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1. Abstract 
 
Scientific consensus on the mechanics of formation of ridge features on Europa has 
not yet been reached. Currently, the most popular model of ridge formation is the 
shear heating method, in which ridges develop as a result of strike-slip motion on a 
pre-existing crack. This strike-slip motion causes shear heating in the ice, leading to 
dilation of the ice that uplifts the flanks of the ridge and collapses the axial trough. 
However, There are other hypotheses of ridge formation that bear investigation. 
One possibility is that ridges are formed as the result of cryovolcanic processes 
acting between the outer ice shell and the subsurface ocean.  Despite the higher 
density of liquid water when compared to ice, it is possible for cryovolcanism to 
occur if the ice shell exerts enough pressure on the ocean as a result of its gradual 
crystallization and expansion.  
 
Studies on ocean pressurization have shown that the subsurface ocean is 
insufficiently pressurized to allow liquid water to penetrate through the entire ice 
shell and extrude on the surface. Therefore, the possibility of ridges forming as a 
result of extrusive processes is unlikely. Intrusive cryovolcanism may still be a 
mechanism for ridge formation if enough pressure exists to force water partially 
into the ice shell. As the water intrusion freezes, it will expand and buckle the 
surrounding shell.  
 
A model of the thermal history and stress evolution of the liquid ocean and icy shell 
of Europa is constructed to determine if the ocean is pressurized enough to cause 
intrusive cryovolcanic activity. The final results from the thermal history model are 
used to estimate how the mass of the ice shell and the ocean change over time. This 
estimate will be used to calculate how much overpressure may be expected in the 
ocean and how far water may be forced into the ice shell as a result of this 
overpressure. The thermal evolution model shows that the ice shell on Europa 
crystallizes to a depth of 20 km in approximately 13 million years. This leads to 30 
KPa of overpressure being exerted on the ocean.  This overpressurization will lead 
to water intruding through approximately 91.2% of the total thickness of the ice 
shell, which may allow for sill formation in the upper depths of the shell. 
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3. Introduction 
 
Images returned by the Galileo spacecraft have revealed a variety of surface features 
on Europa.  Jupiter’s second Galilean Moon, Europa, exhibits more evidence of 
recent geologic activity than other bodies in our solar system many times its size, 
such as Mercury, Venus, and Mars. The cause of this geologic activity is Europa’s 
orbital relationships with its fellow Galilean Satellites. Europa is locked in a 1:2:4 
Laplace Resonance with its proximal and distal neighbors, Io and Ganymede, 
respectively, so that Europa’s orbital period is twice that of Io’s and half that of 
Ganymede’s (Wiesel 1981).  In this Laplace resonance, gravitational and tidal forces 
interacting amongst the satellites and Jupiter force the satellites into long-term 
orbital paths that would otherwise be unstable.  Rather than gradually circularizing 
as most satellites do, all three satellites’ orbital paths remain highly elliptical. This 
high orbital eccentricity causes massive tidal deformation and heat generation, 
driving the geologic activity on the surface and interior of these satellites (Peale 
1979, Hussman and Spohn, 2004). 
 
Europa possesses a differentiated internal structure (Anderson et al., 1998). Despite 
its icy surface, Europa is chiefly a rocky body, with a silicate mantle and a metallic 
core constituting most of its volume. Current estimates based on rough seismic data 
place the thickness of the entire water layer at approximately 120 km (Cammarano 
et al. 2006).  The observation of an induced magnetic field near the surface 
(Khurana et al., 1998) confirmed that while the outermost surface of the satellite is 
solid ice, a major component of the H2O layer is indeed a subsurface liquid ocean. 
Hussman and Spohn (2004) created a thermal evolution model of the ice shell 
incorporating tidal forces from orbital fluctuations in the resonances of Io and 
Ganymede. They determined with their model that, when starting from an all-liquid 
H2O shell, the ocean will progressively crystallize through time, developing a 
thickness of approximately 20-25 km over 4.5 Ga in the present day (See Fig. 1).  
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Fig. 1: Results of Hussmann and Spohn’s study on the thermal evolution of Europa’s ice shell. The 
model was run over 9 Gyrs, coupled with an orbital evolution model simulating the orbital 
relationships between Io and Ganymede.  At the present day (4.5 Ga on this figure), the ice shell 
thickness is determined to be between 20 and 25 km thick. 

