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1. Abstract

Scientific consensus on the mechanics of formation of ridge features on Europa has
not yet been reached. Currently, the most popular model of ridge formation is the
shear heating method, in which ridges develop as a result of strike-slip motion on a
pre-existing crack. This strike-slip motion causes shear heating in the ice, leading to
dilation of the ice that uplifts the flanks of the ridge and collapses the axial trough.
However, There are other hypotheses of ridge formation that bear investigation.
One possibility is that ridges are formed as the result of cryovolcanic processes
acting between the outer ice shell and the subsurface ocean. Despite the higher
density of liquid water when compared to ice, it is possible for cryovolcanism to
occur if the ice shell exerts enough pressure on the ocean as a result of its gradual
crystallization and expansion.

Studies on ocean pressurization have shown that the subsurface ocean is
insufficiently pressurized to allow liquid water to penetrate through the entire ice
shell and extrude on the surface. Therefore, the possibility of ridges forming as a
result of extrusive processes is unlikely. Intrusive cryovolcanism may still be a
mechanism for ridge formation if enough pressure exists to force water partially
into the ice shell. As the water intrusion freezes, it will expand and buckle the
surrounding shell.

A model of the thermal history and stress evolution of the liquid ocean and icy shell
of Europa is constructed to determine if the ocean is pressurized enough to cause
intrusive cryovolcanic activity. The final results from the thermal history model are
used to estimate how the mass of the ice shell and the ocean change over time. This
estimate will be used to calculate how much overpressure may be expected in the
ocean and how far water may be forced into the ice shell as a result of this
overpressure. The thermal evolution model shows that the ice shell on Europa
crystallizes to a depth of 20 km in approximately 13 million years. This leads to 30
KPa of overpressure being exerted on the ocean. This overpressurization will lead
to water intruding through approximately 91.2% of the total thickness of the ice
shell, which may allow for sill formation in the upper depths of the shell.



2. Table of Contents

1. ABSTRACT 2
2. TABLE OF CONTENTS 3
3. INTRODUCTION 4
4. METHODS OF ANALYSIS 6
4.1 MODEL DESCRIPTION 6
4.1.1 MODEL OUTLINE 6
4.1.2 HEAT PRODUCTION BY TIDAL FLEXURE 8
4.1.3 THERMAL EVOLUTION MODEL: THE STEFAN PROBLEM 9
4.1.4 STRESS EVOLUTION 10
4.2 NUMERICAL IMPLEMENTATION 12
4.2.1 CALIBRATION OF THE THERMAL EVOLUTION SOLVER 12
4.2.2 CRYSTALLIZATION OF THE ICE SHELL 14
4.2.3 STRESS EVOLUTION MODEL 16
5. PRESENTATION OF RESULTS AND DISCUSSION 16
5.1 CALIBRATION 16
5.2 THERMAL EVOLUTION MODEL 22
5.3 STRESS EVOLUTION MODEL 25
6. CONCLUSIONS AND FUTURE WORK 27
7. BIBLIOGRAPHY 29




3. Introduction

Images returned by the Galileo spacecraft have revealed a variety of surface features
on Europa. Jupiter’s second Galilean Moon, Europa, exhibits more evidence of
recent geologic activity than other bodies in our solar system many times its size,
such as Mercury, Venus, and Mars. The cause of this geologic activity is Europa’s
orbital relationships with its fellow Galilean Satellites. Europa is locked in a 1:2:4
Laplace Resonance with its proximal and distal neighbors, lo and Ganymede,
respectively, so that Europa’s orbital period is twice that of Io’s and half that of
Ganymede’s (Wiesel 1981). In this Laplace resonance, gravitational and tidal forces
interacting amongst the satellites and Jupiter force the satellites into long-term
orbital paths that would otherwise be unstable. Rather than gradually circularizing
as most satellites do, all three satellites’ orbital paths remain highly elliptical. This
high orbital eccentricity causes massive tidal deformation and heat generation,
driving the geologic activity on the surface and interior of these satellites (Peale
1979, Hussman and Spohn, 2004).

