analyse the number of Voronoi volumes and
their spatial distribution. Fig. 5 (right) shows the distribution of
the Voronoi cell counts in the model ensemble, which peaks at
∼2700 for the model without USArray data and ∼4600 with it. The
difference in the number of model parameters obtained with the two
data sets can be attributed to the added information contained in the
data from USArray.

Because we start the rj-MCMC at an overly complex model, most
regions in the model decrease in Voronoi density during the burn-
in period; however, this decrease is not equal everywhere. This is
because while the positions of the initial nuclei are based solely on
ray-path coverage, the final positions are based on a combination
of ray-path coverage and structural complexity. Additionally, in
the absence of any ray paths, the nucleus density is determined
by choices in prior and proposal distribution (Gao et al. 2015).
To quantify the final parameter distribution and change from the
starting model, we compute the mean distance between nuclei. For
each underlying grid cell, the left column of Fig. 6 displays the
Cartesian distance between the nearest nucleus and its adjacent
nuclei, averaged over the final model in each chain. The nuclei
have the closest spacing (<200 km) at shallow depths beneath the
Western US, while in the east the distances range from 200 to
350 km. The nuclei typically get further apart with increasing depth
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Figure 4. Average model and model uncertainty for selected depths. Areas of high uncertainty within the continental US are generally indicative of multimodal
velocity distributions in regions with sharp boundaries.

and the spacing increases dramatically in areas with little or no ray
path coverage, such as in the upper mantle beneath the oceans.

The effect of structural scale can be further investigated by com-
paring the final nuclei spacing to the beginning spacing. The right
column of Fig. 6 shows the change in nuclei distance, with a pos-
itive change indicating that fewer parameters were necessary to
explain the structure in the region. The first notable feature is that
the spacing decreased in areas without ray sensitivity. This is con-
trolled by the search algorithm, which determines the optimal num-
ber of parameters to efficiently search the model space. At shallow
depths, continental regions west of the Rocky Mountains experi-
enced a slightly smaller increase in spacing than regions to the
east, indicating that the tectonically active region requires greater

model complexity. The greatest increase in nuclei spacing in the
upper mantle occurs beneath the Great Plains and Central Low-
lands (∼40 per cent at 100 km depth), provinces commonly imaged
as seismically uniform. The relative nuclei spacing generally in-
creases with increasing depth, corroborating the widely observed
decrease in heterogeneity in the mid-to-lower mantle.

4.3 Mean model and model uncertainty

Computing the mean and covariance of the velocity values at each
background grid point provides us with a basic view of the model
ensemble and its uncertainty. The mean THB model (left-hand col-
umn of Fig. 4) images large scale structures consistent with those
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Figure 5. Left: posterior distribution for noise hyperparameters for different data subsets in the model constructed with all data. P picks show the lowest
residual data variance. Picks from USArray were better fit than those from the EHB catalogue and Chinese data sets. Pn and pP phases had relatively higher
data variance. Right: posterior distribution for number of Voronoi volumes in models with and without the USArray data set.

seen in the AG model (Fig. 3). However, the THB model features
larger amplitude variations and slightly less structure at short wave-
lengths. This is, in part, a feature of the inherent parsimony of THB
(Malinverno 2002) which prefers the model with fewer Voronoi nu-
clei, data residuals being equal. Given the relatively large traveltime
residuals remaining in the ‘best fit’ model, a relatively small num-
ber of nuclei are necessary to fit the data to within its uncertainty.
Improvements to the residuals (e.g. by retracing of rays or using
finite-frequency kernels) would yield a model with finer structure
(Bodin et al. 2012a).

With the addition of two years’ worth of USArray P traveltime
picks beyond Burdick et al. (2014), both the THB and AG models
reveal new features along the eastern margin of the US. We recover a
slow velocity structure beneath central Virginia related to Cenozoic
volcanism similar to the structures imaged by Chu et al. (2013) and
Biryol et al. (2016), among others. In northern New England, we
image a slow structure that coincides with the Great Meteor hotspot
track (Villemaire et al. 2012).

