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Abstract 
A range of volcanic morphologies is observed across the surface of the planet Mars. These 

volcanoes exert large vertical loads atop the lithosphere, which responds be compensating and 
deflecting downward. The flexure-induced stresses strongly influence magma ascent through 
the plate, from the mantle to the surface. This broad range of volcanic edifice profiles is 
related to characteristics of the underlying lithosphere. In my GEOL394 project, I investigate 
a relationship between flexural stresses and how they control the shapes of volcanic edifices 
on Mars. 

I hypothesize and investigate a relationship between the lithospheric elastic thickness and 
volcano morphology on Mars. For lithospheres with the largest values of Te (i.e., Te > 40 km), 
I predict that younger, conical volcanoes with high topographic relief and steeply graded 
flanks will form atop the plate. In this case, all magma ascent criteria will be satisfied over the 
entire lithosphere, permitting uninhibited flow to the surface to form these steep edifices. For 
the lowest values of Te (i.e., Te < 15 km), widely spaced zones of magma ascent are caused by 
short-wave deflections in the lithosphere, forming flat or annular volcanoes with low 
topographic relief and broad radii. For intermediate values of Te (i.e., 15 < Te < 40 km), high 
stress gradients will cut off magma ascent beneath the summit of the growing edifice, 
resulting in domical shapes (McGovern, et al., 2013). 

These volcanoes can be used as a tool to help us understand the planets current condition, its 
history since formation, and how it compares to Earth. Terrestrial volcanoes are a key 
component of a planet’s dynamical system, being mechanisms of heat transfer, volatile 
transport, atmosphere production, and magma/mass emplacement atop the lithosphere. This 
last aspect will provide insight to Mars’ thermal history and evolution over time. A 
lithosphere thickens as time progresses, and the rate of thickening correlates with the rate of 
cooling over time.  

When an overlying load is placed atop a plate of uniform material and thickness, the plate 
bends to compensate and experiences a flexural response with a coinciding a flexure-induced 
stress field local to the loading. This stress tensor influences local tension and compression in 
the plate, which directly affects the formation of dikes in the area of loading. Furthermore, the 
orientations of these dikes dictate where subsequent eruptions and magma emplacements will 
occur. The elastic thickness and flexural rigidity change the orientation of the stresses within 
the plate, which change the formation and orientation of dikes surrounding the load.    

The flexure from various volcanic profiles has been observed on Venus (McGovern, et al., 
2013), with the flexure-induced stress field, and magma ascent modeled and observed.  I 
generate a self-consistent model by placing incremental loads atop a thin elastic plate of a 
given thickness. Subsequent magma ascent is guided by flexure-induced stresses. My models 
show a correlation between the morphology and evolution of the growing volcanic edifice for 
given elastic thicknesses. These profiles are then compared to the variety of volcanoes that are 
seen across the Martian landscape. Future implications for a volcanic and thermal history of 
the planet are drawn from this experiment.  
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2. Introduction 
2.1 Morphological Classification of volcanoes 

The terrestrial planets of our solar system feature 
various forms of volcanic edifices and related 
surficial structures. There are volcanoes of various 
shapes and sizes on Mars that are of interest to me 
in this project. The Tharsis bulge is a large volcanic 
province that is centered near the equator in the 
planets western hemisphere. The largest volcanoes 
in the solar system are located on Tharsis: the shield 
volcanoes known as the Tharsis Mons: Pavonis 
Mons, Ascraeus Mons, and Arsia Mons (Figure 1) 
and also the largest volcano on the planet, Olympus 
Mons. Olympus Mons is almost 100 times larger 
than the largest shield volcano on Earth, Mauna 
Loa. Mars is thought to lack plate tectonics; 
therefore the dominant form of volcanism is hotspot 
volcanism. Without known plate boundaries 
through which the magma can reach the surface, 
long-lived mantle upwellings cause the formation of 
these broad shield volcanoes. These hotspots paired 
with the low gravitational acceleration on the 
surface (3.711 !

!!
) permit these volcanoes to reach 

immense heights. According to Werner (2009), the 
shield edifices of the Tharsis Montes were formed 
~3.55 Ga, and have been episodically active until 
~100 Ma.  

