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Abstract

Small scale (10-1000 m) volcanic edifices present in bathymetric maps of mid-
oceanic ridges (MORs) can be used to investigate spreading mechanisms and
spatiotemporal variations in magma supply to the ridge. Geographic
Information Systems (GIS) integrate bathymetry data with interpretations of
seafloor morphology at multiple scales, enabling a quantitative analysis of the
volumes of volcanic edifices and the spatial distributions of these volumes. A
morphological analysis was performed on four sets of high-resolution (~0.5 m)
bathymetry maps located within ~40 km along the Mid-Atlantic Ridge (MAR)
around 16.5°N. Bathymetry data were collected by the Autonomous
Underwater Vehicle (AUV) Sentry during an expedition to the MAR in May
2013. The study has two objectives. First, to document any variation in the
volcanic and tectonic budget with respect to distance from the axis.
“Standard” spreading models predict that tectonic strain should increase
away from the axis—but this relation may not be valid above an oceanic core
complex, which is suspected to be present in the area of study. Second, the
project addresses the relative importance of volcanism between the four areas
of high-resolution bathymetric coverage. An analysis in ArcMAP and
Fledermaus GIS programs shows that rates of volcanic extrusion have varied
over time along the ridge, and that volcanic extrusion generally increases in
magnitude from north to south along the ridge. According to previous work
on MORs, the long-lived detachment faults in central and southern locations
in the area of study should indicate amagmatic spreading, and the absence of
such faults in the northern locations should indicate magmatic spreading.
However, given that volcanic extrusion rates are a reliable proxy for magma
supply beneath the ridge, the results of this study reveal that there is a greater
magma supply in the south than in the north. Results of this study also reveal
that magma supply along the ridge has not remained constant over time. These
results have important implications for our understanding of mid-oceanic
ridges and the balance between tectonic and magmatic spreading mechanisms.

1. Introduction

The lithospheric plates on either side of a slow-spreading (<40 mm/yr) mid-ocean ridge
(MOR) diverge primarily as a result of tectonic processes operating far from the ridge itself
(Perfit and Chadwick, 1998). The two plates are thinnest and weakest where they meet at MORS;
consequently, tensional stresses are enhanced near the axis and generate fissures and normal
faults. Buoyant magma stored in chambers beneath the MOR rises up through these faults and
fissures and into the spreading zone, relieving the tensional stresses imposed on the plates
(Figure 1) (Perfit and Chadwick, 1998). Melt decompresses and interacts with seawater,
crystallizes in fissures to form dikes, and a portion extrudes from the seafloor to form volcanic
edifices (Smith and Cann, 1993; Colman et al., 2012).



As it crystallizes, the magma forms new
oceanic crust which, according to the “standard”
model of seafloor spreading (Figure 2a), accretes
to the two diverging plates in equal amounts
(Buck et al., 2005). Also according to the
“standard” model, faults typically nucleate near
or within axial volcanic ridges, with fault
displacement increasing proportionally with
distance from the axis (Smith and Cann., 1993).
This mode of accretion results in bathymetry that
is symmetrical with respect to the ridge axis. The
discovery in the 1950s of these symmetrically-
spreading, magmatically-active ridges - Plate B
re\_/olutionized th_e earth sciences:_ they not only Figure 1: magma in the spreading zone of a mid-
evidenced the existence and relative motions of ocean ridge (MOR) accretes to both plates as it rises
tectonic plates; but they also accounted for how  up a fissure, then extrudes from the seafloor to form
new |ithosphere forms as p|ates diverge (Nico|as’ volcanic edifices. (Adapted from Smith and Cann,
1995). 1999)

Surveys conducted in the 1980s and 1990s mapped MORs to far greater extent and detail
than previously possible. The resulting maps demonstrated that at slow-spreading ridges such as
the Mid-Atlantic Ridge (MAR), as much as half of spreading is actually asymmetrical (Figure 2)
(Escartin et al., 2008). Numerical models have suggested that, unlike symmetrical spreading,
asymmetrical spreading occurs during periods of reduced magma supply beneath the ridge (Buck
et al., 2005; Tucholke et al., 2008). In these circumstances, tensional stresses will be relieved
primarily by lithospheric faulting rather than by upwelling of magma. With faulting, the
lithosphere thins and stretches, and lithospheric material is extruded onto the seafloor by faults.
Individual long-lived faults, called detachment faults, can accommodate up to half of spreading
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Figure 2: Across axis sections illustrating different modes of spreading at slow-spreading mid-ocean ridges. a)
With symmetrical spreading, less than 20% of spreading is accommodated by faults, whereas with asymmetric
spreading b), a single detachment fault accommodates up to half of spreading. The black dots correspond to
earthquakes. (Adapted from Escartin et al., 2008)



at asymmetric ridges (Figure 2b) (Escartin et al., 2008).
Magaimuliion ._ In such cases, features called core complexes can form,
Termination  GeSE e s w inwhich detachment faults sustain kilometers of

‘ : ~ displacement, exhuming deep crust and sometimes
mantle material onto the seafloor (Figure 3) (Tucholke
et al., 2008). Accordingly, with asymmetrical
spreading, fault displacement does not increase
proportionally with distance from the ridge axis.

But much remains unclear concerning
asymmetrical spreading, including the subsurface
structures of the spreading zone and long-lived
Figure 3: Core complex or alternatively, detachment faults, why some faults displace kilometers
“megamullion” along the Mid-Atlantic Ridge 4t seafloor while others stop extending after only a
(Tucholke et al., 2008). . . .

short time, and the exact relationship between
detachment fault evolution and magma budget (KN210-05 cruise report).
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At a second order scale, ridge segments are defined i Typical
as large (>30 km) propagating rifts bounded on each end o Thickriees
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2008).