Europa possesses a differentiated internal structure (Anderson et al., 1998). Despite
its icy surface, Europa is chiefly a rocky body, with a silicate mantle and a metallic
core constituting most of its volume. Current estimates based on rough seismic data
place the thickness of the entire water layer at approximately 120 km (Cammarano
et al. 2006). The observation of an induced magnetic field near the surface
(Khurana et al,, 1998) confirmed that while the outermost surface of the satellite is
solid ice, a major component of the H»0 layer is indeed a subsurface liquid ocean.
Hussman and Spohn (2004) created a thermal evolution model of the ice shell
incorporating tidal forces from orbital fluctuations in the resonances of lo and
Ganymede. They determined with their model that, when starting from an all-liquid
H>0 shell, the ocean will progressively crystallize through time, developing a
thickness of approximately 20-25 km over 4.5 Ga in the present day (See Fig. 1).
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Fig. 1: Results of Hussmann and Spohn’s study on the thermal evolution of Europa’s ice shell. The
model was run over 9 Gyrs, coupled with an orbital evolution model simulating the orbital
relationships between lo and Ganymede. At the present day (4.5 Ga on this figure), the ice shell
thickness is determined to be between 20 and 25 km thick.

The origin of the surface features of Europa classified as ridges, bands, chaos, and
cyclods, is most likely strongly linked to its subsurface ocean. Researchers have
devised many hypotheses about their formation since Galileo first observed Europa.
The origin of ridges is particularly difficult to ascertain. Europan Ridges are long
lineations on the surface of Europa characterized by two raised flanks surrounding a
central axial trough (See Fig. 2). They are ubiquitous on Europa’s surface and don’t
seem to have a clear analogue on other geologically active planetary bodies, such as
Earth. The absence of similar ridges on rocky planets suggests that these features
most likely are the result of interactions between a global ice shell and subsurface
ocean; however, the specifics of these interactions are yet unclear.
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Fig. 2: A Galileo image of a ridge (Center). This picture clearly shows the major features of ridges:
The raised flanks surrounding an axial trough. (Source: NASA-JPL)

Several hypotheses have been advanced in an effort to explain the surface ridges.
Nimmo and Gaidos (2002) proposed that the ridges develop as a result of strike-slip
motion on a pre-existing crack. This strike-slip motion would have caused shear



heating in the ice, leading to dilation of the ice along that uplifts the flanks of the
ridge and collapses the axial trough. Fagents (2003) hypothesized that cryovolcanic
water extrusions may explain the appearance of the ridges, along with many other
Europan surface features. This project, however, addresses supporting evidence for
the hypothesis first proposed by Melosh and Turtle (2004) and refined by Johnston
and Montési (2012) that the ridges are influenced by cryovolcanic intrusions. In this
model, liquid water fills a crack in the ice shell. However, instead of being extruded
onto the surface, the water freezes as an intrusion. The expansion of the water as it
freezes will force aside the surrounding ice, buckling it and reshaping it to cause
uplift in the crack walls, forming the ridge morphology.

The cryovolcanic intrusion model requires that liquid water is able to fill cracks
inside the ice shell. However, liquid water is more dense than ice, so it will not
naturally rise through the ice shell. The hypothesis of this project is that
overpressure on the liquid ocean is sufficient to inject water into cracks in the ice.
As Europa cools over time, the internal ocean crystallizes progressively. The rigidity
of the ice shell limits the expansion of the satellite that would be needed to
accommodate this crystallization, causing the pressure of the internal ocean to
increase instead. Manga and Wang (2007) have also investigated the mechanism of
overpressure as a method for forcing water up the shell, and concluded that, at
current estimates for the thickness of the ice shell, liquid water would not be under
enough pressure to be extruded on the surface. This is a strong objection against the
water extrusion hypothesis. However, Manga and Wang did not specify in their
model whether the pressure was sufficient for water to simply penetrate the ice
shell. It is necessary to evaluate how far into the crust pressurized water can
penetrate to provide realistic impact to the cryovolcanic intrusion model of ridge
formation.