 
The origin of the surface features of Europa classified as ridges, bands, chaos, and 
cyclods, is most likely strongly linked to its subsurface ocean. Researchers have 
devised many hypotheses about their formation since Galileo first observed Europa. 
The origin of ridges is particularly difficult to ascertain. Europan Ridges are long 
lineations on the surface of Europa characterized by two raised flanks surrounding a 
central axial trough (See Fig. 2). They are ubiquitous on Europa’s surface and don’t 
seem to have a clear analogue on other geologically active planetary bodies, such as 
Earth.  The absence of similar ridges on rocky planets suggests that these features 
most likely are the result of interactions between a global ice shell and subsurface 
ocean; however, the specifics of these interactions are yet unclear. 

 
Fig. 2: A Galileo image of a ridge (Center). This picture clearly shows the major features of ridges: 
The raised flanks surrounding an axial trough. (Source: NASA-JPL) 

 
Several hypotheses have been advanced in an effort to explain the surface ridges. 
Nimmo and Gaidos (2002) proposed that the ridges develop as a result of strike-slip 
motion on a pre-existing crack. This strike-slip motion would have caused shear 
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heating in the ice, leading to dilation of the ice along that uplifts the flanks of the 
ridge and collapses the axial trough.  Fagents (2003) hypothesized that cryovolcanic 
water extrusions may explain the appearance of the ridges, along with many other 
Europan surface features.  This project, however, addresses supporting evidence for 
the hypothesis first proposed by Melosh and Turtle (2004) and refined by Johnston 
and Montési (2012) that the ridges are influenced by cryovolcanic intrusions. In this 
model, liquid water fills a crack in the ice shell. However, instead of being extruded 
onto the surface, the water freezes as an intrusion. The expansion of the water as it 
freezes will force aside the surrounding ice, buckling it and reshaping it to cause 
uplift in the crack walls, forming the ridge morphology. 
 
The cryovolcanic intrusion model requires that liquid water is able to fill cracks 
inside the ice shell. However, liquid water is more dense than ice, so it will not 
naturally rise through the ice shell. The hypothesis of this project is that 
overpressure on the liquid ocean is sufficient to inject water into cracks in the ice.  
As Europa cools over time, the internal ocean crystallizes progressively. The rigidity 
of the ice shell limits the expansion of the satellite that would be needed to 
accommodate this crystallization, causing the pressure of the internal ocean to 
increase instead. Manga and Wang (2007) have also investigated the mechanism of 
overpressure as a method for forcing water up the shell, and concluded that, at 
current estimates for the thickness of the ice shell, liquid water would not be under 
enough pressure to be extruded on the surface. This is a strong objection against the 
water extrusion hypothesis. However, Manga and Wang did not specify in their 
model whether the pressure was sufficient for water to simply penetrate the ice 
shell. It is necessary to evaluate how far into the crust pressurized water can 
penetrate to provide realistic impact to the cryovolcanic intrusion model of ridge 
formation. 

4. Methods of Analysis 

4.1 Model Description 

4.1.1 Model Outline 
 

The model is initially defined by a two-phase system in which an ice shell overlies a 
liquid ocean. This ice shell cools over time according to the heat conduction 
equation: 

(1) 



T

t


2T

z2
H  

T is temperature, t is time, z is depth from the surface, κ is diffusivity, and Hε is heat 
produced by tidal flexure in the ice shell.  As heat is lost at the bottom of the ice 
shell, the water will crystallize directly below the shell and thicken it over time by 
the following relation: 
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evaluated, and the lower zone of viscous deformation is treated as the depth at which the ice 
temperature reaches 180K. 