The relationship between spreading symmetry and ~ Figure 4: Synthetic ophiolite stratigraphic

magma supply can be further illuminated by analyzing column showing a volumetric ratio of
. volcanic (basaltic pillow lavas) material to

seafloor bathymetry at a much finer scale than second magmatic (sheeted dike complex and
order ridge segments. Individual seafloor faults and gabbro layers) material of ~1:10 (from
volcanic edifices can be used to infer magma supply, with  Nicolas and Boudier, 2003)
heavily faulted areas indicating a lower magma supply,
and areas covered by volcanic edifices indicating a higher magma supply. A guantitative
approach can be taken based on the volumetric proportion of volcanic to magmatic material
observed in ophiolites (figure 4). Assuming this proportion is constant in the area of study of this

project, volcanic volumes can be used as a proxy for magma supply (Perfit and Chadwick, 1998).



Consequently, an analysis of the volumes and spatial distribution of volcanic edifices can be
used to estimate spatial and temporal variations in magma supply. Seafloor morphology can then
be compared with variations in local sediment thicknesses to estimate the relative time that a
fault surface or volcanic feature has been exposed on the seafloor (KN210-05 cruise report;
KN210-05 newsletter).

Regional bathymetry data sets gathered during the KN 210-05 cruise (Smith et al., 2013),
the ATO04L04 cruise (2001, unpublished data), the KN161L04 cruise (2000, unpublished data),
and by Fujiwara et al. (2003), reveal variation in along-axis depth (Figure 5b-d), suggesting
variable magma budgets along-axis. Bathymetry data sets also reveal asymmetric spreading
characterizing the area of study, manifested in part by two parallel linear ridges on the western
flank of the axis (Figure 5c). These apparently tectonic ridges have been interpreted as the
rotated tops of detachment faults (Smith et al., 2008), an indication of amagmatic spreading. This
hypothesis is supported by hydroacoustic sensor data from the area of study, which records the
high rate of seismicity characteristic of tectonic spreading (Smith et al., 2003; Escartin et al.,
2008). The area of study was chosen based on the interpretations that the east and west ridges in
figure 5 represent progressive stages of development of a long-lived detachment fault, and that
the corrugated surface in figure 5c overlies a core complex produced by this long-lived
detachment fault development. Testing these hypotheses, investigating along-axis fault linkages,
fault activity, and the relationship between fault development and magma supply were the
purpose of the KN 210-05 research cruise (KN210-05 newsletter).

The importance of understanding spreading and magmatic processes at MORs extends far
beyond satisfying curious marine geologists. Though it is mostly hidden beneath kilometers of
water, the oceanic lithosphere plays as important a role in society and geology story as its
continental counterpart. The lithosphere forming at MORs is the same material that subducts
under populated landmasses, influencing the formation of mineral deposits and causing
earthquakes and volcanoes. We cannot predict these societally impactful phenomena until we
fully understand the character of the subducting material, including the circumstances of that
material’s origin at MORs. Moreover, core complexes at MORs are one of the few places on
earth that can expose the mantle (Tucholke et al., 2008), and MOR volcanism directly samples
mantle melt (Perfit and Chadwick, 1998). Understanding the mantle requires that we collect
samples from all available sources, and that we understand the mechanisms by which those
sources emerge and evolve. Finally, alteration of the mantle and dissolution of ions by
hydrothermal activity directly influence the chemistry of the oceans and the solid earth
(Staudigel 2013), as well as determine the conditions that support communities of
chemosynthetic biological organisms (Buck et al., 2005). To better understand the chemical
evolution of the seawater and solid earth reservoirs, and perhaps to illuminate the origin of life
itself, we must continue to investigate spreading at MORs.
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Figure 5 a) Atlantic Ocean with red rectangle showing the location of the region containing the area of study.
b) Regional bathymetry map with area of study bounded by white rectangle. Map shows 2" order ridge
segment bounded by transform fault in the south, offset ridge in the north. c) Asymmetric ridge in area of study.
The red lines in the center of the image approximate the ridge axis. The white lines bound areas for which
Sentry gathered high-resolution bathymetry data. East Ridge (E.R.) and West Ridge (W.R.) are interpreted to be
the rotated tops of detachment faults, a manifestation of the tectonic activity of the region. The corrugated
surface is indicative of a long-lived detachment fault forming a core complex. d) Profiles of the ridge and inner
valley taken along the blue lines in c). The black horizontal lines are at 3500 m depth, the red lines approximate
the horizontal location of ridge axis. Note the increase in ridge axis elevation from north to south.



2. Objectives of research

The purpose of this project is to investigate how, within a segment of the MAR centered
at 16.5°N, magma supply has varied along the ridge axis and through time. Regional bathymetry
data show a marked increase in ridge elevation from north to south along-axis (Figure 5), which
indicates a thickening crust and consequently an increasing magma supply from north to south.
Neumann and Forsyth, 1993; Thibaud et al., 1998). High-resolution bathymetry gathered on the
KN210-05 research cruise by the Autonomous Underwater Vehicle (AUV) Sentry reveal
significant volcanic coverage of the north, central, and south areas of the area of study, and all
areas appear to contain abundant faulting. To investigate how the area of study conforms to
modern theories of seafloor spreading, | hypothesize that a detailed analysis of small-scale (10*-
102 m) volcanic edifices present in high-resolution bathymetry maps of the area of study will
reflect along the ridge: 1) increasing magma supply from north to south, and 2) time-invariant
magma supply. By defining geo-referenced polygons around the perimeters of volcanic edifices
and then extracting values for base area and mean depth, eruptive volumes of volcanic events can
be estimated. In conjunction with eruptive ages estimated from relative sediment thicknesses, the
spatial distribution and volumes of volcanic events can be used to interpret magma supply over
time at a ridge (Perfit and Chadwick, 1998). Combined, these analyses provide a detailed
perspective into the magmatic and tectonic processes at this location on the MAR. From this
approach it is possible to evaluate the processes controlling whether spreading is symmetrical or
asymmetrical, magmatic or amagmatic, and to generalize these observations and their
implications for exposures of mantle at the seafloor to the global MOR system.