4. Methods of Analysis

4.1 Model Description

4.1.1 Model Outline

The model is initially defined by a two-phase system in which an ice shell overlies a
liquid ocean. This ice shell cools over time according to the heat conduction
equation:
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T is temperature, t is time, z is depth from the surface, k is diffusivity, and H; is heat
produced by tidal flexure in the ice shell. As heat is lost at the bottom of the ice
shell, the water will crystallize directly below the shell and thicken it over time by
the following relation:
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Qm is the temperature gradient (dT/dz) at zm, the depth of the base of the ice shell, L
is the latent heat of fusion of ice, and p is the density of ice. The ice expands as it
freezes, compressing the ocean and adding overpressure at a rate of 6Pex/6z. H,,
dzm/dt, and 6Pey/6z are solved for numerically using the Runge-Kutta adaptive
timestep differential equation solver built-in to MATLAB. The definition and value
of all constant parameters is given in table 1.

In this model, the effects of spherical heat conduction are not considered, as the
water layer of Europa is not a large enough fraction of its total radius for the
spherical shape of the planet to have a major effect on heat transfer inside the shell.
The shell may be considered a planar feature in terms of cooling with little effect on
the final results.
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Figure 3: Schematic of model basics. The model is defined by a conductively cooling ice shell
overlying a liquid ocean. The ice shell is defined by its upper boundary T=T; (110K), z=0 and its lower
boundary T=T, (273K), z=zm. The ice shell thickens over time at a rate of dz,/dt and expands as
water freezes at the bottom, increasing the excess pressure on the ocean at a rate of 6Pex/6z. Pex is
reduced on the ocean by radial displacement of the ice shell due to viscous deformation in the lower
portion of the shell. The boundary line between the upper zone of elastic deformation, where Pey is



evaluated, and the lower zone of viscous deformation is treated as the depth at which the ice
temperature reaches 180K.

4.1.2 Heat Production by Tidal Flexure

Tidal flexure due to orbital interactions with Jupiter, Io, and Ganymede is the major
source of heat production on Europa and is an essential factor of any thermal
evolution model. Tidal heat production in an ice shell can be related to depth by
means of the ice viscosity, n. The basic relation is as follows (After Tobie et al,
2003):
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Where ice viscosity is given by:
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With 71, being the viscosity at ice’s melting point, and y: being a material constant.
Hmax and nmax are determined by:
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With u being the bulk shear modulus, w being the orbital frequency, and € being the
average tidal strain rate experienced by Europa. By using the temperature profiles
determined by the thermal evolution model described below, these equations
provide an assessment of the tidal heat dissipation at any depth in the ice shell. This
heat production counteracts conductive cooling over time and can bring the ice
shell’s thickness to a steady state.
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Figure 4: Sample tidal dissipation profile generated by applying the equations above to an ice shell
of 20 km thickness with a standard half-space cooling geotherm.

4.1.3 Thermal Evolution Model: The Stefan Problem

In the absence of the heating processes described above, the thermal evolution
model is described as a Stefan Problem: the simultaneous cooling and solidification
of a liquid. As a special case of the half-space cooling model in which a moving phase
boundary is present, the analytical solution to the Stefan Problem is well known. It
is given by:

(7)
Where 1 and A are defined as:

z
® "k
IN7 _ e”
OV C(T,-T) Aerf(d)




As this analytical solution does not accommodate any heat production, The Stefan
Problem must be solved numerically in this model so that tidal dissipation may be
added. The numerical solution will be addressed further in section 5.2.2. This
analytical model is still useful, however, in calibrating any numerical model of the
Stefan Problem. If heat production is temporarily discounted in the numerical
model, it can be directly compared to this well-known analytical solution,
determining if the numerical solution is sound.

Stefan Problem Analytical Solution
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Figure 5: Analytical solution of the Stefan Problem for an ice shell. This profile can be used to verify
the accuracy of the numerical model developed to accommodate for heat production.