The low-lying Patera-volcanoes, such as Tyrrhena 
Patera (Figure 2) located in the heavily cratered, 
topographic high, southern hemisphere of the 
planet, are characterized by their low topographic 
profile, broad radial extent, and ancient ages. 
Werner (2009) estimates the time of emplacement 
of Tyrrhena Patera to have been before 3.9 Ga. 
Tyrrhena Patera has radial extent of ~600 km and a 
small topographic relief of ~1.5 km (Werner, 2009). 
The flank of the Patera is heavily eroded with 
channels that radiate from the summit region. The 
volcano is likely to be composed of pyroclastic 
deposits that have been easily eroded. The eruption 
style of this Patera volcano is much different from 
the fluid lavas that likely built up the shield 
volcanoes of Tharsis. 

The Elysium volcanic province (Figure 3) is the 
second largest volcanic structure after Tharsis. It is 
located in the eastern hemisphere atop the northern 

Figure	  2:	  Tyrrhena	  Patera	  lies	  in	  the	  southern	  highlands	  of	  Mars.	  Being	  
emplaced	  before	  3.9	  Ga,	  this	  volcano	  provides	  insight	  to	  early	  forms	  of	  
Martian	  volcanism.	  Its	  low	  topographic	  profile,	  and	  heavily	  eroded	  
channels	  are	  signs	  of	  a	  pyroclastic	  style	  deposition/eruption.	  Paterae	  

volcanoes	  can	  be	  classified	  as	  flat	  in	  profile. 
http://lpi.usra.edu	  

 

Figure 1: The Tharsis Montes (L-R) Arsia Mons, Pavonis Mons, 
Ascraeus Mons are shield volcanoes on the Tharsis bulge. All have an 

elevation of ~15km and a radial extent ranging from 350-450km. 
http://lpi.usra.edu 
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lowlands. The volcanoes of the province include 
(from N to S) Hecates Tholus, Elysium Mons, and 
Albor Tholus.  Elysium Mons has a steeper slope 
(~10º) than the volcanoes of Tharsis, a elevation of 
~14 km, was emplaced ~3.5 Ga with the most 
recent resurfacing event ~1.6 Ga (Werner, 2009). 
The two Tholi volcanoes have smaller relief ~5.5 
km, and radial extent of ~150 km. They have 
convex slopes with ~5º angles. Summit activity in 
the caldera of Albor Tholus is thought to have been 
active until 500 Ma (Werner, 2009) 

Volcanic profiles can be characterized in terms of 
edifice radius, height, slope, and shape, leading to 

three general categories of volcano morphology. 
Conical edifices have a point-like apex and a 
steeply sloped profile. The volcanoes on Elysium 
can be classified as cone volcanoes, they have high 
topographic relief, and steep sloping sides (Figure 
3). Domical volcanoes have a much more gradual 
slope, and a generally flat, tabletop character at 
higher elevations. Olympus Mons can be considered 
a dome volcano (Figure 4). Flat volcanoes have a 
very diffuse topographic profile, a large breadth of 
radial extent, and are at times ring-like in shape; 
those of which are known as annular in profile. 

Paterae volcanoes on Mars can be classified as flat 
profiles because of their broad radial extent, and 
low topographic relief (Figure 2). 

 

2.2 Deformation and volcano growth 
When an overlying load (i.e. a mountain, glacier, 

or volcano) is emplaced atop the surface of a 
terrestrial body, the underlying lithosphere 
experiences flexure and must deform to compensate 
for the mass of the overlying topographic load 
(Watts, 2001).  Over geologic time scales, the 
lithosphere is known to deform elastically and can 
bend under an overlying load. When deformation is 
relatively small, the lithosphere can be considered a 
thin elastic shell experiencing deflection in vertical 
z-axis direction (Comer, 1983). The overlying load 
pushes the lithosphere downward, and a resultant 
stress field is generated within the plate. In the case 
of a volcanic load, these stress fields constrain both 
how and where magma ascent occurs. Magma 
ascent criteria dictates where rising magma will be 
emplaced. The emplacement of magma influences 
the shape, slope, and other physical features of the 
growing volcano, modifying the evolving flexural 
deflection of the plate.  