3. Hypotheses

1. Magma supply increases from north to south along-axis, concomitant with increase in
seafloor height from north to south along-axis. Accordingly, volcanic spreading
dominates in the north, tectonic spreading dominates in the south.

2. Within ~10° yrs required to build a MOR inner valley, magma supply at the axis has
remained constant over time. Accordingly, fault-accommodated strain should increase
progressively away from the ridge axis, and volcanic volumes should remain constant.

4. Experimental Design

4.1. Data collection

Data was collected aboard the Research Vessel Knorr operating out of Woods Hole, MA
(KN 210-05 research cruise). We investigated ~900 km? of seafloor centered on the ridge at
16.5° N, taking photographs with a TowCam camera system towed at the seafloor (Figure w),
collecting samples, measuring seawater chemistry, and gathering gravity, magnetic, sub-bottom
profile, and low- and high-resolution bathymetry data. I participated significantly with all the
different data collection methods.



Primary data analyZGd inthis =20 e s s oy G
study originate from two systems ReerEEr s_— .
employed during the KN210-05 e, il j : R Ounted
research cruise. Low-resolution : ; ¥ . o
regional bathymetry data were
gathered by hull-mounted “Seabeam
sonar.” This system produces ~10
km-long lines of bathymetry data
(line length varies with depth). Lines
of data run perpendicular to the
ship’s keel; multiple lines collected

by EzlimOVIIng Shlp Sre C?hm,t,)mfed 0 Figure 6: high-resolution (~0.5 m) bathymetry data collected by
produce clongate _swa ,S 0 Sentry overlaid on low-resolution (~150 m) bathymetry data
bathymetry data. Each line has a collected directly from R.V. Knorr. Data visualized in ArcGIS with
spatial resolution of ~150 m (spatial partially transparent depth color ramp overlying shaded relief map.

resolution varies with depth and ship
speed). The spatial resolution of a line is the minimum distance over which the instrument
measures a single depth. Regional bathymetry data is used mainly to provide a regional context
to the high-resolution dataset next described. No detailed morphological analysis will be
conducted using the Seabeam regional bathymetry. High-resolution bathymetry data (Figure 6)
were gathered during seafloor dives by the Autonomous Underwater Vehicle Sentry (Figure 7).
Sentry can operate at up to 6000 m of depth, can self-navigate over extremely variable undersea
terrain, and can operate at ~4000 m for up to 24 hrs. Over the course of each dive, Sentry “flew”
at a height of approximately 60 m above the seafloor measuring lines of bathymetry data
oriented perpendicular to its keel. At this height, and at a speed of ~1 m/s, Sentry’s Reson 7125
multibeam sonar package recorded a maximum useful line of bathymetry data 180 m-wide with a
spatial resolution of 0.25 m. Given this line width, an average speed of 1 m/s, and ~20 hrs spent
collecting data at the seafloor, Sentry was able to trace an assigned “trackline” to produce ~3.4
km? of bathymetry data per dive (Sentry dive summaries). Raw bathymetry data was downloaded
from Sentry after each dive. The distance and angle from which acoustic signals from Sentry
arrived at the ship were combined with inertial sensors and
Doppler velocity log sonar systems onboard Sentry to calculate
the position of Sentry relative to the Knorr over time. The
position of the Knorr was determined via Global Positioning
Systems (GPS). Aboard the ship, the technical team for Sentry
combined Sentry sonar data, Sentry-ship acoustic transmissions,
and ship Global Positioning System (GPS) data gathered during
multiple dives to produce the bathymetry data around which this
project is based.

| received bathymetry data in the form of five netCDF
grid files. The files contain x (decimal degrees longitude), y
Underwater Vehicle (AUV) Sentry (deci_mal (_jegrees Ia_titude), and z (m) values d_escribing the
retrieved after a dive on research locations in three dimensions of each of the pixels contained on a
cruise KN 210-05 map. One netCDF file contains the regional bathymetry data
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Figure 7: Autonomous



gathered from ship-mounted sonar, and the other four files each contain a high-resolution
bathymetry data set collected by Sentry (Figure 5): one from the north of the area of study, two
from the center, and one from the south.

4.2. Visualizing bathymetry in ArcMAP

| used the ArcMAP 10.1 and Fledermaus GIS platforms to estimate the base areas and the
minimum (deepest) and mean depths of the surfaces of volcanic edifices user-defined within the
two high-resolution maps. I will describe the steps involved in this process.
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Figure 8: top) from the north swath, netCDF raster layer with color ramp indicating bathymetry; bottom) netCDF
raster layer set to 70% transparency and overlayed on a shaded relief layer

To begin, the data needed to be converted to a
COARDS-compliant format. This was achieved using the
Generic Mapping Toolbox command grdreformat. For the
area 184 grid file, the command becomes: grdreformat
sentry184 20130617.grd sentry184.grd. Similar
commands where used for the other grid files. | specified
the coordinate system for the ArcMAP data frame (main
window). The netCDF files are based on the geographic
coordinate system “World Geodetic Survey (WGS)
1984,” but ArcMAP can only extract area from a flat
surface, so data must be plotted on a projected coordinate
system. With this in mind, | chose to base the ArcMAP
data frame on the projected coordinate system “WGS
1984 World Mercator.” | set the data frame display units
to m. In the “make netCDF raster layer” tool, | uploaded
the netCDF file, specifying bathymetry (z) as the
“variable,” longitude as the “x dimension,” and latitude as
the “y dimension.” The output raster layer visualizes the
bathymetry data in the ArcMAP window by displaying
different depths in different colors (Figure 8). But
individual volcanic edifices rarely show up on such a
map, as the vertical scale of individual edifices differs
from the vertical scale of the complete bathymetry map
by orders of magnitude.