4.1.4 Stress Evolution

Using ice thickness results from the thermal evolution stage of the model, the
increase in over pressure with depth 6P.x/6z can be determined. This stage of the
model treats the water layer as two concentric spherical shells on a Europa-sized
body with radius R. The basic equation to determine this overpressurization is as
follows (After Manga and Wang, 2007):
3
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Where £ is the compressibility of water, pw and p; are the densities of water and ice,
respectively, r; is the inner radius of the ice shell, and r¢ is the inner radius of the
entire water layer. However, the lower portion of this ice shell will deform viscously,
causing an upward radial displacement u, and reducing the overall excess pressure.
In this model, the radius & at which the transition between elastic and viscous
deformation occurs in the ice shell is taken at the depth the temperature in the ice
shell reaches 180K. The radial displacement experienced by such an ice shell is:
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Where E is the Young’s Modulus, v is the Possion ratio, o, is the radial stress of the
shell, and o; is the tangential stress of the shell. The solutions for the radial and
tangential stresses in the shell are as follows:
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This radial displacement and shell expansion will then decrease the overpressure
by:
2
3ur;

1 & B =)

Equations 10-14 are solved numerically in order to determine the total amount of
excess pressure built up by the ice shell crystallized by the thermal evolution model.
Manga and Wang (2007) found that for ice thicknesses greater than 1 km, o:exceeds
the tensile strength of ice by a factor large enough for cracks to form at the base of
the shell and propagate up the entire width of the shell to the surface. At this point,
water will rise through the crack to the point of neutral buoyancy, which is
determined in relation to overpressurization in equation 15.

PP F,
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If H<0, water is sufficiently pressurized to extrude onto the surface. Equation 15 can
be then solved for P, the amount of overpressure necessary for water to extrude
on the surface.
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Parameter Value Definition
Ts 110K Surface temperature
Tm 273K Melting temperature of ice
C, 2050 kJ*K/kg Specific heat capacity of ice
L 334 ki/kg Latent heat of fusion of water
R 1569000 m Planetary radius
g 1.315m/s*> Acceleration due to gravity
re 1449000 m Radius to base of water layer
B 4x10°Pa!  Compressibility of water
E 5x10° Young's modulus
v 0.33 Poisson's ratio
pi 910 kg/m®  Density of ice
p» 1000 kg/m?®  Density of water
€ 100! Tidal strain rate
1) 2x107° st Orbital frequency
¢ 3.3x10° Pa  Shear modulus
Yt 0.0807 Dimensionless material constant
Nm 10 Pa*s  Viscosity of ice at melting point

Table 1: Definition of model parameters.

4.2 Numerical Implementation

4.2.1 Calibration of The Thermal Evolution Solver

In a steady state (JT/ct = 0), subjected to the boundary conditions that
temperature is fixed at Ts, the average surface temperature of Europa (110 K), at
z=0, and T, the melting temperature of ice (273 K), at z=h, the bottom of the ice
shell, the conductive heat flow equation admits the following solution:

i b
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After obtaining a steady state temperature profile from this equation, the finite
difference method is used to numerically calculate Q, the temperature gradient
(K/m). The numerical equation used to find Q is as follows:

(17) L= I
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In order to evaluate the error associated with the model, another finite difference
calculation is conducted of Q vs. z in order to come up with a numerical
approximation of ¢, termed H:
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The error of the model is given by the difference between H and «:
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(19) r

To further test the accuracy of the finite differences, consider that « varies linearly
with depth. The steady state temperature solution becomes:
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The same error analysis as before was conducted on this solution.

The next model calibration step is to add and calibrate time-dependence. First a
discrete time-dependent temperature model is constructed using the Euler method
of numerically solving Ordinary Differential Equations. The Euler Method is the
simplest ODE solver, but it tends to be unstable. In order to implement the Euler
method, a simple temperature profile is first constructed as the initial conditions in
which the surface value is Ts and every depth interval thereafter is equivalent to Tp.
Then, H is numerically solved for at each depth (Eq. 6) and multiplied by a time
interval dt. This Hdt value is then added to each corresponding value in the T matrix,
along with . This process is repeated in time step intervals of dt until a maximum
time tmax is reached.