Of note is the anomalous high-amplitude heterogeneity in regions
with sparse ray coverage like at shallow depths beneath the oceans.
In the AG inversion, the model regularization outweighs any data
misfit in these regions, effectively muting these variations. In parts
of the model without any sensitivity to the data, the THB algo-
rithm should recover the (uniform) prior (see Fig. 7). In this case,
however, posterior velocity distributions are biased by a small num-
ber of poorly fit measurements, confirmed by the fact that similar
mean heterogeneity is recovered in each model chain. The resulting
posteriors for these locations remain relatively uniform, and their
large uncertainty prevents over-interpretation. The issue could be
avoided through the use of a non-uniform prior—for instance a
Gaussian prior centred on zero slowness perturbation. However, for
this study we prefer a uniform prior since it avoids the assumption
that the slowness perturbations should be distributed around zero.

The right-hand column of Fig. 4 gives the 1σ error bar for the
model at the specified depths. Generally, the error bar is the smallest
where the ray-path density is adequate—that is, within the continent
in the upper mantle and spreading outwards with depth. However,
there are areas of the model, particularly in the tectonically active
Western US, where there the error bar is puzzlingly large. We find
that these large uncertainties typically indicate regions where the
model posterior is bimodal or otherwise non-Gaussian due to sharp
structural boundaries, as discussed further in Section 4.4.1.

The average uncertainty for regions within the US is summarized
in Fig. 8. Overall, the 1σ error bar on the velocity model including
USArray can be taken as ∼0.4–0.55 per cent dVP/VP for upper-
mantle depths beneath the Western US and ∼0.35 per cent below the
east. In the transition zone, the error bar ranges from 0.25 per cent
to 0.35 per cent on average, and at depths of 700–1700 km, it is
∼0.15–0.2 per cent, before increasing below due to lack of ray
coverage. For most depths and regions, the maximum amplitude
of heterogeneity is 3σ–4σ away from zero. These simplified error
bars are inflated by the non-Gaussianity of many of the posterior
distributions, as discussed below.

In addition to error bars, the covariance between model values at
different locations can also be calculated from the ensemble. Fig. 9
gives examples of model covariance at three geological points of
interest. In these figures, blue represent positive covariance, usually
indicating that the points tend to fall within the same Voronoi vol-
ume and giving a sense of the limits of resolvable structure, while
red represents negative covariance, or a trade-off between param-
eters at the two locations. Figs 9(a) and (b) show the covariance
for a point within the inferred slab window beneath the High Lava
Plains in Oregon. Resolution testing by Burdick et al. (2009) found
that the weakening of the slab signal was unlikely due to smearing
perpendicular to the slab of low velocity bodies to the west, and
the covariance in this study confirms that any smearing is more
likely along the strike of the slab. Figs 9(c) and (d) beneath the New
Madrid Seismic Zone demonstrate that the low velocities in the
lithosphere do not smear downwards past 200 km depth. Figs 9(e)
and (f) show that the resolution of our model is unable give depth
constrains on the slow anomaly related to the Midcontinental Rift.

4.4 The effect of USArray data

The improvement to multi-scale P-wave velocity models due to the
inclusion of USArray data has been a major focus of a number of
studies, including Burdick et al. (2008, 2014). Previous studies have
focused on comparisons of ‘checkerboard’ resolution tests between
models created with and without USArray data. These tests are
useful inasmuch as they provide a qualitative picture of where the
additional data are useful for resolving structure. With the THB
method, the benefit of USArray for mantle tomography can now
be quantified. The results of the hierarchical inversion for variance
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Figure 6. Left: the mean distance between nuclei of adjacent Voronoi volumes for the final model in each chain at selected depths. Right: The per cent
difference in nuclei distance for adjacent volumes between the initial model (determined by ray-path density) and final model of each chain. Locations with
reduced nuclei distance indicate regions where additional parameters were needed to explain the scale of structure.

of data error (Fig. 5) show that USArray provides a data set with
lower data error than other available data sets. Together with the
increased ray-path coverage it provides, it is no surprise that the
addition of USArray lowers the uncertainty across every region of
the Continental US; however, we find that the benefits are not evenly
distributed.