To visualize individual volcanic edifices, in the
image analysis window | inputted the raster layer into the
“hillshade function” to create grayscale shaded relief
layers of data. Each layer simulates the shadows cast by
bathymetric relief illuminated by an artificial source of
light with a 45° elevation. In addition, to convert the
elevation units (m) to the horizontal coordinate units of
the dataset (decimal degrees), I set the “z factor” at 2e-5. |

Figure 9: Visualization layers produced in
ArcMAP. Field of view contains area from
units N2 and N3. Different perspectives
aid in identification of features and feature
dimensions: a) slope layer produced by
slope function; b-c) shaded relief layers
produced by hillshade function, with
azimuth set at b) 45° and c¢) 315°
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varied the “azimuth” of the light source by 45° increments for each layer (45°, 90°, 135°, etc.).
The result was eight layers that simulate light shining on the bathymetry from eight different
directions (Figures 9b and 9c).

To further aid in the identification of volcanic edifices, | again used the image analysis
window to input the raster layer into the “slope function,” which produces a grayscale layer that
displays the rate of change of elevation. I set the “output measurement” to “degree,” and after
experimenting with a variety of values for the “z factor,” | chose 4e-5 as the value that best
reveals volcanic edifices in the map (Figure 9c).

To best visualize bathymetry at a scale encompassing the entire high-resolution
bathymetry map, | set the transparency of the original raster layer to 70% and placed it on top of
a shaded relief layer (Figure 8).

4.3. Visualizing bathymetry in Fledermaus

This project relies heavily
on the accurate interpretation of (1)
which constructs in the bathymetry
map are volcanic, and (2) what are
the perimeters of those constructs.
The nine imagery layers produced
in ArcMAP were usually sufficient
for these interpretations; but in
some cases, as when an edifice

exhibited particularly low relief or
when edifices overlapped, | referred Figure 10 Fledermaus oblique perspective of a volcanic edifice in
to Fledermaus for clarifi c’ati on N Swath. 3D perspective of Fledermaus can reveal features and

;i . feature boundaries difficult to identify in the static perspective of
Fledermaus is a user-friendly, geo- fy bersp

. . ArcMAP
spatial analysis software package
that projects topographic or bathymetric data into an interactive 3D environment (Figure 10).
Cross section profiles are also easily produced in Fledermaus. More significantly, users can “fly”
across landscapes and continuously alter in 3D the perspective from which features are viewed,
which provides an intuitive way to understand the geometry of the seafloor topography. For
these reasons, Fledermaus is superior to ArcMAP for identifying volcanic edifices and their
dimensions. However, ArcMAP imagery analysis is superior for visualizing bathymetric data
from a fixed perspective (to which most scientific communication is restricted), and ArcMAP
offers superior data management and quantitative analysis tools for computing data such as
volume. To my knowledge, ArcGIS has all the capabilities of Fledermaus—profiles can be
generated in ArcMAP (Figure 5b), and another ArcGIS application, ArcScene, supports 3D
navigation—however, | only rarely required the use of these techniques, and Fledermaus is far
easier to learn and use quickly than ArcGIS applications.

To view bathymetry in Fledermaus, | used the application Magic Hat of the Fledermaus
software suite. | uploaded netCDF files as gridded data (.grd format), converted gridded data to
scene data (.sd or .scene), then uploaded scene files into Fledermaus. | assigned a colormap that
best displayed the bathymetry data. To reveal topography further, in the “shading tab, | applied a
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shading function and adjusted “specular” to the maximum setting. Throughout the analysis, |
readjusted the specular property of the surface, as well as the azimuth and elevation of the
shading light source to best visualize the dimensions of volcanic edifices.

4.4. Defining polygons and extracting data in ArcMAP

For each of the high-resolution bathymetry data sets, | uploaded the netCDF file into the
“make netCDF table view” tool. This creates a table of the x (longitude), y (latitude), and z (m)
attributes of the netCDF file. I “displayed xy data” from these points in the ArcMAP window,
specifying longitude as the “x field,” latitude as the “y field,” z as the “z field,” and “WGS 1984~
as the geographic coordinate system. This creates a layer file with all the points from the table
distributed in the ArcMAP data frame according to each point’s x and y values, with each point
retaining but not visualizing its z value.

Features of interest are interactively defined within ArcMAP as “polygons.” Multiple
polygons describing related features form one “polygon shapefile.” | based polygon shapefiles
on the same projected coordinate system as the ArcMAP window, “WGS 1984 World Mercator.”

Using the eight shaded relief layers, the slope layer, and where necessary, referring to
Fledermaus, | defined polygons around what | interpreted to be the perimeters of edifices of
volcanic origin. I based these interpretations on morphological descriptions from previous work
(Smith and Cann, 1993; Smith et al., 1995; Perfit and Chadwick, 1998; Colman et al., 2012;
Searl and Escartin, 2004; Searle et al., 2010). In all, I classified 1396 edifices as “hummocks,”
“ridges,” or “seamounts” (Figures 12-14). | defined hummocks as distinct volcanogenic hills or
mounds with rounded horizontal cross sections. In the data sets, four hummock-shaped edifices
(one in N2 consisting entirely of a single hummock, the others composed in part of multiple
hummocks) stood out as significantly greater in diameter than the other hummaocks, and with
significantly flatter profiles; | defined these edifices as seamounts. The data sets also contained
linear edifices composed in part of distinct hummocks; | defined these edifices as ridges. These
definitions are qualitative and subjective, and in classifying volcanic edifices, | relied heavily on
examples from the literature.

In addition to defining polygons around volcanic edifices, | defined polygons around
what I interpreted to be “units” (Figure 11). I distinguished units based on features visible at the
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scale of the high-resolution bathymetry maps, such as fault scarps, ridges, and abrupt changes in
seafloor morphology.

Figure 11: High-resolution bathymetry maps analyzed in this study, with color ramp and shaded relief layers. Units
are defined based on features visible at this scale, such as fault scarps, ridges, changes in seafloor morphology, and
abrupt changes in slope visible in slope maps (not shown). Map areas are true to scale; orientations of maps and
distances between maps have been altered (except C7-C9 and C1-C6 relative to each other). TowCam runs are
approximated by red lines.