In order to make sure this time-dependent temperature solver functions properly,
the relative error is evaluated by comparing the T values at thermal equilibrium
state to the steady state model using a relative error calculation similar to Eq. 19.

After evaluating the error when compared to the steady-state model, it is then

compared to an analytical solution of the half-space cooling model, derived from a
solution of Eq. 1:

onT=T.—(T,, - 1:)%(%)
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This error analysis will determine whether the intermittent time steps are also
accurate when compared to analytical solutions.

4.2.2 Crystallization of the Ice Shell

The Stefan Problem in the presence of internal heating does not have a
straightforward numerical solution. The standard numerical method of utilizing a
time-independent static grid that evaluates temperature at regularly spaced depth
nodes proved to be ineffective. The major obstacle provided by modeling the Stefan
Problem is tracking the movement of zn. This movement between time steps is
determined numerically by applying the finite difference numerical method to
equation (2), producing:

L-T
(22) dZm — Zm _Zm—l ﬁ
dt oL

Modeling the movement of z, on a static numerical grid becomes problematic,
however, as the value of z, would generally fall between depth nodes at which the
temperature is evaluated. Attempting to accommodate for this irregularity while
also preserving the static grid caused the numerical model to become highly
unstable and inaccurate, necessitating the implementation of a new numerical
procedure. Instead of using a static, time-independent numerical grid, a moving
time-dependent numerical grid is applied. This numerical procedure is outlined in
figure 6.
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Figure 6: Moving coordinate procedure. At time step t; a depth profile with boundaries at z=0 and
z=zp is defined. The temperature gradient is computed by finite difference and dz,/dt is determined
from Q. at z=z,. dzm/dt is then added to zy to produce zn, at time ti.1. The depth of each node is
updated at the next time step ti.1 to form a regular grid between the surface and the value of z.

Defining the lower boundary of the numerical grid at z,, for every time step allows
for much greater flexibility and ensures that the location of the freezing front, as the
most crucial result of the thermal evolution model, is always at the focal point of the
model. In order to adapt the heat conduction equation (1) to this numerical
procedure and accurately evaluate the temperature of the ice shell, an additional
term must be added to the heat conduction equation to accurately scale the
temperature profile with each renewed depth profile. The numerical relation that
defines the change in temperature over time then becomes:

% - -
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(23)
Where H; is the tidal heat experienced in the shell, determined according to the

solutions of equations (3-6) when applied to the temperature conditions given by
the model. This procedure is run through MATLAB'’s native ODE solver, ODE45.
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4.2.3 Stress Evolution Model

Due to an amount of circularity inherent in the solving for Pey, o1, and o: (equations
10, 12, and 13) equations 10-14 must be combined into one numerical relation to
accurately calculate overpressure. The combined equation then becomes:

(24) Pex ﬂ(’;3 —27’;3)_ 53 ’71_20_(1_'_0)(5} :pw_pi 5Zm
3, E[Rj L ¢ Pu
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The stress evolution model is then coupled with the thermal evolution model and
uses temperature results to determine viscoelastic deformation boundary depth §,
as well as zn, values returned by the model to determine r; at every time step.

5. Presentation of Results and Discussion

5.1 Calibration

Temperature Profile: Constanta
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Figure 7: Thermal profile for the first steady-state solution with constant . Top: Temperature vs.
Depth steady state profile for several values of (X according to Eq. 2. Middle: Numerically defined
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temperature gradient derived from the Temperature/Depth profile above according to Eq. 3.
Bottom: Numerically defined Heat value according to Eq. 4.

Figure 7 shows the results of the very first model, the steady state temperature
profile with constant @, used to evaluate the accuracy of the Finite Difference
approximation. These charts are modeled off of equations 2, 3, and 4, respectively.
The value of h in this case is taken to be 20 km. One may note that, in the
temperature profile itself, T extends significantly past the melting point of ice, 273 K.
While this is a physical impossibility, the goal is to calibrate the accuracy of my
model, rather than simulate reality. After producing these charts, Eq. 5 is then
applied to the results of H. The error figure is pictured in figure 8.
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Figure 8: Relative error on numerical H value according to Eq. 5.
As the error results are registered on the order of 10-14, this first iteration of the

model can be considered very accurate. The next step is to model this same
procedure but with Eq. 6, the steady state profile with a linear arather than Eq. 2.
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Temperature Profile: Lineara
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Figure 9: Thermal profile for the first steady-state solution with constant . Top: Temperature
vs. Depth steady state profile for several values of & according to Eq. 6. Middle: Numerically defined
temperature gradient derived from the Temperature/Depth profile above according to Eq. 3.
Bottom: Numerically defined Heat value according to Eq. 4. Legend in all three figures refer to the

value of a.

