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Abstract 
A range of volcanic morphologies is observed across the surface of the planet Mars. These 

volcanoes exert large vertical loads atop the lithosphere, which responds be compensating and 
deflecting downward. The flexure-induced stresses strongly influence magma ascent through 
the plate, from the mantle to the surface. This broad range of volcanic edifice profiles is 
related to characteristics of the underlying lithosphere. In my GEOL394 project, I investigate 
a relationship between flexural stresses and how they control the shapes of volcanic edifices 
on Mars. 

I hypothesize and investigate a relationship between the lithospheric elastic thickness and 
volcano morphology on Mars. For lithospheres with the largest values of Te (i.e., Te > 40 km), 
I predict that younger, conical volcanoes with high topographic relief and steeply graded 
flanks will form atop the plate. In this case, all magma ascent criteria will be satisfied over the 
entire lithosphere, permitting uninhibited flow to the surface to form these steep edifices. For 
the lowest values of Te (i.e., Te < 15 km), widely spaced zones of magma ascent are caused by 
short-wave deflections in the lithosphere, forming flat or annular volcanoes with low 
topographic relief and broad radii. For intermediate values of Te (i.e., 15 < Te < 40 km), high 
stress gradients will cut off magma ascent beneath the summit of the growing edifice, 
resulting in domical shapes (McGovern, et al., 2013). 

These volcanoes can be used as a tool to help us understand the planets current condition, its 
history since formation, and how it compares to Earth. Terrestrial volcanoes are a key 
component of a planet’s dynamical system, being mechanisms of heat transfer, volatile 
transport, atmosphere production, and magma/mass emplacement atop the lithosphere. This 
last aspect will provide insight to Mars’ thermal history and evolution over time. A 
lithosphere thickens as time progresses, and the rate of thickening correlates with the rate of 
cooling over time.  

When an overlying load is placed atop a plate of uniform material and thickness, the plate 
bends to compensate and experiences a flexural response with a coinciding a flexure-induced 
stress field local to the loading. This stress tensor influences local tension and compression in 
the plate, which directly affects the formation of dikes in the area of loading. Furthermore, the 
orientations of these dikes dictate where subsequent eruptions and magma emplacements will 
occur. The elastic thickness and flexural rigidity change the orientation of the stresses within 
the plate, which change the formation and orientation of dikes surrounding the load.    

The flexure from various volcanic profiles has been observed on Venus (McGovern, et al., 
2013), with the flexure-induced stress field, and magma ascent modeled and observed.  I 
generate a self-consistent model by placing incremental loads atop a thin elastic plate of a 
given thickness. Subsequent magma ascent is guided by flexure-induced stresses. My models 
show a correlation between the morphology and evolution of the growing volcanic edifice for 
given elastic thicknesses. These profiles are then compared to the variety of volcanoes that are 
seen across the Martian landscape. Future implications for a volcanic and thermal history of 
the planet are drawn from this experiment.  
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2. Introduction 
2.1 Morphological Classification of volcanoes 

The terrestrial planets of our solar system feature 
various forms of volcanic edifices and related 
surficial structures. There are volcanoes of various 
shapes and sizes on Mars that are of interest to me 
in this project. The Tharsis bulge is a large volcanic 
province that is centered near the equator in the 
planets western hemisphere. The largest volcanoes 
in the solar system are located on Tharsis: the shield 
volcanoes known as the Tharsis Mons: Pavonis 
Mons, Ascraeus Mons, and Arsia Mons (Figure 1) 
and also the largest volcano on the planet, Olympus 
Mons. Olympus Mons is almost 100 times larger 
than the largest shield volcano on Earth, Mauna 
Loa. Mars is thought to lack plate tectonics; 
therefore the dominant form of volcanism is hotspot 
volcanism. Without known plate boundaries 
through which the magma can reach the surface, 
long-lived mantle upwellings cause the formation of 
these broad shield volcanoes. These hotspots paired 
with the low gravitational acceleration on the 
surface (3.711 !

!!
) permit these volcanoes to reach 

immense heights. According to Werner (2009), the 
shield edifices of the Tharsis Montes were formed 
~3.55 Ga, and have been episodically active until 
~100 Ma.  

The low-lying Patera-volcanoes, such as Tyrrhena 
Patera (Figure 2) located in the heavily cratered, 
topographic high, southern hemisphere of the 
planet, are characterized by their low topographic 
profile, broad radial extent, and ancient ages. 
Werner (2009) estimates the time of emplacement 
of Tyrrhena Patera to have been before 3.9 Ga. 
Tyrrhena Patera has radial extent of ~600 km and a 
small topographic relief of ~1.5 km (Werner, 2009). 
The flank of the Patera is heavily eroded with 
channels that radiate from the summit region. The 
volcano is likely to be composed of pyroclastic 
deposits that have been easily eroded. The eruption 
style of this Patera volcano is much different from 
the fluid lavas that likely built up the shield 
volcanoes of Tharsis. 

The Elysium volcanic province (Figure 3) is the 
second largest volcanic structure after Tharsis. It is 
located in the eastern hemisphere atop the northern 

Figure	
  2:	
  Tyrrhena	
  Patera	
  lies	
  in	
  the	
  southern	
  highlands	
  of	
  Mars.	
  Being	
  
emplaced	
  before	
  3.9	
  Ga,	
  this	
  volcano	
  provides	
  insight	
  to	
  early	
  forms	
  of	
  
Martian	
  volcanism.	
  Its	
  low	
  topographic	
  profile,	
  and	
  heavily	
  eroded	
  
channels	
  are	
  signs	
  of	
  a	
  pyroclastic	
  style	
  deposition/eruption.	
  Paterae	
  

volcanoes	
  can	
  be	
  classified	
  as	
  flat	
  in	
  profile. 
http://lpi.usra.edu	
  

 

Figure 1: The Tharsis Montes (L-R) Arsia Mons, Pavonis Mons, 
Ascraeus Mons are shield volcanoes on the Tharsis bulge. All have an 

elevation of ~15km and a radial extent ranging from 350-450km. 
http://lpi.usra.edu 
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lowlands. The volcanoes of the province include 
(from N to S) Hecates Tholus, Elysium Mons, and 
Albor Tholus.  Elysium Mons has a steeper slope 
(~10º) than the volcanoes of Tharsis, a elevation of 
~14 km, was emplaced ~3.5 Ga with the most 
recent resurfacing event ~1.6 Ga (Werner, 2009). 
The two Tholi volcanoes have smaller relief ~5.5 
km, and radial extent of ~150 km. They have 
convex slopes with ~5º angles. Summit activity in 
the caldera of Albor Tholus is thought to have been 
active until 500 Ma (Werner, 2009) 

Volcanic profiles can be characterized in terms of 
edifice radius, height, slope, and shape, leading to 

three general categories of volcano morphology. 
Conical edifices have a point-like apex and a 
steeply sloped profile. The volcanoes on Elysium 
can be classified as cone volcanoes, they have high 
topographic relief, and steep sloping sides (Figure 
3). Domical volcanoes have a much more gradual 
slope, and a generally flat, tabletop character at 
higher elevations. Olympus Mons can be considered 
a dome volcano (Figure 4). Flat volcanoes have a 
very diffuse topographic profile, a large breadth of 
radial extent, and are at times ring-like in shape; 
those of which are known as annular in profile. 