The purpose of this study is to estimate eruptive volumes, but volume estimates will vary
depending on the scale at which edifices are measured. If treated as a single edifice, a ridge or
seamount composed of multiple overlapping hummocks will yield a greater volume than if only
the hummocks exposed on the surface of the ridge or seamount are considered. While this
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volume dependence on edifice scale makes it difficult to determine the absolute volume of
material erupted at a given location, relative erupted volumes at various locations along the ridge
can still be determined by consistently performing measurements at different scales at each
location. To this end, | conducted analyses on four different data sets for each high-resolution
bathymetry map. For the respective data sets, | considered volcanic edifices

=

distinct hummaocks (Figures 12b, 12f, 12j; and 14c)

2. ridges as well as distinct hummocks that are not part of a ridge (Figures 12a, 12e,
12i; and 14d)

seamounts as well as distinct hummocks that are not part of a seamount

4. seamounts, ridges, as well as distinct hummocks that are not part of a seamount or
ridge

.
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Figure 12: Ridges show a variety of morphologies, but are typically oriented perpendicular to the spreading
direction and stress field. Examples of ridges analyzed in this study from unit S1 (a-c), S2 (e-g), and N2 (i-k).
a), e), and i) show polygons defining perimeters of distinct hummocks that are not part of a ridge (blue), as
well as ridges (red) composed partially of distinct hummaocks; b), f), and j) show polygons defining perimeters
of distinct hummaocks that are not part of a ridge (blue), as well as hummocks that are part of a ridge (red); ¢),
g), and k) show polygons removed. For the ridge(s) from each unit, ridges of similar morphology analyzed in
previous studies are shown at right: d) from the Reykjanes Ridge (Smith, 1995); h) from the MAR at 45°N
(Searle et al., 2010); I) from the Galapagos Spreading Center (Colman et al., 2012)
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Figure 13: a) single seamount (encircled white) composed in part by distinct hummocks (encircled red) spans N5
and N7, interpreted as having been split in two by faulting (of which the scarp composes N6); b) from the MAR at
45°N (Searle et al., 2010); c) large seamount (circled blue) in N1, with collapsed central crater; d) with collapsed
central crater, from the northern MAR (Smith and Cann, 1993); e) seamount (circled red) in N3; f) from the
Galapagos Spreading Center (Colman et al., 2012)
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Figure 14: a) Unit C5; b) profiles of the ridge taken along green lines in a) reveal a strikingly triangular cross
section, possibly a secondary feature caused by erosion of hummocks; c) ridge defined in red as individual
hummaocks; d) massive ridge defined in red as one unit; e) curved surfaces on summit hummocks indicate mass
wasting has reshaped the ridge, an explanation consistent with the triangular cross section of the ridge

I included in the analysis faulted edifices that | could interpret as having once been intact
volcanic constructs, so long as | could confidently define their perimeters. | attempted to contain
the base areas of the polygons within the rasterized layer; where volcanic edifices are only
partially contained within the rasterized layer, they are partially contained within the polygons.

Some units contain no volcanic edifices. Other units likely contain no volcanic edifices;
however, because zero is a precise value given the uncertainty involved in how I identify
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volcanic edifices, | chose to try and define polygons around possible volcanic edifices in these
units.

For each of the four volcanic edifice data sets | defined for each of the four bathymetry
maps, | “spatially joined” polygon shapefiles with the xy layers. The spatial join creates a
“joined output shapefile.” This shapefile records, along with other values, the mean, minimum,
and maximum depths (m) of the xy points that fall within the base area of each polygon. These
values can be viewed in the attribute table of the shapefile. I added three “fields,” or columns to
this table and used the “calculate geometry” tool to populate these fields with the base area (m?)
of each polygon, and the x coordinate (m) and y coordinate (m) of the centroid of each polygon,
respectively. | exported this attribute table as a .txt file for analysis in Microsoft Excel.

On the east edge of the bathymetry map, | extracted the x and y coordinates (m) of the
endpoints of a line that | defined as running parallel to the ridge axis. | interpreted the orientation
of the ridge axis from the regional bathymetry map. For the north swath only, I calculated the
distance between the centroid of each polygon and this line to determine the relative distance of
each volcanic edifice from the ridge axis (Figure 17).

| created a polyline shapefile with the same coordinate system as the original regional
raster, then drew six lines across the inner valley, perpendicular to the ridge. I used the “stack
profile” tool (ArcToolbox>3D Analyst Tools>Functional Surface>Stack Profile) to extract X (m)
and z (m) values for all the original regional raster pixels that intersect the six lines. The stack
profile tool returned these data in table format, which I exported as a .txt file for analysis in Excel
(Figure 5b).

4.5. Defining profiles and extracting data in Fledermaus

| drew profile lines perpendicular to the spreading axis across the four high-resolution
bathymetry maps. Fledermaus records x and z values of each point along a user-defined profile
line. One point is recorded for each meter of the profile line. Data can be visually observed in
Fledermaus, or exported to Excel for quantitative analysis.

4.6. Analysis in Microsoft Excel

| imported data from ArcMAP and Fledermaus into Excel. Excel is useful for organizing data,
performing calculations on large data sets, and producing charts and graphs. | performed the
following calculations in Excel:

(1) Volcanic edifice mean height
For each volcanic edifice, | subtracted the mean depth from a base depth to determine mean
height. See uncertainty analysis for details on base depth.

(2) Volcanic edifice volume
For each volcanic edifice, | multiplied base area by mean height to determine volcanic volume.
This allows for a comparison of individual volcanic volumes within and between units, as well as
a comparison between units of the various totals discussed below ((3)-(5)).

(3) Total volcanic edifice volume
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| summed volcanic edifice volumes from each unit to determine total volcanic volume per unit
(Figure 18). This allows for a comparison of the volcanic activity between units.

(4) Total volcanic edifice volume per unit area
| divided total volcanic edifice volume per unit by unit area (Figure 19). Normalizing the
volcanic volumes by unit area allows for an analysis of volcanic edifice volume that is
independent of the unit areas, which are user defined and heavily subject to interpretation.