To investigate the regional effect of USArray on the model uncer-
tainty, Fig. 8 shows three large provinces for comparison: Central
Lowland and Coastal Plain, which were sparsely instrumented prior
to USArray, and the Basin and Range, which is well sampled in

the global data sets. Beneath the Basin and Range, the improve-
ment due to USArray is 40–50 per cent for all depths, while in the
eastern provinces, the improvement is more substantial from the
surface to transition zone (55–70 per cent lower uncertainty) and
weaker below the transition zone (35–50 per cent lower). This can
be understood in terms of the ray geometries of events recorded at
the new stations. Teleseismic P-waves arriving in the Eastern US
from earthquakes around the Pacific pass beneath the Western US
through the lower mantle, so the addition of stations in the east
is beneficial at those depths. Meanwhile, those stations add few
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Figure 7. Ray coverage at 90 km depth with selected velocity values distributions. Points A1–A3 are within the continent in the region of good ray coverage,
and their distributions are approximately normal. Points C1–C3 are in within underlying cells with low or no sensitivity to the data and their distributions are
allowed to trace out the uniform prior. Points B1–B3 are in areas on the margin of coverage. With weak sensitivity to the data, their distributions are have large
variance and are skewed and/or bimodal.

additional ray paths in the lower mantle beneath the Eastern US,
and the ray paths contributed by new stations in the west makes a
relatively small difference compared with existing coverage.

Setting aside the complications of non-Gaussian posteriors, the
standard deviations of the distributions within the upper mantle
are typically below 0.3 per cent dVP/VP for the model with US-
Array and up to 0.9 per cent dVP/VP without. If the velocity vari-
ation is attributed entirely to temperature variation according to
Cammarano et al. (2003) (for 1300 K adiabat), the uncertainty in
the USArray-derived velocity propagates into uncertainty of 25–45
◦C in the upper 200 km, rising to ∼80 ◦C in the transition zone.
Without USArray, the uncertainty in temperature exceeds 100 ◦C
throughout, and is in excess of 200 ◦C in the transition zone beneath
the Eastern US. This difference has implications for how well we
can resolve hypotheses about buoyancy-driven mantle convection
and the longevity of ancient subducted slabs. It is vital to further
note that the conversion between velocity perturbation and tem-

perature is subject to its own additional uncertainty and potential
trade-offs with compositional effects.

4.4.1 Non-Gaussian model posteriors

Although it is possible to estimate model uncertainty in the least-
squares formalism by computing the posterior model covariance
matrix (e.g. Tarantola 2005), these estimates only pertain to a multi-
dimensional Gaussian distribution fit to the immediate vicinity of
the best model. Furthermore, use of model regularization itself af-
fects the estimates of uncertainty. Since we create the model without
regularization and allow non-Gaussian posterior distributions, the
description of the posterior probability in terms of a mean, standard
deviation, and covariance is inadequate in many places. We find that
the posterior can be bimodal, multi-modal, or uniform depending on
the complexity of the velocity structure and ray coverage. In places
without ray sensitivity the algorithm traces out the prior velocity
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Figure 8. Depth profiles of uncertainty for models with and without USArray data. Black dotted lines represent the ratio of uncertainty with USArray to
uncertainty without. Location of selected physiological provinces are indicated on map of 1σ error, with the cyan line running along the Rocky Mts denoting
the boundary between Western and Eastern US. In general, the uncertainty in the model is greater at depths in the upper mantle where the absolute strength
of the heterogeneity is greater. The model with USArray shows less uncertainty for all regions and depths, but particularly makes improvements in the upper
mantle and transition zone beneath the Eastern US and lower-mantle depths beneath the Western US.

range, resulting in a uniform distribution between the minimum
and maximum velocity allowed.

At sharp boundaries in the Earth, particularly where the boundary
cannot be captured by the underlying grid or its location cannot be
uniquely determined from the data coverage, bimodal distributions
arise since the data are equally well explained by moving the in-
terface between Voronoi volumes with respect to the true structural
boundary. Galetti et al. (2015) observe similar multi-modal distri-
butions in transdimensional surface wave tomography and posit that
they are due to the non-linear effect of waves bending around low
velocity bodies. We do not believe these effects are the cause of
multi-modality in this study, as we do not allow the ray paths to
vary within the algorithm.