Paterae volcanoes on Mars can be classified as flat 
profiles because of their broad radial extent, and 
low topographic relief (Figure 2). 

 

2.2 Deformation and volcano growth 
When an overlying load (i.e. a mountain, glacier, 

or volcano) is emplaced atop the surface of a 
terrestrial body, the underlying lithosphere 
experiences flexure and must deform to compensate 
for the mass of the overlying topographic load 
(Watts, 2001).  Over geologic time scales, the 
lithosphere is known to deform elastically and can 
bend under an overlying load. When deformation is 
relatively small, the lithosphere can be considered a 
thin elastic shell experiencing deflection in vertical 
z-axis direction (Comer, 1983). The overlying load 
pushes the lithosphere downward, and a resultant 
stress field is generated within the plate. In the case 
of a volcanic load, these stress fields constrain both 
how and where magma ascent occurs. Magma 
ascent criteria dictates where rising magma will be 
emplaced. The emplacement of magma influences 
the shape, slope, and other physical features of the 
growing volcano, modifying the evolving flexural 
deflection of the plate.  

Figure 4: Olympus Mons is characterized by its large radial extent, its 
high elevation, and its gradually sloping flanks. This can be considered a 

domical edifice. 
Sherman, et al., (1981) 

Figure 3: The Elysium volcanic province lies in the planets eastern 
hemisphere in the northern lowlands. It hosts the volcanoes (from N to 
S) Hecates Tholus, Elysium Mons, and Albor Tholus. These volcanoes 

be classified as conical n profile. 
http://lpi.usra.edu 
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McGovern et al. (2013) show that, on Venus, 
volcanoes of different shapes produce different 
patterns of magma ascent that may or may not 
preserve the shape of the edifice. They found that 
conical volcanoes are consistent with a thick plate, 
but that flat or ring edifices are consistent with thin 
elastic plates. Domical volcanoes are intermediate 
between the other two. However, they only consider 
a fully formed edifice. I instead model the growth of 
the edifice in several increments to test what kind of 
volcano is possible for various elastic plate 
thicknesses and apply these models to Mars. 

In my senior thesis project I am studying the 
stress field induced by volcanic loads placed atop a 
thin elastic shell. These stresses fields constrain the 
ascent of underlying magma (Rubin 1995), and 
where, in the crust, the emplacement of magma 
occurs. The emplacement of the magma is 
considered to be atop the surface of the plate. As 
each volcanic load is emplaced incrementally, a 
growing volcanic profile is observed. Based on the 
work of McGovern et al. (2013), I hypothesize that 

conical volcanoes will be produced on thick elastic 
plates and flat volcanoes on thin plates. Thus it will 
be possible to constrain the elastic thickness of 
various location on Mars based on the shape of 
volcanoes that are observed there. 

2.3 Implications 
Volcanism on Mars was widespread from the 

planets formation at 4.5 Ga, until ~3.0 Ga, since 
then, the planet has been significantly less active, 
with noted late-Amazonian pyroclastic deposits, and 
lava flows within the Arsia Mons caldera that are no 
more than 100-200 million years old (Hartmann, et 
al., 1999). The volcanic diversity is influenced by 
different lithospheric characteristics such as the 
flexural rigidity and elastic thickness of the 
lithosphere, and the rate of thickening of the 
lithosphere. Rates of cooling and thickening of the 
lithosphere can be implied from a volcanic and 
thermal history of Mars. Comer et al., (1985) 
observe concentric grabben surrounding the 
topographic loads of volcanoes. They correlated the 

Figure 5: A global topography map of Mars generated from laser altimetry data of the Mars Orbital Laser Altimetry device on the Mars 
Global Surveyor. Noted are volcanoes that will be of focus 
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spacing of these grabben to the age of emplacement. 
McGovern et al. (2002) estimated the elastic 
thickness and deflection necessary to support a load 
by measuring the planets topographic distribution 
on regional and global scales. By comparing 
different regions and edifices formed at different 
epochs, it will be possible to better constrain the 
thermal evolution of the planet and spatial 
variations of lithosphere structure. Furthermore, 
new constraints on the elastic thickness of Mars can 
provide a more detailed history of the thickening 
and cooling lithosphere. 

3. Experiment Design 
The volcanic growth model is written and 

generated in MATLAB. In a self-consistent 
approach, incremental loads are emplaced atop a 
model of a terrestrial lithosphere, modeled as a thin 
elastic shell, with the flexure-induced stress guiding 
magma ascent and the subsequent emplacement of 
each additional load. 
The maximum deflection of an elastic plate is 
described by Watts (2001):  
 

Equation 1: !!"# =
!

!!! !!"#$%&!!!"#!$$ !
 

 
The flexure of a thin elastic shell is given by: 
 

Equation 2:  ∇!! + !!!! = !/! 
 

!!"# is the maximum deflection, P is the weight 
(force) of a concentrated load, ∇! is a differential 
operator called a biharmonic operator, it is 
equivalent to the square of the Laplacian operator, 
the divergence of a gradient of a scalar function. w 
is the vertical deflection of the plate, ! is the 
flexural parameter, D is the flexural rigidity, and q 
is the load itself (Brotchie and Silvester 1969). 

 
D is defined as: 

Equation 3:   ! = !!!

!" !!!!
 

! is defined as: 

Equation 4:  ! = !
!!"#$%&!!!"#!$$ !

!/!
 

 
where ! is the three-dimensional flexural 
parameter, H is the thickness of the plate, E is 
Young’s Modulus, ν is Poisson’s ratio, !!"#$%& −
!!"#!$$ is the density difference of the materials 
above and below the plate, and g is acceleration due 
to gravity. 

In (2), D∇!w is the bending moment of the thin 
elastic plate, and D!!!! is the hydrostatic restoring 
force of the plate resultant from density variations 
above and below the layer. The flexure equation 
admits well-known solutions, discussed in the next 
section, for simple load geometries such as a point 
load and a line load (Watts 2001). 

3.1 Flexure 

3.1.1 Line Load 
In the presence of a line load that extends 

infinitely in the y-direction, a solution exists that is 
dependent on x, and is symmetric with respect to y. 
In this case, (2) can be simplified to: 
 

Equation 5:  !!!
!!!

+ !!!! = !
!

 
 
Applying a fixed displacement w=w0 at x=0 and 
w=0 at x=±∞, (5) admits the following analytical 
solution: 
 

Equation 6:   
! = !!!!!" cos !" + sin !"  
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Where ! is the flexural wavelength that controls the 
length scale of the flexural response. 
 

Equation 7:   ! = !
!

 
 
The downward deflection at x=0 is flanked by uplift 
at a distance bulge at x=± π!. The amplitude of the 
deflection decreases exponentially and is essentially 
negligible for |x|≥2πα.  