The major effect of having a linear « value is that the temperature profile no longer
extends quite so far past Tm. Otherwise these results are very similar to the first
model. The error measurements for this second model are shown in figure 10.
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Figure 10:Relative error on H value for the second profile.

Although the relative error is an order of magnitude higher for this iteration of the
model, it is still negligible, which indicates that the model is still accurate. Next the
results of the test of the time-dependent Euler model are presented (Figure 11), as
compared at its thermal equilibrium state to the steady-state model.
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a) Euler Update: Equilibrium
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Figure 11: a) The thermal equilibrium state profile for the Euler Update method with h defined as 40
km. Three values of & are applied. b) The relative error returned from comparing the thermal
equilibrium state to the steady-state analytical model.

The end state of the Euler update model also is shown to be highly accurate for
several values of @, with relative error figures on the order of 10-14# when compared
to the steady-state model. However, the weakness of the Euler update in the
intermediate time steps is shown by its comparison with the half-space cooling
model (Figure 12).
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a) Euler Update Method
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Figure 12: a) Full time-dependent temperature/depth profile using the Euler update method.
Several time steps are shown in different colors. b) Relative error evaluated by comparing the Euler
method to the half-space cooling analytical model (Eq. 21).

There are several prominent features of this error diagram. The most dramatic is
the spike in relative error between 5 and 10 kilometers depth. This error spike is
due to weaknesses in the Euler method as an ODE solver. The other interesting
error feature is the “tail” feature at the bottom of the error profile. This is due to the
fact that, unlike the Euler method, the half-space cooling model has no set depth
limit. The half-space model, therefore, extends its cooling beyond the limit of the
Euler model and it is difficult to match the very bottom of the temperature profile to
the Euler method. These error numbers are the largest yet, on the order of
magnitude of 10-3, but this can be attributed to the Euler method’s weaknesses as a
discrete method.
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The final calibration step compares the analytical solution of the Stefan problem
with the numerically obtained crystallization calculation. In order to compare the
two solutions, the heat production term in the numerical model is removed. A
comparison of the movement of the freezing front over time for both models is
shown in figure 13.

Freezing Front Comparison
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Figure 13: Comparison of freezing front depth calculated analytically (in blue) and the results of the
numerical model (in red) without heat generation.

This result shows that the numerical moving grid procedure is stable enough to
accurately reproduce the output of the well-known analytical solution. This
numerical procedure is the foundation of every other component in the model, as
the temperature profile data and the ice thickness data produced by this procedure
are used to determine both tidal heat generation and overpressurization.

5.2 Thermal Evolution Model

When applied to Europa, the thermal evolution model indicates that the ice shell
would reach a steady-state thickness of approximately 20 km in approximately 13
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million years. These results are shown in Figure 14 as a mass estimate of the ocean
and the ice shell.

Mass of Ocean and Ice Shell Over Time
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Figure 14: Time evolution of the mass estimate of the ocean (In blue) and the ice shell (In red). Ice
thickness was converted into mass assuming that the ice shell corresponds to the upper layer of a
100-km thick water/ice spherical shell on a body of Europa’s radius.

