
Breaking a Random Number Generator to Break a Cryptosystem
Jeffrey Zhang

College Park Scholars – Science & Global Change Program
Computer Science and Mathematics

jzhang45@umd.edu
College Park Scholars Academic Showcase, April 30, 2021

Introduction

Many of our current cryptosystems relies on the assumption that
some problems have solutions that are easy to verify but hard to
find (P vs NP). One of these problems include our RSA
encryption system. We know that multiplying 2 prime numbers
creates a composite prime number. However, it’s much harder to
determine the 2 prime numbers that make up composite prime
numbers. It can take less than a millisecond the verify but almost
100 million years to solve.

Acknowledgments:

Drs. Holtz & Merck, Dr. William Gasarch

Discussion:

Theoretically, Number Field Sieve should be the fastest factoring algorithm for
any number greater than a google., followed by Quadratic Sieve. Both are slower
for small numbers but the threshold of which it is slower than other algorithms is
not exactly known from our experiment. If P = NP, then everything done in this
research would be obsolete and our RSA encryption system would not be safe.

Site Information:

Name of Site: Virtual

Address: Virtual

Your supervisor: William Gasarch

The site mission: Cryptography Research

The particular goals of the site you were at: Ensure students
had a good understanding of cryptography and
cryptographic methods

Issues Confronting Site:

I had trouble seeing eye to eye with the people
in charge of implementing Quadratic Sieve.
Some of them wanted to use the algorithm to
determine 100-bit primes whereas my goal was
to implement an RSA decryption algorithm.
Hence there was a lot of confusion when we
shared code.

Activities:

We first created an RSA algorithm that ensures that 2 parties can can
communicate cryptically. We used several factoring algorithms to see how
long it’ll take to crack our RSA encryption. The 2 most notable ones were
Pollard Rho and the classic “check every prime number until we find the
right one” algorithm. Other algorithms attempted were Quadratic Sieve
and Number Field Sieve. Had to learn unfamiliar topics to implement
them.

Impact: We were able to see which algorithms cracked the encryption
fastest at different circumstances. Thus, we can determine when it is
appropriate to use which algorithm. For numbers below 4x10^6, there
isn’t much of a significant difference between any algorithm. However,
the Brute Force algorithm was slightly faster than Pollard Rho. The
encryptions were cracked in a few milliseconds.

Future Work:

Might do research on the new O(nlogn) multiplication algorithm as it might
improve the size of our RSA numbers and make our encryption system more
secure.

Scan the QR code to see full project

One method of caption: A picture of how RSA works All graphs were developed using Matplotlib from Python. The left shows the average speed (seconds) of
the Pollard Rho Algorithm and the right it shows the average speed (seconds) of the Brute Force algorithm
for cracking an RSA encryption (finding the 2 prime factors of a composite number)