 

4.1.2 Heat Production by Tidal Flexure 
 

Tidal flexure due to orbital interactions with Jupiter, Io, and Ganymede is the major 
source of heat production on Europa and is an essential factor of any thermal 
evolution model.  Tidal heat production in an ice shell can be related to depth by 
means of the ice viscosity, η.  The basic relation is as follows (After Tobie et al., 
2003): 

(3)  
 
Where ice viscosity is given by: 

(4)  
 

With ηm being the viscosity at ice’s melting point, and γt being a material constant. 
Hmax and ηmax are determined by: 

(5) 



HMax 
2

  

(6) 



Max


  

 
With μ being the bulk shear modulus, ω being the orbital frequency, and ε being the 
average tidal strain rate experienced by Europa.  By using the temperature profiles 
determined by the thermal evolution model described below, these equations 
provide an assessment of the tidal heat dissipation at any depth in the ice shell.  This 
heat production counteracts conductive cooling over time and can bring the ice 
shell’s thickness to a steady state.   
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Figure 4:  Sample tidal dissipation profile generated by applying the equations above to an ice shell 
of 20 km thickness with a standard half-space cooling geotherm. 

 

4.1.3 Thermal Evolution Model: The Stefan Problem 
 

In the absence of the heating processes described above, the thermal evolution 
model is described as a Stefan Problem: the simultaneous cooling and solidification 
of a liquid. As a special case of the half-space cooling model in which a moving phase 
boundary is present, the analytical solution to the Stefan Problem is well known. It 
is given by: 

(7) 
 
 
Where η and λ are defined as: 

(8)   



 
z

t  

(9)  



L 

Cp(Tm Ts)

e

2

erf()  
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As this analytical solution does not accommodate any heat production, The Stefan 
Problem must be solved numerically in this model so that tidal dissipation may be 
added.  The numerical solution will be addressed further in section 5.2.2. This 
analytical model is still useful, however, in calibrating any numerical model of the 
Stefan Problem. If heat production is temporarily discounted in the numerical 
model, it can be directly compared to this well-known analytical solution, 
determining if the numerical solution is sound. 

 
Figure 5: Analytical solution of the Stefan Problem for an ice shell. This profile can be used to verify 

the accuracy of the numerical model developed to accommodate for heat production. 

4.1.4 Stress Evolution 
 

Using ice thickness results from the thermal evolution stage of the model, the 
increase in over pressure with depth δPex/δz can be determined.  This stage of the 
model treats the water layer as two concentric spherical shells on a Europa-sized 
body with radius R.  The basic equation to determine this overpressurization is as 
follows (After Manga and Wang, 2007): 

(10) 



Pex
zm


3(w i)ri

3

w(ri
3
 rc

3
)  

 
Where β is the compressibility of water, ρw and ρi are the densities of water and ice, 
respectively, ri is the inner radius of the ice shell, and rc is the inner radius of the 
entire water layer. However, the lower portion of this ice shell will deform viscously, 
causing an upward radial displacement ur and reducing the overall excess pressure. 
In this model, the radius ξ at which the transition between elastic and viscous 
deformation occurs in the ice shell is taken at the depth the temperature in the ice 
shell reaches 180K. The radial displacement experienced by such an ice shell is:  
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(11) 



ur 


E
(r 2t)

 
 

Where E is the Young’s Modulus, ν is the Possion ratio, σr is the radial stress of the 
shell, and σt is the tangential stress of the shell.  The solutions for the radial and 
tangential stresses in the shell are as follows: 

(12) 



r 
Pex(zm)

R













3

1

1
R













3











 
 

(13) 



 t 
Pex(zm)

R













3

1

1
1

2

R













3











 
 

This radial displacement and shell expansion will then decrease the overpressure 
by: 

(14) 



P 
3urri

2

(ri
3
 rc

3
)

 
 

Equations 10-14 are solved numerically in order to determine the total amount of 
excess pressure built up by the ice shell crystallized by the thermal evolution model. 
Manga and Wang (2007) found that for ice thicknesses greater than 1 km, σt exceeds 
the tensile strength of ice by a factor large enough for cracks to form at the base of 
the shell and propagate up the entire width of the shell to the surface.  At this point, 
water will rise through the crack to the point of neutral buoyancy, which is 
determined in relation to overpressurization in equation 15. 