If the initialization of crystallization is taken at the time of Europa’s formation, 4.5
Ga, this result makes overpressure an unlikely cause of recently formed surface
features on Europa, as viscous flow at the base of the ice shell would probably have
dissipated the pressure generated early on in the satellite’s history. However, if
Europa has undergone orbital evolution at any point in its history, the change in
orbital parameters may allow the ice shell to melt and restart the crystallization and
pressurization process. In order to investigate this, the thermal evolution model was
run several times under varying orbital parameters (Figure 15).
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Effect of changes in Tidal Strain and Viscosity
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Figure 15: Time needed for the ice to reach a certain thickness. Each marker represents ice at 50%,
70%, 90%, 95%, and 99% of the maximum thickness. The solid line represents the conditions found
on Europa €=10-10s1, n,, =104 Pa s . The series marked with triangles assume different tidal strain,
and the series marked with circles assume a different ice viscosity.

As is seen in Figure 13, changing the tidal strain rate can have dramatic effects on
the final thickness of the ice shell and the time it takes for the shell to crystallize.
Increasing the strain rate by a factor of 2 crystallizes a shell that is half as thick in a
small fraction of the time. On the other hand, decreasing the strain rate by an order
of magnitude would crystallize the entire water layer of Europa. The effects of ice
viscosity on the final thickness of the shell are less clear. No matter if you increase
or decrease the viscosity, the shell crystallizes slower and thicker than with
conditions found on Europa. This is a curious finding of the model. The true
viscosity of Europa’s ice is not well constrained, and if it differs from terrestrial ice,
it would have large implications for both the thickness of the ice shell at thermal
equilibrium and the time necessary to crystallize it. These trials also explain the
difference between this model and the results found by Hussmann and Spohn
(2004) shown in Figure 1. The model by Hussman and Spohn is coupled with a full
orbital evolution model, allowing the thickness of the ice to adjust with changing
orbital parameters. This model is only able to evaluate ice crystallization at the
current orbital parameters.

If an orbital fluctuation, or an interaction with one of Europa’s sister satellites such
as Ganymede or Io were to increase Europa’s eccentricity and therefore tidal strain
rate, it would throw the ice shell out of thermal equilibrium and large-scale melting
will result. If the tidal strain were to subsequently relax, the shell would begin
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crystallizing again and building up pressure. Most estimates place the age of
Europa’s surface at approximately 90 Ma, which suggests that such an orbital
fluctuation may have occurred in the last 100 million years. A buildup of
overpressure over the 13 million years the ice shell crystallizes according to this
model is a more plausible mechanism to create the surface features visible today if
the ice shell started crystallizing at 90 Ma.

5.3 Stress Evolution Model

Figure 16 presents the values of Pex over time for ice shell conditions matching the
results of the thermal evolution model shown in figure 13.
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Figure 16: Excess pressure buildup over time result according to coupled Thermal/Stress evolution
model.

These results indicate that the maximum excess pressure experienced by the ocean
under the conditions of this model is approximately 30 kPa. Compared to equivalent
ice shell thicknesses run through a similar model by Manga and Wang (2007), this
model indicates a slightly lower buildup of excess pressure. This is most likely due
to the addition in this model of a thermal evolution component, allowing for a much
more specific cutoff point for elastic deformation than the assumption in Manga and
Wang's study that the temperature of the ice reaches 180K at 1/3 of its total
thickness. When the thermal evolution model is discounted and the static cutoff
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used by Manga and Wang is instated in this model, the results match those reported
by Manga and Wang closely. Manga and Wang (2007) found that water was not able
to erupt onto the surface of Europa by pressure alone, but the possibility may still
exist that partial intrusion into the ice shell occurs. A comparison of the results of
this model with a calculation of Pit over time also shows that extrusion is
impossible by overpressure alone (Figure 16).
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Figure 17: Comparison of results of stress evolution Pe (In blue) with the amount of overpressure
Pcrit necessary for water extrusion (In red).

Water will still rise some distance through the ice shell, even though there is not
enough pressure to extrude water on the surface. Using equation 15 and the ice shell
thickness returned by the thermal evolution model, a view of the penetration depth
achieved by water on Europa can be established. (Figure 17)
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20+

25‘ 1 1 1 ]
1] 10 12 14 16 18 20

8
Time (Myr)

Figure 18: Final result: Depth profile of ice shell over time with the surface of Europa being set to 0
km. The blue line represents the base of the ice shell, and the red line represents the maximum depth
above the base to which water will rise.