(5) Total volcanic edifice area per unit area
| divided total volcanic edifice area per unit by unit area (Figure 20). This provides insight into
the magma supply of a unit by showing what proportion of a unit is covered in volcanic edifices.

(6) Box and whisker plots
For each unit, | plotted the distribution of individual hummock volumes on a box and whisker
plot (Figure 21). For this analysis, only individual hummocks were considered to be volcanic
edifices, not ridges or seamounts. The five horizontal lines in each box and whisker plot
represent the y-axis value corresponding, from top to bottom, to the 90", 75 (upper quartile),
50" (median), 25" (first quartile), and 10" percentile datum.

(7) Regional bathymetry profiles
| uploaded the .txt file containing the data exported from ArcMAP by the stack profile tool. |
plotted depth versus horizontal distance for each of six profile lines (Figure 5d).

4.7. Uncertainty analysis

Uncertainty in the estimation of the spatiotemporal distribution of magma supply is
introduced at almost every stage in the analysis. Accordingly, the analysis is meaningless
without some quantification of uncertainty. I identified three possible sources of uncertainty in
the experimental design:

(1) Sentry bathymetry data collection
A small amount of uncertainty was first introduced when Sentry measured bathymetry during its
dives. Uncertainty results from navigation and bathymetry measurements. The precision of the
processed navigation of Sentry depends on the precision with which the position of Sentry is
determined relative to the ship, and the precision with which the position of the ship is
determined relative to GPS satellites. Sentry navigation precision is usually better than £10 m.
This is the uncertainty in the position of the entire map; all points within a bathymetric map
produced by Sentry will be affected by this uncertainty equally and in the same direction. This
uncertainty will have no effect on the distance or volume calculations. Points within a
bathymetric map produced by Sentry will have some uncertainty relative to each other. In
addition, bathymetry measurements by Sentry introduce uncertainty. But these sources of
uncertainty are negligible when compared to the sources described in the next section (D. R.
Yoerger, personal communication).

(2) Volcanic edifice volume calculations
The greater source of uncertainty in the analysis derives from how I determine the base area and
mean height, and from these, the volume of each volcanic edifice present in the bathymetry data.
This uncertainty derives from three sources:



(i) Interpretation of bathymetry: the first source of error
in the analysis is the interpretation of volcanic edifices
from bathymetry data. This interpretation is subjective
and extremely difficult to quantify; | have minimized the
effect of this uncertainty by spending many hours with
my various advisors reviewing and discussing
interpretations.

(ii) User-defined polygon perimeters: The second source
of error in the analysis is the definition, by me, of the
perimeter of each polygon. To estimate the uncertainty
caused by the perimeter definitions, | compared the
volumes calculated from a variety of polygon definition
methods. Polygons chosen for comparison include:

1. A 24-sided polygon, a 16-sided polygon, and an 8-
sided polygon, all of which I neither carefully nor
carelessly defined around a reference volcanic
edifice displayed at a scale of 1:3000, first in the
shaded relief map with azimuth of 0°, then with an
azimuth of 315°

2. Eight polygons defined by myself and three fellow
classmates (two per person) around the same
reference volcanic edifice displayed at a scale of
1:3000 (Figure 15), first in the shaded relief map
with azimuth of 0°, then with an azimuth of 315°

(i) Base depth determination: The third challenge I faced
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Figure 15: top) reference edifice
revealed; bottom) multiple polygons
defined over reference edifice in

ArcMAP

in estimating volumes of volcanic edifices is determining what base depth to use to calculate the
height of a edifice. To calculate an edifice’s volume requires an estimate of the shape of the
seafloor before the volcanic construct was emplaced. To evaluate this uncertainty, | compared
volumes calculated for edifices located within unit N2 using five base depths. | chose the
following base depths after extended discussion with my three advisors:

The minimum depth of the individual edifice

The mean depth of the unit containing the edifice

PR

edifice

The minimum depth of the unit containing the edifice

The mean of the minimum depths of all edifices contained within the unit containing the

5. The minimum of the minimum depths of all edifices contained within the unit containing

the edifice

5. Results

5.1 Results of uncertainty analysis
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The 14 polygons defined around a reference volcanic
edifice, by the methods described in section 4.7, yield a standard
deviation that is 1.7% of the average calculated volume for this
edifice (table 1). When plotted on any of the charts included here,
this sigma value would cause none of the results to overlap,
regardless of the y-axis value. This suggests that the uncertainty in
volume calculations that results from the inconsistent user-
definition of volcanic perimeters is not only acceptable for the
reference volcanic edifice tested, but is invariant regardless of

Of the five base depths (listed in the previous section) used
to determine N2 volcanic edifice mean height (Figure 16), and
subsequently volcanic edifice volume, two yield abundant negative
values: the mean depth of the unit containing the edifice
(calculated negative volumes=111) and the mean of the minimum
depths of all edifices contained within the unit (calculated negative
volumes=81). Because volume cannot be negative, these two base
depth methods are not appropriate for this analysis. Of the
remaining three base depth methods, two provide strikingly similar
values: the minimum unit depth and the minimum of the minimum
depths of all edifices contained within the unit. But as figure 17 clearly illustrates, units can tilt
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Figure 16: Base depth uncertainty analyses: five plots, each of the same individual edifice volumes from N2, each
calculated using one of the five different base depths listed above the chart. Within each plot, volumes are plotted

against relative distance from the ridge axis.
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Figure 17: Minimum depth of each volcanic edifice plotted against the relative distance from the ridge axis. The
volcanic edifices from different units are distinguished by color. The blue line is a profile taken down the center of
the North swath.

of the edifices contained within that unit can lead to disproportionately higher volumes
calculated for edifices based in more elevated portions of the unit. This trend is reflected in
figure 17, even though the unit with which | performed the base depth uncertainty analysis (N2)
shows the least variation in depth relative to the other north units.