 

(15) 



H 
w i
w









R ri 

Pex
wg

 

 
If H≤0, water is sufficiently pressurized to extrude onto the surface. Equation 15 can 
be then solved for Pcrit, the amount of overpressure necessary for water to extrude 
on the surface.
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Parameter Value Definition 

Ts 110K Surface temperature 

Tm 273K Melting temperature of ice 

Cp 2050 kJ*K/kg Specific heat capacity of ice 

L 334 kJ/kg Latent heat of fusion of water 

R 1569000 m Planetary radius 

g 1.315 m/s2 Acceleration due to gravity 

rc 1449000 m Radius to base of water layer 

β 4x10-10 Pa-1 Compressibility of water 

E 5x109 Young's modulus 

ν 0.33 Poisson's ratio 

ρi 910 kg/m3 Density of ice 

ρw 1000 kg/m3 Density of water 

ε 10-10 s-1 Tidal strain rate 

ω 2x10-5 s-1 Orbital frequency 

μ 3.3x109 Pa Shear modulus 

γt 0.0807 Dimensionless material constant 

ηm 1014 Pa*s Viscosity of ice at melting point 

 
Table 1: Definition of model parameters. 

 

4.2 Numerical Implementation 

4.2.1 Calibration of The Thermal Evolution Solver 
 

In a steady state (



T/



t = 0), subjected to the boundary conditions that 
temperature is fixed at Ts, the average surface temperature of Europa (110 K), at 
z=0, and Tm, the melting temperature of ice (273 K), at z=h, the bottom of the ice 
shell, the conductive heat flow equation admits the following solution: 

(16)  
 
 
After obtaining a steady state temperature profile from this equation, the finite 
difference method is used to numerically calculate Q, the temperature gradient 
(K/m). The numerical equation used to find Q is as follows: 
 

(17 )  
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In order to evaluate the error associated with the model, another finite difference 
calculation is conducted of Q vs. z in order to come up with a numerical 
approximation of , termed H: 
 

(18)  
 

 
The error of the model is given by the difference between H and 



: 

(19)  
 
To further test the accuracy of the finite differences, consider that 



  varies linearly 
with depth. The steady state temperature solution becomes: 
 

(20)  
 

 
The same error analysis as before was conducted on this solution. 
 
The next model calibration step is to add and calibrate time-dependence. First a 
discrete time-dependent temperature model is constructed using the Euler method 
of numerically solving Ordinary Differential Equations. The Euler Method is the 
simplest ODE solver, but it tends to be unstable.  In order to implement the Euler 
method, a simple temperature profile  is first constructed as the initial conditions in 
which the surface value is Ts and every depth interval thereafter is equivalent to Tm. 
Then, H is numerically solved for at each depth (Eq. 6) and multiplied by a time 
interval dt. This Hdt value is then added to each corresponding value in the T matrix, 
along with .  This process is repeated in time step intervals of dt until a maximum 
time tmax is reached.  
 
In order to make sure this time-dependent temperature solver functions properly, 
the relative error is evaluated by comparing the T values at thermal equilibrium 
state to the steady state model using a relative error calculation similar to Eq. 19.  
 
After evaluating the error when compared to the steady-state model, it is then 
compared to an analytical solution of the half-space cooling model, derived from a 
solution of Eq. 1: 

(21)



T Ts  (Tm Ts)erf (
y

t
)  
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This error analysis will determine whether the intermittent time steps are also 
accurate when compared to analytical solutions.  
 