The maximum flexure (!!"#) of an infinite beam 
from a concentrated load P is similar to (6): 

 
Equation 8: 

!!"#
!"

! !!"#$%&!!!"#!$$ !
!!!" cos !" + sin !"  

 
! is defined as: 
 

Equation 9:  ! = !
!
 

3.1.2 Point Load 
In the presence of a point load at any point in the 

(x,y) plane, the solution is axisymmetric about the 
z-axis. The solution for (2) in this case will be: 
 

Equation 10:  ! = !!kei
!
!

 
 
With wk defined as wk = w0/kei(0). Note that the 
equation only depends on r, the radial distance from 
the point of displacement. Kei is the imaginary part 
of the modified Bessel function of the second kind. 
A Bessel function is a mathematical tool used to 
obtain separable solutions to Laplace’s equations, 
being useful in wave propagation equations. We 
have defined kei as function in MATLAB, with 
values obtain from Weller (2012) (Appendix A). 

3.1.3 Flexural Models 
MATLAB scripts are used to generate models for 

infinite line loads, and point loads for three 
randomly selected points. The solution for a line 
load in 2-D (5), with three randomly selected loads 
is depicted in Figure 6. A 3-D visualization, with 
the lines extending infinitely in the y-direction, is 
depicted in Figure 7. 

The solution for a point load (6), with a top-down 
view of three randomly selected points, is depicted 
in Figure 8. The contour lines represent the 
displacement in the z-direction of each of these 
points. A 3-D visualization of this one point is 
shown in Figure 9.  
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The mesh of the surfaces shown in Figures 7-9 is 
composed of a domain in which the data points of 
the flexural events are contained. When we prompt 
the script to initially include more points in the grid, 
the resolution of the surface becomes finer. As the 
grid increases in resolution, the more precise the 
visualization of the solution becomes 

3.1.4 Flexural Forebulge 
The flexural forebulge can be found directly 

adjacent to, in front of, an area lithospheric loading. 
This forebulge is a slight uplift caused by the 

flexural rigidity of the plate itself, and furthermore, 
the density contrasts between the plate and the 
medium that surrounds it. In our case of lithospheric 
loading, the density contrast lies between the 
density of the plate, the density of the infilling 
material, and the density of the air/medium above 
the plate.  

Due to the waveform nature of our 
flexural/displacement equation, the distance from 
the load to the maximum amplitude of the forebulge 
can be determined where the slope of the flexural 
response is zero. The point at which the slope is 
zero, and where the forebulge height is at its 
maximum, is found at a flexural half-wavelength 
(!
!
), or at a distance of ! = !" from the load. The 

amplitude of the forebulge is significantly smaller 
than that of the depression in the lithosphere in the 
presence of a point load. As well as being 
characterized as having a small amplitude, the 
magnitude of the forebulge decays exponentially 
with increasing distance from the area of loading, 
with the forebulge negligible at distances greater 
than ! ≥ 2!". 
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3.2 Stress Fields 

3.2.1 Flexure Induced Stress 
Stress is expressed as a nine-component 

symmetric tensor: 
 

Equation 11:    

! =   
!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

 

 
In linear elasticity, ! and ! are the Lamé parameters 
that parameterize the elastic moduli of homogenous 
isotropic solids. They are related to the Young’s 
modulus E and Poisson ratio υ of a medium by: 
 

Equation 12:  ! = !!
(!!!)(!!!!)

 
 

Equation 13:  ! = !
!(!!!)

 
 
Flexure is defined by the spatially variable vertical 
displacement field, w(x,y), which is very small 
compared to radius of the Earth. Therefore, parallel 
straight lines, or fibers, in the undeformed plate 
remain approximately straight and parallel even 
when flexed. Moreover, slopes are also assumed to 
be very small. Therefore, the shear stresses σxz and 
σyz are negligible. 

The bending of the plate generates horizontal 
stresses that shorten and lengthen fibers on the 
concave and convex sides of the bent plate. Stress 
increases in magnitude with zf, the distance from the 
neutral fiber (also the mid-point of the plate) and 
change sign on either side of the neutral fiber.  
The components of Equation 11 being defined as: 
 

Equation 14:   
 !!! = !! ! + 2!

!!
!!!

+ ! !
!!
!!!

 
 

Equation 15:   

!!! = !! !
!!!
!!! + ! + 2!

!!!
!!!  

 
 
 

Equation 16:  
 !!" = !!" = 2!"!

!!!
!"!#

 
 

The vertical stress σzz is the combination of the 
lithostatic pressure and a flexure-related stress 
generated by Poisson effect in response to the 
horizontal normal stresses. 
 

Equation 17:   

!!! = !!!ℎ! + !!!
!
2 − !! + !!!

!!!
!!! +

!!!
!!!  

 
Here, hv is the height of the volcanic load; ρv and ρl 
are the densities of the volcanic load and the 
lithosphere, respectively. If deformation is small, 
the lithostatic stress dominates (17). 

3.2.2 Numerical Implementation 
Analytical or semi-analytical solutions for the 

stress field associated with plate bending in the 
simple cases of a line load or a point load are 
available in the literature (e.g., Comer, 1983). 
However, we need to evaluate stress in a more 
general case of an arbitrary load. To do this, we use 
a finite difference approximation to the stress 
equations above. 

The displacement field w(x,y) is defined over a set 
of sampling points that form a regular Cartesian 
grid, with spacing h between any given two points. 
Each point is associated the indices i and j in the x 
and y direction, respectively. The first and second 
derivatives of w are evaluated using the nine points 
that surround an evaluation point (xi, yj). The slope 
is given by  

 
Equation 18:   

!"
!" !,!

=
!!!!,! − !!!!,!

2ℎ  

 
Equation 19:   

!"
!" !,!

=
!!,!!! − !!,!!!

2ℎ  
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Equation 20:   

!!!
!!!

!,!
= 

!"
!" !!!!,!

− !"!" !!!!,!

ℎ =
!!!!,! − 2!!,! + !!!!,!

ℎ!  
 
Equation 21:   

!!!
!!!

!,!
= 

!"
!" !,!!!!

− !"!" !,!!!!
ℎ =

!!,!!! − 2!!,! + !!,!!!
ℎ!  

 
Equation 22:   

!!!
!"!#

!,!
= 

!"
!" !,!!!

− !"!" !,!!!

2ℎ = 
!!!!,!!!−!!!!,!!!−!!!!,!!! + !!!!,!!!

4ℎ!  
 
The accuracy of the numerical scheme presented 
above is evaluated using predefined displacement 
fields for which there is an analytical solution for 
the first and second derivatives.  I input a known w 
into (14)-(17) and compare the numerical and 
analytical solutions to measure the relative error.  

 
Equation 23:  ! = ! = !! + !! 
Equation 24:  !!!

!!!
= !!

!!
 

 
Equation 25:  !!!

!!!
= !!

!!
 

 
Equation 26:  !!!

!"#
= !"

!!
 

 
 
To measure the relative error of our analytical 
model, I implemented the above numerical 
solutions for a known w into the script and compare 
the solution with the analytical solution using (27). 
 