Fig. 10 shows one such location where multi-modality occurs:
the Eastern Slab Pile, which is a fast eastward sloping feature ex-
tending into the lower mantle that has been variously interpreted as
a remnant of the Farallon plate (Pavlis et al. 2012) or another slab
resulting from intra-oceanic closure (Sigloch & Mihalynuk 2013).
The marked locations on the velocity and uncertainty cross-sections
correspond to the five posterior probability plots above. At locations
1 (below the slab) and 5 (above the slab) the most likely velocity
perturbation is slightly negative, while within the slab (location 3),
the most likely value is 0.7 per cent dVP/VP. At locations 2 and 4,
where the slab meets the mantle, the probability distributions are

broad or bimodal, indicating that at those locations the models are
split between the two end-members. On the cross-section, bimodal
distributions appear as regions of higher uncertainty, although both
of their peaks have roughly the same standard deviations as the
single-mode distributions surrounding them. This phenomenon is
responsible for much of the high uncertainty in the Western US,
where tectonic activity gives rise to many fine-scale structures and
sharp gradients in velocity.

We verify that the high uncertainty in these locations is not at-
tributable to measurement error by carrying out a test in which we
increase all noise hyperparameters by a multiplicative factor. We
find that this increase in data variance leads to a corresponding
increase in model variance in well-resolved regions not associated
with sharp gradients in structure. However, the model variance is
not substantially affected in regions with multi-modal or uniform
posterior distributions. We surmise that this is because, in these re-
gions, the majority of posterior uncertainty results from inadequate
data sampling or structural complexity.

The behaviour seen in Fig. 10 illustrates that by parametrizing
models with Voronoi volumes which allow for discrete jumps in
velocity, THB tomography places sharp boundaries between the
slab and mantle and maps out how its location is distributed across
the ensemble. With further analysis, these distributions have the
potential to estimate the likelihood that the fast anomaly extends



1348 S. Burdick and V. Lekić

Figure 9. Covariance maps and cross-sections for three different points. Stars indicate the location of points where we calculate the covariance with all other
model parameters and red lines indicate location of cross-sections. Blue represents points where there is a high covariance and red represents points where
there is a negative covariance with starred location. Left: slab window beneath the High Lava Plains. Middle: New Madrid Seismic Zone at 203 km depth.
Right: mid-continental Rift at 203 km depth.

Figure 10. The effect of sharp boundaries on the velocity distributions across the Eastern Slab Pile. Left bottom: cross-section through mean model at 38◦N
latitude from −102◦W to −65◦W longitude. Right bottom: corresponding section for 1σ uncertainty. Top: histograms of distributions indicated by letters
on cross-sections. The distribution of velocities within the slab has a peak at 0.7 per cent dVP/VP, while the outlying areas have a slightly negative peak
perturbation. For regular grid volumes at the boundary between the slab and surrounding mantle, some models in the ensemble place points within the slab
and some place it without, causing the posterior probability to have broad or bimodal distributions.

to a given point, allowing us to put error bars on slab volume.
Estimating the volume of slab material in the lower mantle is key for
distinguishing between these two scenarios (Liu 2014), but typical
smoothed approaches make it difficult to estimate the location of
the boundary between the slab and outlying mantle.

4.5 Amplitude comparison with AG model

In order to accurately relate tomographic models to variations
in physical properties like temperature, partial melt, and volatile
content, it is vital to estimate the absolute strength of velocity
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Figure 11. Confidence ellipses for correlation in velocity value ( per cent dVP/VP) between adaptive grid and probabilistic models at different depths. Regions
are indicated in Fig. 8. Ellipses represent 95 per cent confidence region (2.45σ ). The tilt of the ellipses shows that velocity variations in the probabilistic model
have higher amplitude in general, particularly at shallow depths and in the Eastern US, where there is a factor of ≈1.5 between them. Note that the tilt of the
ellipses is dependent on regularization choices in the adaptive grid inversion.

heterogeneity. Sampling the model space using the rj-MCMC al-
gorithm allows us to create models where the amplitude of the
heterogeneity is not affected by arbitrary choices of model damping
and smoothing. Fig. 11 shows a comparison between the velocity
values from the AG inversion and the mean THB model. Each el-
lipse represents the 95 per cent confidence region determined by
the covariance between the two models, with cyan and magenta
representing shallow and deep depths, respectively. The width of
the ellipses (minor axes) shows the extent to which the models are
linearly related and deviation of the slope from the diagonal shows
the scaling factor between them.

Over broad regions within the continent, there is a strong cor-
relation between the two models, but with scaling in amplitude.
The THB model consistently has higher overall amplitudes than
the AG model, revealing heterogeneity 10–80 per cent greater at
shallow depths beneath some eastern provinces. This difference in
amplitude recovery is comparable to that attributed to the use of
finite-frequency kernels (∼30–50 per cent Montelli et al. 2004)
and accurate forward modelling techniques (∼50 per cent Lekic &
Romanowicz 2011).