4.2.2 Crystallization of the Ice Shell 
 

The Stefan Problem in the presence of internal heating does not have a 
straightforward numerical solution. The standard numerical method of utilizing a 
time-independent static grid that evaluates temperature at regularly spaced depth 
nodes proved to be ineffective.  The major obstacle provided by modeling the Stefan 
Problem is tracking the movement of zm. This movement between time steps is 
determined numerically by applying the finite difference numerical method to 
equation (2), producing:  
 
 

(22) 
 
 
Modeling the movement of zm on a static numerical grid becomes problematic, 
however, as the value of zm would generally fall between depth nodes at which the 
temperature is evaluated.  Attempting to accommodate for this irregularity while 
also preserving the static grid caused the numerical model to become highly 
unstable and inaccurate, necessitating the implementation of a new numerical 
procedure. Instead of using a static, time-independent numerical grid, a moving 
time-dependent numerical grid is applied.  This numerical procedure is outlined in 
figure 6. 



dzm
dt



Tzm Tzm1

zm  zm1











L
t
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Figure 6: Moving coordinate procedure. At time step ti, a depth profile with boundaries at z=0 and 
z=zm is defined. The temperature gradient is computed by finite difference and dzm/dt is determined 
from Qm at z=zm. dzm/dt is then added to zm to produce zm at time ti+1. The depth of each node is 
updated at the next time step ti+1 to form a regular grid between the surface and the value of zm.  

 
Defining the lower boundary of the numerical grid at zm for every time step allows 
for much greater flexibility and ensures that the location of the freezing front, as the 
most crucial result of the thermal evolution model, is always at the focal point of the 
model.  In order to adapt the heat conduction equation (1) to this numerical 
procedure and accurately evaluate the temperature of the ice shell, an additional 
term must be added to the heat conduction equation to accurately scale the 
temperature profile with each renewed depth profile.  The numerical relation that 
defines the change in temperature over time then becomes: 
 

(23)   
 
Where Hε is the tidal heat experienced in the shell, determined according to the 
solutions of equations (3-6) when applied to the temperature conditions given by 
the model. This procedure is run through MATLAB’s native ODE solver, ODE45. 
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4.2.3 Stress Evolution Model 
 
Due to an amount of circularity inherent in the solving for Pex, σr, and σt (equations 
10, 12, and 13) equations 10-14 must be combined into one numerical relation to 
accurately calculate overpressure. The combined equation then becomes: 

(24)    



Pex
(ri

3
 rc

3
)

3ri
2




E
R













3

1

12  (1)
R













3




































w i
w

zm  

The stress evolution model is then coupled with the thermal evolution model and 
uses temperature results to determine viscoelastic deformation boundary depth ξ, 
as well as zm values returned by the model to determine ri at every time step. 

5. Presentation of Results and Discussion 

5.1 Calibration 

 
Figure 7: Thermal profile for the first steady-state solution with constant 



 . Top: Temperature vs. 
Depth steady state profile for several values of 



  according to Eq. 2. Middle: Numerically defined 
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temperature gradient derived from the Temperature/Depth profile above according to Eq. 3. 
Bottom: Numerically defined Heat value according to Eq. 4. 

 
Figure 7 shows the results of the very first model, the steady state temperature 
profile with constant 



 , used to evaluate the accuracy of the Finite Difference 

approximation. These charts are modeled off of equations 2, 3, and 4, respectively. 

The value of h in this case is taken to be 20 km. One may note that, in the 
temperature profile itself, T extends significantly past the melting point of ice, 273 K. 
While this is a physical impossibility, the goal is to calibrate the accuracy of my 
model, rather than simulate reality. After producing these charts, Eq. 5 is then 
applied to the results of H. The error figure is pictured in figure 8. 
 
  

 
Figure 8: Relative error on numerical H value according to Eq. 5. 

 
As the error results are registered on the order of 10-14, this first iteration of the 
model can be considered very accurate. The next step is to model this same 
procedure but with Eq. 6, the steady state profile with a linear 



rather than Eq. 2.  
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Figure 9: Thermal profile for the first steady-state solution with constant 



 . Top: Temperature 
vs. Depth steady state profile for several values of 



  according to Eq. 6. Middle: Numerically defined 
temperature gradient derived from the Temperature/Depth profile above according to Eq. 3. 
Bottom: Numerically defined Heat value according to Eq. 4. Legend in all three figures refer to the 
value of α. 