5.2 Results of bathymetric analysis

Results of the bathymetric analysis allow for the distributions of individual hummock volumes of
each unit to be compared. Only distinct hummocks were considered to be volcanic edifices in the box and
whisker plots in figure 21. Figure 21 shows that C7, C8, C9, S3, S6, and N6 contain no volcanic edifices,
and that volcanic edifice volumes for the remaining units vary by greater than three orders of magnitude.

Results also allow for a comparison of unit totals for volcanic volume, volcanic volume per unit
area, and volcanic area (area covered by volcanic edifices) per unit area. Results vary depending
significantly on what are considered to be edifices. Whether or not seamounts are considered volcanic
edifices appears to make little difference in the relative volcanic edifice volume estimations of each unit.
However, volume estimations differ significantly between analyses that consider ridges and hummocks to
be volcanic edifices and those that only consider hummocks.

When only distinct hummocks are considered volcanic edifices: unit S1 contains the greatest total
volcanic volume (~1.8 x 108 m?®), followed by unit C5 (~1.2 x 108 m®), and then unit N2 (~1.1 x 108 m®)
(Figure 18a and b); unit C2 contains the greatest total volcanic volume per unit area (~50 m), followed by
unit S1 (~38 m), and then unit C5 (~32 m) (Figure 19a and b); unit C2 contains the greatest volcanic area
per unit area (~0.75), followed by S1 (~0.74), and then N2 and C6 (both ~0.59) (Figure 20).

When ridges and distinct hummocks that are not part of a ridge are considered volcanic edifices:
unit C5 contains the greatest total volcanic volume (~1.2 x 10° m?), followed by unit S1 (~2.3 x 108 m?),
and then unit N5 (~1.5 x 108 m®) (Figure 18a and b); unit C5 contains the greatest total volcanic volume
per unit area (~330 m), followed by units C5 and C4 (~150 m), and then unit N9 (~40 m) (Figure 19a and
b); units C5, C4, and C2 contain the greatest volcanic area per unit area (1.0), followed by S1 (~0.79), and
then N2 (~0.63) (Figure 20).

When seamounts and distinct hummocks that are not part of a ridge are considered volcanic
edifices: units S1 and N5 contain the greatest total volcanic volume (~1.8 x 108 m®), followed by unit N2
(~1.7 x 108 m®), and then unit C5 (~1.1 x 108 m®) (Figure 18a and b); unit C2 contains the greatest total
volcanic volume per unit area (~49 m), followed by unit S1 (~38 m), and then unit C5 (~32 m) (Figure
19a and b); unit C2 contains the greatest volcanic area per unit area (.75), followed by S1 (~0.74), and
then N2 (~0.64) (Figure 20).



When seamounts, ridges, and distinct hummocks that are not part of a ridge are considered
volcanic edifices: unit C5 contains the greatest total volcanic volume (~1.2 x 10° m®), followed by unit S1
(~2.3 x 108 m3), and then unit N5 (~1.8 x 108 m®) (Figure 18a and b); unit C5 contains the greatest total
volcanic volume per unit area (~330 m), followed by units C5 and C4 (~150 m), and then unit S1 (~50 m)
(Figure 19a and b); units C5, C4, and C2 contain the greatest volcanic area per unit area (1.0), followed
by S1 (~0.79), and then N2 (~0.68) (Figure 20).

Figure 21 shows box and whisker plots of the distribution of individual hummock volumes,
plotted by unit. Most obvious is the absence of hummaocks from several units, many of which are adjacent
to units containing hummaocks. In addition, it is clear that in the north and in the south, the distributions of
individual hummock volumes of several units containing hummocks differ significantly (no overlap
between “boxes” of box and whisker plots).

For an interpretation of these results, see Discussion section.
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Figure 18: Total volcanic volume (m?), by unit. Seamounts were not found in south units or central units,
so for these units the “hummocks + ridges” and “hummocks, seamounts, + ridges” datasets, and the
“hummocks” and “hummocks + seamounts” datasets are identical. For this reason, only the “hummocks”
and “hummocks + ridges” datasets are shown for these units. a) Vertical scale of north and south units is
different from central units; b) vertical scale is the same for all units.
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Figure 19: Total volcanic volume/unit area, (m) by unit. Seamounts were not found in south units or
central units, so for these units the “hummocks + ridges” and “hummocks, seamounts, + ridges” datasets,
and the “hummocks” and “hummocks + seamounts” datasets are identical. For this reason, only the
“hummocks” and “hummocks + ridges” datasets are shown for these units. a) Vertical scale of north and
south units is different from central units; b) vertical scale is the same for all units.
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units, so for these units the “hummocks + ridges” and “hummaocks, seamounts, + ridges” datasets, and the




25

“hummocks” and “hummocks + seamounts” datasets are identical. For this reason, only the “hummocks”
and “hummocks + ridges” datasets are shown for these units. a) Vertical scale is the same for north and
south units; b) vertical scale the same for all units.
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Figure 21: box and whisker plots of distribution of individual hummock volumes, plotted by unit. Each
horizontal bar represents, from top to bottom, the 90™, 75%, 50™, 25™, and 10" datum, respectively.

6. Discussion

My first hypothesis is that within the area of study, magma supply increases from north to
south along the ridge axis. Consistent with the regional bathymetric trend of increasing ridge axis
elevation from north to south (Figure 5), the analysis of volcanic edifices in high-resolution
bathymetry maps reveals a significantly stronger magmatic signal in the south swath than in the
north swath. There is greater volume of material contained in the S1 unit volcanic edifices than
in any unit from the north swath both before (Figure 18), and after normalizing volcanic volume
by unit area (Figure 19). Additionally, although the proportion of north swath to south swath
volcanic volume increases when entire ridges are considered, the S1 unit yet remains the most
volcanic unit contained in the two areas. The S1 unit is also the unit with the greatest proportion
of volcanic coverage of all the north and south units (Figure 20), although several units in the
north are nearly as covered by volcanic edifices as S1, and the case for greater volcanism in the
south than in the north is evidenced most strongly by total volcanic volume before and after
normalization by unit area.