Equation 27:   
Error = !"#$%&'()!!"#$%&'(#$

!"#$%&'(#$
 

3.2.3 Examples of Surface Stress 
The stress fields associated with the surface 

displacement generated by one randomly generated 
point load are shown in Figures 6-11. See Table 1 
for input parameters. 

Applying (16)-(17) to a MATLAB function, !!", 
and !!! stress fields are visualized.  
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Figure 10: Stress σxx  at the surface of the plate associated with 
the displacement field generated by one randomly located point 

load (See Figure 5). Note tension n in the y range, and 
compression in the x range. Source w is found (7) and applied to 

equation (14).	
  

 
Figure 12: Stress σxy  at the surface of the plate associated with the 
displacement field generated by one randomly located point load 

(See Figure 5). Source w is found in (7) and applied to (16) 
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Figure 13: Stress σzz  at the surface of the plate associated with the 
displacement field generated by one randomly located point load (See 

Figure 5). Note uniform gradient in both the y range, and in the x range 
at radial distances from points of displacement. Source w is found in (7) 

and applied to (17)) 

Figure 11: Stress σyy  at the surface of the plate associated with the 
displacement field generated by one randomly located point load (See 
Figure 5). Note tension in the y range, and extension in the x range. 

Source w is found in (7) and applied to (15)	
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As expected, the errors calculated from (27) are 
practically zero throughout the planes in Figures 
14-17. This shows that the error within the analytic 
model is extremely small. 
 

 
 

 
 

 
 

 

 

 

 
	
    

Figure 14: !!!  error using Equation 27. Note that 
practically all points in the field are 0. The points that 

are not 0 resemble the small amount of error in our 
model. Visualization is plotted on a log10 scale to 

accentuate detail. 
	
  

Figure 16: !!!  error using Equation 27. Note that 
practically all points in the field are 0. The points 
that are not 0 resemble the small amount of error 
in our model. Visualization is plotted on a log10 

scale to accentuate detail. 
	
  

Figure 15: !!"  error using Equation 27. Note that 
practically all points in the field are 0. The points that 

are not 0 resemble the small amount of error in our 
model. Visualization is plotted on a log10 scale to 

accentuate detail. 

Figure 17: !!! error using Equation 27. Note that 
practically all points in the field are 0. The points 
that are not 0 resemble the small amount of error 
in our model. Visualization is plotted on a log10 
scale to accentuate detail. Note that the corners 
are very large and are probability resultant from 

noise in the script. These regions have a large 
relative error. 
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3.3 Magma Propagation Criteria 
McGovern et al. (2013) and Rubin (1995) define 

three criteria to evaluate the magma ascent through 
the lithosphere in vertical dikes. These criteria are 
based on the principles that dike intrusions 
perpendicular to the direction of least 
comprehensive principal stress, that enough tension 
is present in that direction for the rocks to crack, 
and that there is a vertical pressure gradient that 
forces magma upwards to the surface. The criteria 
are formally written as follows: 
 

Equation 30:  Δ!!!"#   >   !!"#$! 
 
Equation 31:  Δ!!!"##"$ >   !!"#$! 
 
Equation 32:   

!Δ!!
!" =

(Δ!!!"# − Δ!!!"##"$)
ℎ > 0 

 
Where Δ!! is defined as the tectonic stress by 
Rubin (1995); it is the difference of vertical normal 
stress (!!) and horizontal normal stress 
perpendicular to the dike (!!), therefore Δ!! is 
defined as !! − !!. (30) and (31) express that 
enough tension should be present, at either the tip of 
the bottom of the plate, to exceed a local stress 
threshold value, !!"#$!, due to an assortment of 
factors such as regional stresses, and local 
inhomogeneities. However, based on the low tensile 
strength of highly damaged rocks in planetary 
lithospheres (Wieczorek et al., 2013) and on the 
absence of constraints on regional stress, I am 
taking !!"#$! to be zero, requiring both Δ!!!"# and 
Δ!!!"##"$ to be positive in order for a dike to form. 

In (32), the stress gradient must be positive for 
magma ascent to occur. At the top of the plate, 
differential compression must be at its smallest, and 
should increase with increasing depth. If 
compression is lowest at the bottom of the plate, 
magma ascent will be more restricted at larger depth 
as it ascends to the surface. The magma will 
experience an increasing horizontal compression as 
it ascends from its source, and it will eventually be 
pinched out before it reaches the surface of the 
plate. Therefore, magma must be ‘positively 

buoyant’ for it to be forced upward through the dike 
as opposed to downward (Rubin, 1995). 
 

 

 

 
  
 
 

Gravitational 
acceleration 

! 3.811 !
!! 

Mantle density !! 3500 !"
!! 
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Magma density 
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Table 1: Input values used in model 
	
  

Figure 18:A top-down view of the displacement from a point 
source (top), and the compression and tension shown at the top 

and the bottom of the plate, respectively. 
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3.3.1 Verified Criteria 
To affirm and test (30) and (31), the first two 

magma ascent criteria, the stress fields are evaluated 
for regions where the tectonic stress (Δ!!) is 
positive. In accordance with our axisymmetric 
displacement function, we see an axisymmetric 
response in the stresses shown in Figures 10-13, 
and therefore an axisymmetric orientation of the 
tectonic stresses. In Figures 19-20, the respective 
magma ascent criteria are verified where the 
tectonic stresses are positive. These regions are 
expectedly located in an axisymmetric distribution 
about the area of loading. 

To test (32), the third magma ascent criterion, the 
gradient of tectonic stress throughout the plate, and 
variations in magma pressure were evaluated in 
regions where there were positive. If differential 
stress decreases from the bottom to the top of the 
plate, dikes are able to form from the large amounts 
of tension experienced at the bottom of the plate. 
This tension forms cracks through work magma 
ascent can initiate. As the magma rises through the 
plate, it experiences a decrease in horizontal 
stresses, therefore encouraging upward motion 
towards the surface. Figure 21 shows region where 
this scenario is positive and possible; again in an 
axisymmetric orientation about the area of loading.    
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Figure 19: Regions where the first magma ascent criterion, 
expressed by (30), are verified at the top of the plate. The more 
positive a region is, the larger the tectonic stress is. Therefore, 

regions where the tectonic stress is large are where the criterion 
is more verified. 

Figure 20: Regions where the second magma ascent criterion, expressed 
by (31), are verified at the bottom of the plate. The more positive a region 
is, the larger the tectonic stress is. Therefore, regions where the tectonic 

stress is large are where the criterion is more verified. 