 

The major effect of having a linear 



  value is that the temperature profile no longer 
extends quite so far past Tm. Otherwise these results are very similar to the first 
model. The error measurements for this second model are shown in figure 10. 
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Figure 10:Relative error on H value for the second profile. 

 
Although the relative error is an order of magnitude higher for this iteration of the 
model, it is still negligible, which indicates that the model is still accurate.  Next the 
results of the test of the time-dependent Euler model are presented (Figure 11), as 
compared at its thermal equilibrium state to the steady-state model. 
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Figure 11: a) The thermal equilibrium state profile for the Euler Update method with h defined as 40 
km. Three values of 



  are applied. b) The relative error returned from comparing the thermal 
equilibrium state to the steady-state analytical model. 

 
The end state of the Euler update model also is shown to be highly accurate for 
several values of 



 , with relative error figures on the order of 10-14 when compared 
to the steady-state model.  However, the weakness of the Euler update in the 
intermediate time steps is shown by its comparison with the half-space cooling 
model (Figure 12). 
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Figure 12: a) Full time-dependent temperature/depth profile using the Euler update method. 
Several time steps are shown in different colors. b) Relative error evaluated by comparing the Euler 
method to the half-space cooling analytical model (Eq. 21). 

 

There are several prominent features of this error diagram. The most dramatic is 
the spike in relative error between 5 and 10 kilometers depth. This error spike is 
due to weaknesses in the Euler method as an ODE solver. The other interesting 
error feature is the “tail” feature at the bottom of the error profile. This is due to the 
fact that, unlike the Euler method, the half-space cooling model has no set depth 
limit. The half-space model, therefore, extends its cooling beyond the limit of the 
Euler model and it is difficult to match the very bottom of the temperature profile to 
the Euler method.  These error numbers are the largest yet, on the order of 
magnitude of 10-3, but this can be attributed to the Euler method’s weaknesses as a 
discrete method.  
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The final calibration step compares the analytical solution of the Stefan problem 
with the numerically obtained crystallization calculation. In order to compare the 
two solutions, the heat production term in the numerical model is removed. A 
comparison of the movement of the freezing front over time for both models is 
shown in figure 13. 

 
Figure 13: Comparison of freezing front depth calculated analytically (in blue) and the results of the 
numerical model (in red) without heat generation. 

 
This result shows that the numerical moving grid procedure is stable enough to 
accurately reproduce the output of the well-known analytical solution. This 
numerical procedure is the foundation of every other component in the model, as 
the temperature profile data and the ice thickness data produced by this procedure 
are used to determine both tidal heat generation and overpressurization. 
 

5.2 Thermal Evolution Model 
 

When applied to Europa, the thermal evolution model indicates that the ice shell 
would reach a steady-state thickness of approximately 20 km in approximately 13 
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million years. These results are shown in Figure 14 as a mass estimate of the ocean 
and the ice shell. 

 
Figure 14: Time evolution of the mass estimate of the ocean (In blue) and the ice shell (In red). Ice 
thickness was converted into mass assuming that the ice shell corresponds to the upper layer of a 
100-km thick water/ice spherical shell on a body of Europa’s radius.  

 
 If the initialization of crystallization is taken at the time of Europa’s formation, 4.5 
Ga, this result makes overpressure an unlikely cause of recently formed surface 
features on Europa, as viscous flow at the base of the ice shell would probably have 
dissipated the pressure generated early on in the satellite’s history. However, if 
Europa has undergone orbital evolution at any point in its history, the change in 
orbital parameters may allow the ice shell to melt and restart the crystallization and 
pressurization process. In order to investigate this, the thermal evolution model was 
run several times under varying orbital parameters (Figure 15). 
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Figure 15: Time needed for the ice to reach a certain thickness. Each marker represents ice at 50%, 
70%, 90%, 95%, and 99% of the maximum thickness. The solid line represents the conditions found 
on Europa ε=10-10 s-1, ηm =1014 Pa s . The series marked with triangles assume different tidal strain, 
and the series marked with circles assume a different ice viscosity. 