Figure 4: Olympus Mons is characterized by its large radial extent, its 
high elevation, and its gradually sloping flanks. This can be considered a 

domical edifice. 
Sherman, et al., (1981) 

Figure 3: The Elysium volcanic province lies in the planets eastern 
hemisphere in the northern lowlands. It hosts the volcanoes (from N to 
S) Hecates Tholus, Elysium Mons, and Albor Tholus. These volcanoes 

be classified as conical n profile. 
http://lpi.usra.edu 
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McGovern et al. (2013) show that, on Venus, 
volcanoes of different shapes produce different 
patterns of magma ascent that may or may not 
preserve the shape of the edifice. They found that 
conical volcanoes are consistent with a thick plate, 
but that flat or ring edifices are consistent with thin 
elastic plates. Domical volcanoes are intermediate 
between the other two. However, they only consider 
a fully formed edifice. I instead model the growth of 
the edifice in several increments to test what kind of 
volcano is possible for various elastic plate 
thicknesses and apply these models to Mars. 

In my senior thesis project I am studying the 
stress field induced by volcanic loads placed atop a 
thin elastic shell. These stresses fields constrain the 
ascent of underlying magma (Rubin 1995), and 
where, in the crust, the emplacement of magma 
occurs. The emplacement of the magma is 
considered to be atop the surface of the plate. As 
each volcanic load is emplaced incrementally, a 
growing volcanic profile is observed. Based on the 
work of McGovern et al. (2013), I hypothesize that 

conical volcanoes will be produced on thick elastic 
plates and flat volcanoes on thin plates. Thus it will 
be possible to constrain the elastic thickness of 
various location on Mars based on the shape of 
volcanoes that are observed there. 

2.3 Implications 
Volcanism on Mars was widespread from the 

planets formation at 4.5 Ga, until ~3.0 Ga, since 
then, the planet has been significantly less active, 
with noted late-Amazonian pyroclastic deposits, and 
lava flows within the Arsia Mons caldera that are no 
more than 100-200 million years old (Hartmann, et 
al., 1999). The volcanic diversity is influenced by 
different lithospheric characteristics such as the 
flexural rigidity and elastic thickness of the 
lithosphere, and the rate of thickening of the 
lithosphere. Rates of cooling and thickening of the 
lithosphere can be implied from a volcanic and 
thermal history of Mars. Comer et al., (1985) 
observe concentric grabben surrounding the 
topographic loads of volcanoes. They correlated the 

Figure 5: A global topography map of Mars generated from laser altimetry data of the Mars Orbital Laser Altimetry device on the Mars 
Global Surveyor. Noted are volcanoes that will be of focus 
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spacing of these grabben to the age of emplacement. 
McGovern et al. (2002) estimated the elastic 
thickness and deflection necessary to support a load 
by measuring the planets topographic distribution 
on regional and global scales. By comparing 
different regions and edifices formed at different 
epochs, it will be possible to better constrain the 
thermal evolution of the planet and spatial 
variations of lithosphere structure. Furthermore, 
new constraints on the elastic thickness of Mars can 
provide a more detailed history of the thickening 
and cooling lithosphere. 

3. Experiment Design 
The volcanic growth model is written and 

generated in MATLAB. In a self-consistent 
approach, incremental loads are emplaced atop a 
model of a terrestrial lithosphere, modeled as a thin 
elastic shell, with the flexure-induced stress guiding 
magma ascent and the subsequent emplacement of 
each additional load. 
The maximum deflection of an elastic plate is 
described by Watts (2001):  
 

Equation 1: !!"# =
!

!!! !!"#$%&!!!"#!$$ !
 

 
The flexure of a thin elastic shell is given by: 
 

Equation 2:  ∇!! + !!!! = !/! 
 

!!"# is the maximum deflection, P is the weight 
(force) of a concentrated load, ∇! is a differential 
operator called a biharmonic operator, it is 
equivalent to the square of the Laplacian operator, 
the divergence of a gradient of a scalar function. w 
is the vertical deflection of the plate, ! is the 
flexural parameter, D is the flexural rigidity, and q 
is the load itself (Brotchie and Silvester 1969). 

 
D is defined as: 

Equation 3:   ! = !!!

!" !!!!
 

! is defined as: 

Equation 4:  ! = !
!!"#$%&!!!"#!$$ !

!/!
 

 
where ! is the three-dimensional flexural 
parameter, H is the thickness of the plate, E is 
Young’s Modulus, ν is Poisson’s ratio, !!"#$%& −
!!"#!$$ is the density difference of the materials 
above and below the plate, and g is acceleration due 
to gravity. 