Figure 21: Regions where the third magma ascent criterion, expressed by 
(32), are verified throughout the plate. The more positive a region is, the 
larger the difference in tectonic stresses is. Therefore, regions where the 

differential compression increases towards the top of the plate are where the 
criterion is more verified. 
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3.3.2 Total Score	
  
Magma	
  ascent	
  is	
  likely	
  to	
  occur	
  in	
  regions	
  

where	
  the	
  most	
  magma	
  ascent	
  criteria	
  are	
  
verified.	
  There	
  are	
  regions	
  where	
  three	
  and	
  two	
  
criteria	
  overlap	
  and	
  are	
  both	
  verified,	
  and	
  there	
  
are	
  regions	
  where	
  only	
  one	
  sole	
  criterion	
  is	
  
verified.	
  These	
  regions	
  were	
  assigned	
  a	
  score,	
  
from	
  three	
  to	
  one,	
  depending	
  on	
  how	
  many	
  
criteria	
  were	
  verified	
  in	
  that	
  location.	
  The	
  
regions	
  of	
  scoring	
  are	
  axisymmetric	
  in	
  their	
  
locations,	
  reflecting	
  the	
  axisymmetric	
  nature	
  of	
  
the	
  stresses	
  in	
  the	
  plate.	
  The	
  scoring	
  of	
  the	
  
deflected	
  region	
  is	
  shown	
  in	
  Figure	
  22.	
  

3.4 Site Sample Statistics 
As	
  noted	
  in	
  the	
  visualizations	
  in	
  sections	
  3.3.1	
  

and	
  3.3.2,	
  the	
  regions	
  where	
  all	
  three	
  magma	
  
ascent	
  criteria	
  are	
  verified	
  are	
  oriented	
  
axisymmetrically	
  about	
  the	
  area	
  of	
  loading.	
  

Therefore	
  we	
  must	
  use	
  statistical	
  methods	
  to	
  
choose	
  the	
  location	
  where	
  the	
  next	
  load	
  is	
  likely	
  
to	
  be	
  emplaced.	
  The	
  next	
  load	
  has	
  equal	
  potential	
  
to	
  be	
  emplaced	
  in	
  any	
  region	
  where	
  all	
  three	
  
criteria	
  are	
  verified.	
  The	
  location	
  of	
  the	
  next	
  load	
  
is	
  determined	
  by	
  randomly	
  sampling	
  a	
  statistical	
  
distribution	
  of	
  emplacement	
  positions	
  described	
  
by	
  its	
  probability	
  distribution	
  function	
  (PDF).	
  
Two	
  different	
  distributions	
  of	
  potential	
  eruptive	
  
sites	
  are	
  considered.	
  Each	
  new	
  point	
  is	
  checked	
  
for	
  its	
  score.	
  If	
  the	
  score	
  is	
  three,	
  the	
  coordinates	
  
of	
  the	
  point	
  are	
  recorded,	
  a	
  new	
  load	
  is	
  emplaced	
  
at	
  that	
  position,	
  the	
  flexure	
  calculation	
  is	
  
updated,	
  and	
  another	
  random	
  point	
  is	
  selected.	
  If	
  
the	
  score	
  of	
  the	
  point	
  is	
  not	
  three,	
  the	
  location	
  is	
  
removed	
  from	
  the	
  pool,	
  and	
  the	
  script	
  moves	
  
onto	
  the	
  next	
  randomly	
  selected	
  point.	
  	
  

3.4.1 Uniform Probability 
In	
  one	
  of	
  the	
  probability	
  density	
  functions,	
  a	
  

uniform	
  density	
  of	
  sampling	
  points	
  was	
  applied	
  
to	
  the	
  scored	
  regions	
  of	
  criteria.	
  This	
  sampling	
  
distribution	
  considers	
  a	
  uniform	
  density	
  of	
  
points	
  throughout	
  the	
  radius	
  of	
  potential	
  
eruptive	
  sites.	
  Therefore,	
  the	
  probability	
  of	
  any	
  
point	
  in	
  this	
  area	
  to	
  be	
  an	
  eruptive	
  site	
  can	
  be	
  
expressed	
  as:	
  
	
  
Equation	
  33:	
  	
  P	
  is	
  constant	
  

	
  
With	
  the	
  P	
  being	
  the	
  probability,	
  and	
  r	
  being	
  the	
  
radial	
  distance	
  of	
  a	
  potential	
  eruptive	
  site	
  to	
  the	
  
source.	
  This	
  probability	
  is	
  verified	
  if	
  ! < !!,	
  with	
  
!!	
  being	
  the	
  radius	
  of	
  the	
  entire	
  magma	
  source.	
  
The	
  radius	
  of	
  our	
  magma	
  source	
  is	
  taken	
  to	
  be	
  
3!.	
  Figure	
  23	
  shows	
  this	
  cumulative	
  probability	
  
function	
  applied	
  within	
  a	
  circle	
  with	
  radius	
  !!,	
  
and	
  a	
  radial	
  slice	
  (!)	
  of	
  the	
  circle	
  from	
  0	
  to	
  !!.	
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Figure 22: Regions where one criterion, or multiple criteria 
overlap and are verified are given a ‘score’ of one, two, or three. 
Magma ascent is likely to occur in regions where all three ascent 

criteria are verified, shown in white with a ‘score’ of three. 
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   Figure 24: A visualization of 500 sampling points (ns=500) distributed with uniform density about a circle (top) with radius !!, 
the radius of a potential magma source. Each one of these points will be randomly tested as potential eruptive sites if they have 
a score of three. It appears as through there is a higher concentration of points near the center of the circle, however, when a 
radial slice of the distribution is taken (bottom), the distribution is uniform. This is because the points are evenly distributed 
with radial distance from the source, and not uniformly distributed per unit area of the circle.  

Figure 23: A visualization of 500 sampling points (ns=500) distributed with uniform density about a circle (top) with radius !!, 
the radius of a potential magma source. Each one of these points will be randomly tested as potential eruptive sites if they have a 
score of three. It appears as through there is a uniform distribution of points throughout the circle, however, when a radial slice 
of the distribution is taken (bottom), the distribution shows a lower density of points near the center of the circle, and a higher 
density towards the outer edges of the magma source. This is because the points are distributed equal to the radial distance from 
the source, and not uniformly distributed with increasing radial distance.  
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3.4.2 Probability Proportional to Area 
For	
  the	
  other	
  probability	
  density	
  function	
  

considered	
  here,	
  a	
  probability	
  proportional	
  to	
  
unit	
  area	
  was	
  applied	
  to	
  the	
  scored	
  regions	
  of	
  
criteria.	
  This	
  sampling	
  distribution	
  considers	
  a	
  
non-­‐uniform	
  density	
  of	
  points	
  throughout	
  the	
  
radius	
  of	
  potential	
  eruptive	
  sites.	
  Therefore,	
  the	
  
probability	
  of	
  any	
  point	
  in	
  this	
  area	
  to	
  be	
  an	
  
eruptive	
  site	
  can	
  be	
  expressed	
  as:	
  	
  
	
  
Equation	
  34:	
  	
   ! = !	
  