 
As is seen in Figure 13, changing the tidal strain rate can have dramatic effects on 
the final thickness of the ice shell and the time it takes for the shell to crystallize.  
Increasing the strain rate by a factor of 2 crystallizes a shell that is half as thick in a 
small fraction of the time.  On the other hand, decreasing the strain rate by an order 
of magnitude would crystallize the entire water layer of Europa.  The effects of ice 
viscosity on the final thickness of the shell are less clear.  No matter if you increase 
or decrease the viscosity, the shell crystallizes slower and thicker than with 
conditions found on Europa. This is a curious finding of the model. The true 
viscosity of Europa’s ice is not well constrained, and if it differs from terrestrial ice, 
it would have large implications for both the thickness of the ice shell at thermal 
equilibrium and the time necessary to crystallize it. These trials also explain the 
difference between this model and the results found by Hussmann and Spohn 
(2004) shown in Figure 1. The model by Hussman and Spohn is coupled with a full 
orbital evolution model, allowing the thickness of the ice to adjust with changing 
orbital parameters. This model is only able to evaluate ice crystallization at the 
current orbital parameters. 
 
 If an orbital fluctuation, or an interaction with one of Europa’s sister satellites such 
as Ganymede or Io were to increase Europa’s eccentricity and therefore tidal strain 
rate, it would throw the ice shell out of thermal equilibrium and large-scale melting 
will result. If the tidal strain were to subsequently relax, the shell would begin 
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crystallizing again and building up pressure.  Most estimates place the age of 
Europa’s surface at approximately 90 Ma, which suggests that such an orbital 
fluctuation may have occurred in the last 100 million years.  A buildup of 
overpressure over the 13 million years the ice shell crystallizes according to this 
model is a more plausible mechanism to create the surface features visible today if 
the ice shell started crystallizing at 90 Ma.  
 

5.3 Stress Evolution Model 
 

Figure 16 presents the values of Pex over time for ice shell conditions matching the 
results of the thermal evolution model shown in figure 13. 

 

 
Figure 16: Excess pressure buildup over time result according to coupled Thermal/Stress evolution 
model. 

 
These results indicate that the maximum excess pressure experienced by the ocean 
under the conditions of this model is approximately 30 kPa. Compared to equivalent 
ice shell thicknesses run through a similar model by Manga and Wang (2007), this 
model indicates a slightly lower buildup of excess pressure.  This is most likely due 
to the addition in this model of a thermal evolution component, allowing for a much 
more specific cutoff point for elastic deformation than the assumption in Manga and 
Wang’s study that the temperature of the ice reaches 180K at 1/3 of its total 
thickness. When the thermal evolution model is discounted and the static cutoff 
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used by Manga and Wang is instated in this model, the results match those reported 
by Manga and Wang closely. Manga and Wang (2007) found that water was not able 
to erupt onto the surface of Europa by pressure alone, but the possibility may still 
exist that partial intrusion into the ice shell occurs. A comparison of the results of 
this model with a calculation of Pcrit over time also shows that extrusion is 
impossible by overpressure alone (Figure 16). 
 

 
Figure 17: Comparison of results of stress evolution Pex (In blue) with the amount of overpressure 
Pcrit necessary for water extrusion (In red). 
 

Water will still rise some distance through the ice shell, even though there is not 
enough pressure to extrude water on the surface. Using equation 15 and the ice shell 
thickness returned by the thermal evolution model, a view of the penetration depth 
achieved by water on Europa can be established. (Figure 17) 
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Figure 18: Final result:  Depth profile of ice shell over time with the surface of Europa being set to 0 
km.  The blue line represents the base of the ice shell, and the red line represents the maximum depth 
above the base to which water will rise. 