It is unclear whether my first hypothesis—that magma supply increases from north to
south along the ridge—is consistent with results from C1-C6. When ridges are ignored and only
distinct hummaocks are considered, S1 has the greatest total volcanic volume before
normalization by unit area (Figure 18), and is second only to unit C2 after normalization by unit
area (Figure 19). However, this result deserves qualification: of all the units analyzed in this
study, C2 is one of the smallest by area, and the C1-C6 unit boundaries were among the most
uncertain and subjectively determined. Boundaries could have been reasonably defined for the
units C1-C6 that would have resulted in S1 having the greatest total volcanic volume of all the
units analyzed, before and after normalization by area.



When entire ridges are considered as volcanic edifices, total volcanic volume in unit C5
is an order of magnitude greater than in any other unit before normalization by unit area, with S1
a distant second (Figure 18); and when normalized by unit area, S1 is surpassed in terms of total
volcanic volume by units C2, C4, and C5 (Figure 19). It should be noted however that units C2,
C4, and C5 have each been interpreted as consisting entirely of a single massive ridge. This
result showcases the dependence of this study on the scale of the volcanic edifices considered,
and similarly on the interpretation of what qualifies as a volcanic edifice.

Unit C5 provides an example of the
difficulties I encountered and the
uncertainties | faced for edifices composed
entirely of volcanic material. | attempted to
base my interpretations of volcanic edifices
on published interpretations, but in all my
reading | could find no volcanic edifice quite
like the massive ridge in C5 (Figure 14). Itis
also worth noting that the ridge in unit C5 is
unique to the bathymetric maps analyzed in
this study. The triangular cross section of the
ridge (Figure 14a) would not result from

Figure 22: Towcam photo of the seafloor showing shattered

. pillow basalts (as indicated by rounded, striated surfaces)
rounded hummaocks plled and CO&|€SC€d, SO forming a slope, consistent with mass wasting of a ridge of

an interpretation of the ridge as pure|y volcanic origin. The two green dots in the center of the image

. . e . are 30 cm apart. The precise location of the TowCam system
volcanic requires additional eXpIanatlon' relative to the ship is difficult to determine but this area

Perhaps one or both of the flanks of the corresponds to swath 184.

“ridge” are actually fault scarps underlying

hummaocks formed by lateral flows or vertical feeder pipes that can intersect a fault surface at
MORs (Smith and Cann, 1993). Such an edifice would not be unique to the maps analyzed in
this study, as scarps underlying hummocks can be found in the north units N3, N4, and possibly
N8. However, the regional bathymetry map shows the ridge in unit C5 continuing well south of
C5 (Figure 5), so the interpretation that this ridge is a tectonic edifice seems unlikely. Mass
wasting could possibly explain the triangular cross section observed. Concave scars atop the
ridge support the interpretation of mass wasting, as do TowCam photos taken within or nearby
the swath (Figure 22).

Even if mass wasting is responsible for the triangular cross section shape, the question
remains how much significance we should impute to the total volcanic volume analysis that
considers ridges volcanic edifices, versus the analysis that only considers distinct hummocks.
One possible interpretation is that the ridge in unit C5 consists of both intrusive and extrusive
material. Pillow basalt layers at MORs can be as thin as 300 m (Nicolas and Boudier, 2003), with
the material below crystallized from magma that never reached the seafloor. Considering that the
unit C5 ridge shows over 500 m of relief (Figure 14a), it is reasonable to assume that a total
volcanic volume estimate that treats such an edifice as purely volcanic will overestimate the
magma supply beneath the ridge.
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For these reasons, | am inclined to consider the comparison between the south units and
C1-C6 units inconclusive. The far more certain result is that volumetrically, units from both the
south units and C1-C6 units display significantly more volcanism than any unit from the north
swath, consistent with my first hypothesis that magma supply increases from north to south
along the ridge. Although anticipated, this is a striking result nonetheless. Both classic and more
modern theories of MOR spreading hold that the more amagmatic portions of a ridge will
accommodate spreading through numerous normal faults and long-lived detachment faults (Buck
et al., 2005; Escartin et al., 2008; Buck et al., 2005; Tucholke et al., 2008). Yet in the area of
study, the long-lived detachment faults and associated core complexes are located directly off
axis from the most magmatic portion of the ridge (Figure 5).

My second hypothesis is that magma supply has remained constant over time along the
entire ridge. Although in terms of individual volcanic edifice volume the C1-C6 units in the
figure 21 box and whisker plots appear consistent within uncertainty, the box and whisker plots
for the south and north units provide strong evidence that magma supply is not constant through
time at all locations along the ridge. Individual volcanic edifice volume distributions are
significantly higher in units N9, N5, N3, and N2, and lower in units N8, N7, N6, and N4. Units
N8, N6, and N4 are almost devoid of volcanic material entirely (Figures 18-21), and may
represent periods of purely amagmatic spreading. In addition, these amagmatic units are located
in space between units with obvious abundant magmatism (N2, N3, N5, N9), a result that
suggests that magma supply beneath the ridge in the north of the area of study has fluctuated
over the ~700 ka (based on 21mm/yr spreading rate (Perfit and Chadwick, 1998), 14 km long
map) represented in the northern high-resolution bathymetry map. Even more strikingly
amagmatic in appearance are the south swath units west of S2, where volcanism appears almost
entirely absent (Figures18-21), and the central units C7, C8, and C9. The relationship between
the apparently amagmatic C7-C9 swaths and very magmatic C1-C6 swaths just to the east
mirrors the relationship between the south swath units west of S2 and the units S2 and S1. Clues
to this similarity can be found in C8 and S6, which display surfaces devoid of volcanism and
smooth but for conspicuous corrugations—evidently the surfaces of long-lived detachment faults
(Figure 11). All these results suggest that detachment faults are more complex, their formation
less related to reduced magma supply than we once thought.
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