At upper-mantle depths, the amplitudes are more consistent be-
tween the models in the Western US compared to the east. We
attribute this consistency to the fact that regularization in the AG
inversion has a lesser effect when data coverage is dense. In the
Eastern US, and other regions where there are fewer data, regular-
ization plays a larger role and the amplitudes are underestimated.
In the transition zone and deeper depths where ray-path density is
higher, amplitudes between the AG and THB models become once

again more consistent. Over some large regions, such as the Coastal
Plain above 200 km, the THB model has higher velocities overall
compared to the AG model. This is because in the absence of damp-
ing, the THB model values are not constrained to be close to ak135,
allowing us to recover regions where the velocity varies strongly
from any 1-D global average.

The higher amplitudes recovered by the THB inversion indi-
cate larger variations in temperature than would be inferred from
the AG inversion. As a worst case scenario, the AG model could
cause the temperature difference between the subcratonic and av-
erage mantle to be underestimated by ∼100 ◦C. The THB model
gives evidence of a wider degree of variation in temperature, and
thus in buoyancy and viscosity for mantle structures, the implica-
tions of which we hope will motivate study by geodynamicists and
geochemists.

5 C O N C LU S I O N S

We present a first implementation of the THB method for a
3-D, continental scale tomographic problem. The implementation is
made computationally efficient by considering an underlying ‘base’
parametrization and seeking efficient ways to merge these base pa-
rameters according to a set of Voronoi volumes. Although we apply
the method to teleseismic P-wave tomography of North America,
the approach is flexible enough to enable straightforward exten-
sion to other 2-D and 3-D problems with large, relatively sparse
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sensitivity matrices. By analysing the properties of the tomographic
models in the ensemble solution, we:

(i) Quantify the uncertainty in seismic velocity beneath North
America, including non-uniqueness and covariance between pa-
rameters. Overall, velocities have a 1σ error bar of 0.25 per cent
dVP/VP, decreasing towards the Eastern US and with greater depth.
The posterior probability frequently features multi-modal and non-
Gaussian distributions, which renders standard analyses (e.g. mean
and standard deviation) insufficient. Bimodal distributions give use-
ful insight into sharp structural gradients and allow us to quantify
the extent and geometry of tectonic domains and slab fragments.

(ii) More accurately recover the absolute amplitudes and sharp
velocity gradients of VP variations in the absence of model reg-
ularization. Overall, the THB mean model has amplitudes 10–
80 per cent higher than the comparable AG model, introducing up
to ∼100 ◦C error in inferences of relative temperature variations.

(iii) Quantify the relative variance of traveltimes from differ-
ent data subsets. Our results show that traveltimes from USArray,
picked at the Array Network Facility, have the lower variance than
traveltimes from global catalogues. This is due in part to consis-
tent instrumentation and traveltime picking methodology and to the
geographical boundaries of the model region.

(iv) Quantify the decrease in uncertainty due to the addition of
traveltimes from USArray. The model with USArray has smaller
error bars across all regions and depths down to the lower mantle.
However, the improvement varies between regions, with the greatest
improvement coming above 700 km beneath the Eastern US. Due
to ray coverage prior to EarthScope, data from USArray have more
effect in the mid-mantle beneath the Western US than the Eastern
US. Little significant improvement in VP retrieval is seen at depths
deeper than 2000 km.
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Supplementary data are available at GJIRAS online.

Table S1. Number of summary rays used in inversions. The entire
set of summary rays was used for the global adaptive grid inversion,
while the THB inversion was limited to rays within the domain.
Table S2. Values for proposal distribution and prior range used in
this study.
Figure S1. Results of the L-curve test used to determine damping
parameters. L represents the regularization operator. Colours give
the regularization parameter for smoothing in the radial direction.
From this test, we choose a radial smoothing parameter of 1000.
Lateral smoothing scales as twice this value.
Figure S2. Example starting model for THB tomography inversion.
The starting models consist of randomized Voronoi volumes with
velocity values derived from a global adaptive grid projected onto
a base grid. The base grid is nested set of regular grids with widths
of 0.7◦, 1.4◦, and 2.8◦ in latitude and longitude and 45 km, 90 km,
and 180 km in depth.
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