 

6. Conclusions and Future Work 
 

Figure 17 shows that, depending on the thickness of the ice shell, water will rise to a 
level anywhere from ~.5 to ~1.8 km beneath the surface.  As both the difference in 
density between water and ice and overpressurization play a role in this, it is 
important to determine each factor’s relative contribution to this rise in water.  The 
most direct way to evaluate this is to present the result as a relative proportion of 
the total thickness of the ice shell rather than as a depth beneath the surface.  If 
treated this way, the depth to which water will rise increases from 91.0% of the ice 
shell’s total thickness to 91.2% of the ice shell’s total thickness over a period of 15 
Ma. As the initial value of overpressure is treated as zero, it can be concluded that 
overpressure contributes to 0.2% of the relative rise through the ice shell.  Overall, 
overpressure seems to play a very small role in Europan cryovolcanism. One other 
interesting result of the model is that the maximum water level decreases over time, 
rather than increasing as may be expected.  Because H is also determined by relative 
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density and the current thickness of the ice layer, these results do make sense if 
overpressure is not a large contributor to water rise. The fact that water can be 
found in more shallow depths earlier during the crystallization process may be 
useful for future modeling. The absolute data will also be useful in modeling 
cryovolcanic sills, which may be a major cause of present surface features. 

There are still some properties about the ocean of Europa that are still not well 
constrained. This may allow pressurization to be a larger factor. It is well-known 
that there are ions in solution in Europa’s ocean, as the satellite has a generated 
magnetic field.  The presence of these ions may change the properties of both the 
ocean and the ice shell in many ways.  These ions may raise or lower the melting 
temperature of the ice, which will affect the natural thickness of the ice shell.  
Additionally, these ions will serve to increase the bulk density of the water.  An 
increase in water density, however, will correspond to a decrease in water 
penetration.  The neutral buoyancy point will decrease as water becomes 
proportionally more dense than ice.  

Another uncertain factor in this model is the true thickness of the water/ice layer.  If 
the water layer of Europa was thinner but the ice shell remained the same thickness, 
overpressurization may increase over time.  After having done some preliminary 
hypothetical calculations looking into this possibility, it seems that the relative 
thickness of the water and ice layers actually plays a negligible role in 
overpressurization.  Referring to equation 24, the reason for this seems to be that 
the compressibility of water, β, is so small, at 4x10-10 Pa-1, it completely negates any 
effect the relative sizes of the water and ice layers may have.  This result is a little 
counterintuitive, but it makes sense when one scrutinizes the math. 

Another aspect to be considered would be a more detailed approach to tidal heating 
in the shell.  Tobie et al. has done further work on their tidal dissipation models that 
have not been considered in this model, which will further refine these results and 
help determine a more accurate time frame for reaching steady state.  There are also 
alternative models of tidal heating that can be incorporated into this model.  The 
most popular tidal stress model besides the diurnal model that this paper uses is 
tidal stresses generated by the non-synchronous rotation of the ice shell.  This non-
synchronous rotation causes a periodic cycle of increasing and decreasing tidal 
strain on a regional scale as the relative location of the planetary tidal strain axis 
changes with respect to the decoupled shell. This will cause the shell to locally melt 
and recrystallize on a semi-regular basis as tidal strain increases and decreases. 

The major flaw in this model is that the possibility of a convecting layer in the ice 
shell is not considered.  Many other thermal evolution models (e.g. Showman and 
Han 2003, Tobie et al. 2003, Hussmann and Spohn 2004) indicate that a convecting 
layer in the lower portion of the ice shell is an important component.  This model 
does not consider it mainly due to time constraints, but the addition of a convective 
layer in the ice may have large implications on my final result and may change it 
drastically.   
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In summary, overpressurization seems to have less of an impact on Europan 
cryovolcanism and Europan surface geology as was once thought. Other 
mechanisms of transporting water up the shell should be searched for. Although 
water does rise through a significant portion of the ice shell according to this model, 
that rise is chiefly accounted for by the relative densities of water and ice.  There are 
several parameters considered in this model that are still uncertain on Europa, and 
these may impact overpressurization and water intrusion, but it seems that the 
effect would be either negligible or negative. Despite all this, these results ultimately 
indicate that cryovolcanic sills are still a possibility that merits future investigation. 
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