6. Conclusions and Future Work

Figure 17 shows that, depending on the thickness of the ice shell, water will rise to a
level anywhere from ~.5 to ~1.8 km beneath the surface. As both the difference in
density between water and ice and overpressurization play a role in this, it is
important to determine each factor’s relative contribution to this rise in water. The
most direct way to evaluate this is to present the result as a relative proportion of
the total thickness of the ice shell rather than as a depth beneath the surface. If
treated this way, the depth to which water will rise increases from 91.0% of the ice
shell’s total thickness to 91.2% of the ice shell’s total thickness over a period of 15
Ma. As the initial value of overpressure is treated as zero, it can be concluded that
overpressure contributes to 0.2% of the relative rise through the ice shell. Overall,
overpressure seems to play a very small role in Europan cryovolcanism. One other
interesting result of the model is that the maximum water level decreases over time,
rather than increasing as may be expected. Because H is also determined by relative
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density and the current thickness of the ice layer, these results do make sense if
overpressure is not a large contributor to water rise. The fact that water can be
found in more shallow depths earlier during the crystallization process may be
useful for future modeling. The absolute data will also be useful in modeling
cryovolcanic sills, which may be a major cause of present surface features.

There are still some properties about the ocean of Europa that are still not well
constrained. This may allow pressurization to be a larger factor. It is well-known
that there are ions in solution in Europa’s ocean, as the satellite has a generated
magnetic field. The presence of these ions may change the properties of both the
ocean and the ice shell in many ways. These ions may raise or lower the melting
temperature of the ice, which will affect the natural thickness of the ice shell.
Additionally, these ions will serve to increase the bulk density of the water. An
increase in water density, however, will correspond to a decrease in water
penetration. The neutral buoyancy point will decrease as water becomes
proportionally more dense than ice.

Another uncertain factor in this model is the true thickness of the water/ice layer. If
the water layer of Europa was thinner but the ice shell remained the same thickness,
overpressurization may increase over time. After having done some preliminary
hypothetical calculations looking into this possibility, it seems that the relative
thickness of the water and ice layers actually plays a negligible role in
overpressurization. Referring to equation 24, the reason for this seems to be that
the compressibility of water, f3, is so small, at 4x10-19 Pa-1, it completely negates any
effect the relative sizes of the water and ice layers may have. This result is a little
counterintuitive, but it makes sense when one scrutinizes the math.

Another aspect to be considered would be a more detailed approach to tidal heating
in the shell. Tobie et al. has done further work on their tidal dissipation models that
have not been considered in this model, which will further refine these results and
help determine a more accurate time frame for reaching steady state. There are also
alternative models of tidal heating that can be incorporated into this model. The
most popular tidal stress model besides the diurnal model that this paper uses is
tidal stresses generated by the non-synchronous rotation of the ice shell. This non-
synchronous rotation causes a periodic cycle of increasing and decreasing tidal
strain on a regional scale as the relative location of the planetary tidal strain axis
changes with respect to the decoupled shell. This will cause the shell to locally melt
and recrystallize on a semi-regular basis as tidal strain increases and decreases.

The major flaw in this model is that the possibility of a convecting layer in the ice
shell is not considered. Many other thermal evolution models (e.g. Showman and
Han 2003, Tobie et al. 2003, Hussmann and Spohn 2004) indicate that a convecting
layer in the lower portion of the ice shell is an important component. This model
does not consider it mainly due to time constraints, but the addition of a convective
layer in the ice may have large implications on my final result and may change it
drastically.
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In summary, overpressurization seems to have less of an impact on Europan
cryovolcanism and Europan surface geology as was once thought. Other
mechanisms of transporting water up the shell should be searched for. Although
water does rise through a significant portion of the ice shell according to this model,
that rise is chiefly accounted for by the relative densities of water and ice. There are
several parameters considered in this model that are still uncertain on Europa, and
these may impact overpressurization and water intrusion, but it seems that the
effect would be either negligible or negative. Despite all this, these results ultimately
indicate that cryovolcanic sills are still a possibility that merits future investigation.
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