	
  

With	
  the	
  P	
  being	
  the	
  probability,	
  and	
  r	
  being	
  the	
  
radial	
  distance	
  of	
  a	
  potential	
  eruptive	
  site	
  to	
  the	
  
source.	
  Therefore,	
  the	
  larger	
  the	
  radius	
  is	
  from	
  
the	
  source,	
  the	
  larger	
  the	
  density,	
  and	
  the	
  higher	
  
the	
  cumulative	
  probability.	
  This	
  probability	
  is	
  
also	
  verified	
  if	
  ! < !!,	
  with	
  !!	
  being	
  the	
  radius	
  of	
  
the	
  entire	
  magma	
  source.	
  The	
  radius	
  of	
  our	
  
magma	
  source	
  is	
  taken	
  to	
  be	
  3!.	
  Figure	
  24	
  shows	
  
this	
  cumulative	
  probability	
  function	
  applied	
  
within	
  a	
  circle	
  with	
  radius	
  !!,	
  and	
  a	
  radial	
  slice	
  
(!)	
  of	
  the	
  circle	
  from	
  0	
  to	
  !!.	
  

4. Results 
4.1 Load Updates 
The	
  case	
  of	
  a	
  single	
  point	
  load	
  is	
  initially	
  

considered	
  in	
  the	
  beginning	
  our	
  main	
  loop.	
  For	
  
this	
  one	
  point,	
  its	
  respective	
  displacement	
  is	
  
modeled	
  (Figure	
  9),	
  and	
  its	
  flexure-­‐induced	
  
stress	
  components	
  (Figures	
  10-­‐13),	
  and	
  principal	
  
stress	
  directions	
  are	
  calculated	
  (Figure	
  18).	
  
These	
  stress	
  components	
  dictate	
  how	
  and	
  where	
  
magma	
  ascent	
  and	
  consecutive	
  emplacement	
  can	
  
occur	
  (30)-­‐(32).	
  Applying	
  the	
  cumulative	
  
probability	
  functions	
  (33)	
  and	
  (34),	
  we	
  are	
  able	
  
to	
  determine	
  where	
  the	
  next	
  load	
  will	
  be	
  
emplaced.	
  With	
  each	
  consecutive	
  emplacement,	
  
the	
  overall	
  displacement	
  will	
  change,	
  as	
  well	
  as	
  
all	
  of	
  the	
  respective	
  flexure-­‐induced	
  components.	
  
The	
  stress-­‐field,	
  principal	
  stress	
  directions,	
  and	
  
magma	
  ascent	
  criteria	
  are	
  re-­‐calculated	
  with	
  
each	
  consecutive	
  load.	
  Furthermore,	
  the	
  magma	
  
score	
  of	
  each	
  region	
  changes	
  with	
  every	
  new	
  
load,	
  and	
  the	
  cumulative	
  probability	
  functions	
  

are	
  re-­‐applied	
  to	
  determine	
  where	
  the	
  following	
  
load	
  will	
  appear.	
  

4.1.1 Load Geometry 
The	
  displacement	
  caused	
  by	
  a	
  load	
  at	
  one	
  given	
  

point,	
  is	
  shown	
  in	
  the	
  above	
  example	
  of	
  Figure	
  9.	
  
This	
  approximation	
  works	
  well	
  mathematically,	
  
but	
  the	
  loads	
  in	
  this	
  experiment	
  need	
  to	
  have	
  
geologic	
  analogues.	
  Brotchie	
  and	
  Silvester	
  
[1969]	
  clearly	
  set	
  the	
  playing	
  field	
  for	
  steady	
  
state,	
  analytic	
  solutions	
  of	
  deflection	
  from	
  
axisymmetric	
  point	
  loading,	
  which	
  can	
  be	
  found	
  
in	
  Section	
  5.1.2.	
  These	
  solutions	
  for	
  concentrated	
  
loading	
  were	
  taken	
  further	
  by	
  Wolf	
  [1984],	
  
Watts	
  et	
  al.,	
  [1975]	
  and	
  Lambeck	
  [1980],	
  whom	
  
all	
  considered	
  loading	
  from	
  different	
  geometries.	
  
In	
  our	
  examples	
  of	
  loading,	
  we	
  are	
  considering	
  
the	
  potential	
  volcanic	
  load	
  increment	
  to	
  be	
  a	
  
large	
  cylinder,	
  of	
  dimensions	
  Wl=100	
  m	
  and	
  Rl	
  
=10	
  km,	
  with	
  Wl	
  and	
  Rl	
  being	
  the	
  height	
  and	
  
radius	
  of	
  the	
  cylinder,	
  respectively.	
  Examples	
  of	
  
this	
  cylindrical	
  loading	
  can	
  be	
  found	
  in	
  Watts	
  
[2001]	
  pp.	
  110-­‐111.	
  	
  	
  
Deflection	
  (w)	
  of	
  circular	
  plates	
  for	
  a	
  

concentrated	
  load	
  P	
  is	
  defined	
  as:	
  
	
  
Equation	
  35:	
   ! = !!!

!!"
!"# !

!
	
  

 
The load P is a force (which can be described as a 
weight) from each consecutive load applied to areas 
atop the plate. These forces can overlap in areas 
where consecutive magma piles are emplaced, 
eventually leading to the formation of topographic 
profiles. We define the force of concentrated load P 
as: 
 

Equation 36:  ! = !!!  !" 
 

g is the gravitational acceleration at the surface of 
Mars, !! is the density of the lava that makes up 
each magma pile, and dA is the area on the grid over 
which the force is applied. In the simulations, I 
assume that the magma source (r0) is roughly 25-50 
km in size, that the eruption radius (rE) is 10 km, 
and that each magma pile has a thickness (Le) of 
50-100 m. 
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4.1.2 Step Growth (Uniform Probability) 
Thirty	
  consecutive	
  loads	
  are	
  emplaced	
  atop	
  a	
  

plate	
  of	
  thickness	
  Te=1	
  km	
  and	
  the	
  evolving	
  
deflection,	
  lava	
  pile	
  thickness,	
  and	
  topography	
  
are	
  visualized	
  in	
  Figure	
  25.	
  Uniform	
  density	
  
function	
  (33)	
  was	
  used	
  as	
  a	
  probability	
  density	
  
function	
  for	
  site	
  sampling.	
  	
  
	
  

	
  
	
  
	
  
	
  
	
  
  

Figure 25: Consecutive deflection, lava pile thickness, topography, and topographic contours of a 
30-step size edifice with 50x VE using a uniform probability site sampling method. Note the 

dendritic nature of where consecutive loads were emplaced. 
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4.1.3 Step Growth  
(Probability Proportional to Area) 
Thirty	
  consecutive	
  loads	
  are	
  emplaced	
  atop	
  a	
  

plate	
  of	
  thickness	
  Te=1	
  km	
  and	
  the	
  evolving	
  
deflection,	
  lava	
  pile	
  thickness,	
  and	
  topography	
  
are	
  visualized	
  in	
  Figure	
  26.	
  Probability	
  
proportional	
  to	
  area	
  equation	
  (34)	
  was	
  used	
  as	
  a	
  
probability	
  density	
  function	
  for	
  site	
  sampling.	
  	
  
 

  

Figure 26: Consecutive deflection, lava pile thickness, topography, and topographic contours of a 
30-step size edifice with 50x VE using a probability proportional to area site sampling method. 

Note the somewhat irregular and de-centralized nature of where consecutive loads were emplaced. 
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4.2 Variable Plate Thickness 
I	
  predict	
  that	
  that	
  there	
  is	
  a	
  correlation	
  

between	
  the	
  shape	
  of	
  a	
  volcanic	
  edifice,	
  and	
  the	
  
elastic	
  thickness	
  of	
  the	
  underlying	
  lithosphere.	
  
For	
  one	
  of	
  the	
  final	
  steps	
  in	
  my	
  experiment,	
  I	
  
setup	
  my	
  main	
  loop	
  to	
  place	
  an	
  initial	
  magma	
  
load	
  atop	
  a	
  plate	
  of	
  a	
  given	
  thickness,	
  and	
  have	
  
the	
  script	
  calculate	
  the	
  deflection,	
  the	
  stress	
  
orientations,	
  the	
  magma	
  ascent	
  criteria,	
  the	
  
score,	
  and	
  the	
  statistically	
  probable	
  location	
  of	
  
the	
  next	
  load	
  for	
  200-­‐400	
  consecutive	
  loads	
  in	
  
each	
  loop.	
  	
  I	
  ran	
  this	
  loop	
  multiple	
  times	
  with	
  
varying	
  values	
  of	
  r0,	
  rE,	
  Le,	
  Te,	
  with	
  each	
  of	
  the	
  
two	
  probability	
  density	
  functions	
  ((33)	
  and	
  (34))	
  
applied,	
  and	
  visualized	
  the	
  result	
  growth	
  	
  final	
  
topographic	
  form	
  that	
  the	
  consecutive	
  magma	
  
piles	
  (loads)	
  formed.	
  
	
  
	
   	
  

Figure 27: Topography of volcano at steps 112 and 250 atop a very 
thin plate of 500 m. Input variables: 50 km magma source radius, 10 

km eruption radius, and site sampling is uniform. Note the mote 
defined by the black lines surrounding the edifice base. 

Figure 28: Plate deflection and topography of volcano at step 250 
atop a plate of 1 km. Input variables: 50 km magma source radius, 
10 km eruption radius, and site sampling is proportional to area 

Figure 29: Plate deflection and topography of volcano at step 250 atop a 
plate of 1 km. Input variables: 50 km magma source radius, 10 km 

eruption radius, and site sampling is uniform throughout. Note that the 
choice of the site-sampling function made the topographic relief of the 
edifice slightly larger than the edifice in Figure 28. Also note that the 

radial extent of the edifice is slightly smaller than the edifice of Figure 28  
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Figure 30: Topography and topographic contours of volcano at step 400 atop a plate of 10 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that the overall topographic 
relief is lower than Figures 31-32, and that the topographic contours are more diffuse at the edge of the edifice. A 

more prominent mote/annular trend is apparent in the region surrounding the base of this edifice. 

Figure 31: Topography and topographic contours of volcano at step 500 atop a plate of 40 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that with a thicker plate, the 

edifice becomes higher in elevation, and it forms more steeply flanking sides.  

Figure 32: Topography and topographic contours of volcano at step 400 atop a plate of 60 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that with this thick plate, the 

edifice becomes even higher in elevation, and has very steep flanks. As the plate has thickened from the 
visualizations in Figures 30-32, the edifice profiles have become less flat, have grown in elevation, and have 

evolved to be more domical and conical in nature.  
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4.3 Applications to Martian Volcanoes 

Elysium	
  Mons	
  is	
  an	
  example	
  of	
  a	
  conical	
  edifice	
  
on	
  Mars.	
  The	
  steeply	
  flanked	
  sides,	
  moderate	
  
topographic	
  relief,	
  and	
  radial	
  dike	
  geometries	
  
are	
  all	
  similarities	
  that	
  can	
  be	
  seen	
  in	
  our	
  model	
  
(Figure	
  32).	
  This	
  indicates	
  emplacement	
  at	
  a	
  high	
  
Te,	
  which	
  is	
  supported	
  by	
  Te	
  measurements	
  in	
  the	
  
region	
  obtained	
  by	
  McGovern,	
  et	
  al.,	
  (2012).	
  
The	
  domical	
  shapes	
  of	
  the	
  Tharsis	
  Montes	
  are	
  
great	
  examples	
  of	
  the	
  truncated	
  cone	
  
classification	
  of	
  the	
  domical	
  shape.	
  We	
  see	
  
emplacement	
  of	
  these	
  at	
  intermediate	
  Te	
  values	
  
(Figure	
  31).	
  The	
  moderately	
  sloped	
  flanks,	
  
relatively	
  flat	
  top,	
  and	
  diffuse	
  radial	
  extent	
  are	
  all	
  
characteristics	
  seen	
  in	
  both	
  the	
  model	
  and	
  on	
  
Mars.	
  	
  
The	
  flat	
  annular	
  shapes	
  of	
  Patera-­‐type	
  volcanoes	
  
bear	
  strong	
  similarities	
  with	
  the	
  Patera	
  load	
  
model	
  (Figure	
  30).	
  Low	
  topography,	
  with	
  a	
  broad	
  
radial	
  extent,	
  and	
  loose	
  lobes	
  /flows	
  around	
  the	
  
outer	
  flanks	
  of	
  the	
  edifice	
  are	
  all	
  similarities	
  seen	
  
in	
  both	
  the	
  model,	
  and	
  to	
  Patera	
  volcanoes	
  on	
  
Mars	
  such	
  as	
  Thyrrhena	
  Patera	
  (Figure	
  2).	
  

5. Summary 
 I have applied three types of stress-based magma 

ascent criteria to the flexure-induced stresses from 
axisymmetric loading atop a lithosphere modeled as 
a thin elastic shell. With the magma ascent criteria 
applied and scored, consecutive loads were chosen 
by the use of two probability density functions; 
uniform site-sampling with constant probability, 
and site-sampling with probability proportional to 
area. Each of these two sampling methods had an 
effect on the outcome of the edifice shape (Figures 
25-26), however, not enough to change the overall 
edifice classification. There appears to be a range of 
Te for each edifice shape; High values of Te (i.e., Te 
> 40 km), result in low stress gradients in the plate, 
allowing conical edifices to from flows originating 
anywhere on the edifice. For intermediate values of 
Te (i.e., 15 km < Te < 40 km), high stress gradients 
throughout the plate, and comprehensive stresses in 
the lower lithosphere tend to cut off magma ascent 
near the center of a conical edifice, therefore 

creating a more domical edifice. At the lowest 
values of Te (i.e., Te < 40 km), large stress gradients 
cut off practically all central magma ascent, 
inhibiting the growth of either a conical or domical 
edifice. However, the narrowly spaced zones in 
which the lithosphere experiences short-wavelength 
deflections lead to the formation of flat annular 
edifices. Therefore, my hypothesis is verified! 

My work only considers a purely self-consistent 
loading scenario, with the deflection, stress 
gradients, and magma ascent criteria recalculate 
with each consecutive load. The loads used in this 
model were strictly surface-loads, and these 
methods do not include subsurface loading from 
viscous or other mechanisms. Despite my 
experiments application of only one loading 
mechanism/scenario, the verification of my model 
suggests that elastic deformation from flexure-
induced stresses is a primary influence in volcanic 
edifice morphology.  

Further implications can be drawn on global, 
regional, and local thermal gradients across and 
throughout the Martian surface and lithosphere. 
These thermal contractions can provide better 
insight into the rates of cooling of terrestrial bodies, 
and more specifically, the variable rate(s) of 
thickening of the Martian lithosphere. 
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7. Appendices 
Appendix A 
 
MATLAB function used to define KEI 
function [out]=KEI(x) 
X=[0:0.1:10]; 
K=[-0.785398163 
-0.776850647 
-0.758124933 
-0.733101912 
-0.703800212 
-0.671581695 
-0.637449495 
-0.602175452 
-0.566367651 
-0.530511122 
-0.494994637 
-0.460129528 
-0.426163604 
-0.393291827 
-0.361664782 
-0.331395562 
-0.302565474 
-0.275228834 
-0.249417069 
-0.225142235 
-0.202400068 
-0.181172644 
-0.161430701 
-0.143135677 
-0.126241488 
-0.110696099 
-0.096442891 
-0.083421858 
-0.071570649 
-0.060825473 
-0.051121884 
-0.042395447 
-0.034582313 
-0.027619697 
-0.021446287 
-0.016002569 
-0.011231096 
-0.007076704 
-0.003486665 
-4.11E-04 
0.002198399 
0.004385818 
0.006193613 
0.007661269 
0.008825624 
0.009720919 
0.010378865 
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0.010828725 
0.011097399 
0.011209526 
0.011187587 
0.011052008 
0.010821278 
0.010512056 
0.010139286 
0.009716307 
0.009254964 
0.008765716 
0.008257737 
0.007739025 
0.007216492 
0.006696059 
0.006182749 
0.005680767 
0.005193579 
0.004723992 
0.004274219 
0.003845946 
0.003440398 
0.003058385 
0.002700365 
0.002366486 
0.002056629 
0.001770454 
0.001507429 
0.001266868 
0.001047959 
8.50E-04 
6.71E-04 
5.12E-04 
3.70E-04 
2.44E-04 
1.34E-04 
3.81E-05 
-4.45E-05 
-1.15E-04 
-1.74E-04 
-2.23E-04 
-2.63E-04 
-2.95E-04 
-3.19E-04 
-3.37E-04 
-3.49E-04 
-3.55E-04 
-3.57E-04 
-3.56E-04 
-3.51E-04 
-3.43E-04 
-3.33E-04 
-3.21E-04 
-3.08E-04]; 
out=interp1(X,K,x); 
end 
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Appendix B 
 
MATLAB function to define !!", !!", and !!" stress components. 
 
function [sigma_xx,errxx,sigma_yy,erryy,sigma_xy,errxy,sigma_zz,errzz, 
sigma_xz,sigma_yz] = stress(W,Xm,Ym)    
h=max(abs(Xm(1)-Xm(2)),abs(Ym(1)-Ym(2))); 
E=1; % Youngs modulus 
yf=1;   % distance from neutral surface to fiber 
v=.25; % Poissons ratio 
  
pxx = [1 -2 1]; %d^2w/dx^2 
pxx=pxx/h^2; 
  
pyy= [1 -2 1]'; %d^2w/dy^2 
pyy=pyy/h^2; 
  
pxy= [-1 0 1; %d^2w/dxdy 
    0 0 0; 
    1 0 -1]; 
pxy = pxy/(4*h^2); 
pxy=flipud(pxy);  
  
px=[-1 0 1]; %dw/dx 
px = px/(2*h); 
  
py=[-1 0 1]'; %dw/dy 
py=py/(2*h); 
  
wxx=zeros(size(Xm)); 
wyy=zeros(size(Xm)); 
wxy=zeros(size(Xm)); 
wx=zeros(size(Xm)); 
wy=zeros(size(Xm)); 
  
  
for i= 1:numel(Xm(1,:)) 
    for j=2:numel(Xm(1,:))-1 
        wxx(i,j)=sum(sum(pxx.*W(i,j-1:j+1))); 
        wyy(j,i)=sum(sum(pyy.*W(j-1:j+1,i))); 
        wx(i,j)=sum(sum(px.*W(i,j-1:j+1))); 
        wy(j,i)=sum(sum(py.*W(j-1:j+1,i))); 
       if (i>1) && (i<numel(Xm(1,:)));   
           wxy(i,j)=sum(sum(pxy.*W(i-1:i+1, j-1:j+1))); 
       end 
    end 
end 
  
  
lam=((E*v)/((1+v)*(1-2*v))); 
mu=(E/(2*(1-v))); 
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sigma_xx=yf*((lam+2*mu)*wxx + lam*wyy); 
sigma_yy=yf*(lam*wxx +(lam+2*mu)*wyy); 
sigma_zz= yf*lam*(wxx+wyy); 
sigma_xy=2*mu*yf*wxy; 
sigma_xz=2*mu*wx; 
sigma_yz=2*mu*wy; 
  
%Visualizations 
  
  
figure(3) 
contour(Xm, Ym, sigma_xy) 
title('sigmaxy shear stress','fontsize', 18) 
xlabel('x/\alpha', 'fontsize', 18) 
ylabel('y/\alpha', 'fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmaxy_stress.pdf 
  
figure(4) 
contour(Xm, Ym, sigma_zz) 
title('sigmazz stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmazz_stress.pdf 
  
figure(5) 
contour(Xm, Ym, sigma_xx) 
title('sigmaxx stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmaxx_stress.pdf 
  
figure(6) 
contour(Xm, Ym, sigma_yy) 
title('sigmayy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmayy_stress.pdf 
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Wt=sqrt(Xm.^2+Ym.^2); 
dxx=(Xm.^2)./(Wt.^3); 
dyy=(Ym.^2)./(Wt.^3); 
dxy=(Xm.*Ym)./(Wt.^3); 
  
sigma_xxt=yf*((lam+2*mu)*dxx + lam*dyy); 
sigma_yyt=yf*(lam*dxx +(lam+2*mu)*dyy); 
sigma_zzt= yf*lam*(dxx+dyy); 
sigma_xyt=2*mu*yf*dxy; 
errxx=(abs(sigma_xxt-sigma_xx)./sigma_xx); 
erryy=(abs(sigma_yyt-sigma_yy)./sigma_yy);  
errzz=(abs(sigma_zzt-sigma_zz)./sigma_zz); 
errxy=(abs(sigma_xyt-sigma_xy)./sigma_xy); 
  
figure(9) 
pcolor(Xm, Ym, errxx); 
contourcbar 
shading flat 
title('sigmaxx stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmaxx_stress.pdf 
  
figure(10) 
pcolor(Xm, Ym, erryy); 
contourcbar 
shading flat 
title('sigmayy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmayy_stress.pdf 
  
figure(11) 
pcolor(Xm, Ym, errzz); 
contourcbar 
shading flat 
title('sigmazz stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmazz_stress.pdf 
  
figure(12) 
pcolor(Xm, Ym, errxy); 
contourcbar 
shading flat 
title('sigmaxy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
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axis equal 
print -dpdf errsigmaxy_stress.pdf 
  
end 
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