In (2), D∇!w is the bending moment of the thin 
elastic plate, and D!!!! is the hydrostatic restoring 
force of the plate resultant from density variations 
above and below the layer. The flexure equation 
admits well-known solutions, discussed in the next 
section, for simple load geometries such as a point 
load and a line load (Watts 2001). 

3.1 Flexure 

3.1.1 Line Load 
In the presence of a line load that extends 

infinitely in the y-direction, a solution exists that is 
dependent on x, and is symmetric with respect to y. 
In this case, (2) can be simplified to: 
 

Equation 5:  !!!
!!!

+ !!!! = !
!

 
 
Applying a fixed displacement w=w0 at x=0 and 
w=0 at x=±∞, (5) admits the following analytical 
solution: 
 

Equation 6:   
! = !!!!!" cos !" + sin !"  
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Where ! is the flexural wavelength that controls the 
length scale of the flexural response. 
 

Equation 7:   ! = !
!

 
 
The downward deflection at x=0 is flanked by uplift 
at a distance bulge at x=± π!. The amplitude of the 
deflection decreases exponentially and is essentially 
negligible for |x|≥2πα.  

The maximum flexure (!!"#) of an infinite beam 
from a concentrated load P is similar to (6): 

 
Equation 8: 

!!"#
!"

! !!"#$%&!!!"#!$$ !
!!!" cos !" + sin !"  

 
! is defined as: 
 

Equation 9:  ! = !
!
 

3.1.2 Point Load 
In the presence of a point load at any point in the 

(x,y) plane, the solution is axisymmetric about the 
z-axis. The solution for (2) in this case will be: 
 

Equation 10:  ! = !!kei
!
!

 
 
With wk defined as wk = w0/kei(0). Note that the 
equation only depends on r, the radial distance from 
the point of displacement. Kei is the imaginary part 
of the modified Bessel function of the second kind. 
A Bessel function is a mathematical tool used to 
obtain separable solutions to Laplace’s equations, 
being useful in wave propagation equations. We 
have defined kei as function in MATLAB, with 
values obtain from Weller (2012) (Appendix A). 

3.1.3 Flexural Models 
MATLAB scripts are used to generate models for 

infinite line loads, and point loads for three 
randomly selected points. The solution for a line 
load in 2-D (5), with three randomly selected loads 
is depicted in Figure 6. A 3-D visualization, with 
the lines extending infinitely in the y-direction, is 
depicted in Figure 7. 

The solution for a point load (6), with a top-down 
view of three randomly selected points, is depicted 
in Figure 8. The contour lines represent the 
displacement in the z-direction of each of these 
points. A 3-D visualization of this one point is 
shown in Figure 9.  
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The mesh of the surfaces shown in Figures 7-9 is 
composed of a domain in which the data points of 
the flexural events are contained. When we prompt 
the script to initially include more points in the grid, 
the resolution of the surface becomes finer. As the 
grid increases in resolution, the more precise the 
visualization of the solution becomes 

3.1.4 Flexural Forebulge 
The flexural forebulge can be found directly 

adjacent to, in front of, an area lithospheric loading. 
This forebulge is a slight uplift caused by the 

flexural rigidity of the plate itself, and furthermore, 
the density contrasts between the plate and the 
medium that surrounds it. In our case of lithospheric 
loading, the density contrast lies between the 
density of the plate, the density of the infilling 
material, and the density of the air/medium above 
the plate.  

Due to the waveform nature of our 
flexural/displacement equation, the distance from 
the load to the maximum amplitude of the forebulge 
can be determined where the slope of the flexural 
response is zero. The point at which the slope is 
zero, and where the forebulge height is at its 
maximum, is found at a flexural half-wavelength 
(!
!
), or at a distance of ! = !" from the load. The 

amplitude of the forebulge is significantly smaller 
than that of the depression in the lithosphere in the 
presence of a point load. As well as being 
characterized as having a small amplitude, the 
magnitude of the forebulge decays exponentially 
with increasing distance from the area of loading, 
with the forebulge negligible at distances greater 
than ! ≥ 2!". 
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3.2 Stress Fields 

3.2.1 Flexure Induced Stress 
Stress is expressed as a nine-component 

symmetric tensor: 
 

Equation 11:    

! =   
!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

 

 
In linear elasticity, ! and ! are the Lamé parameters 
that parameterize the elastic moduli of homogenous 
isotropic solids. They are related to the Young’s 
modulus E and Poisson ratio υ of a medium by: 
 

Equation 12:  ! = !!
(!!!)(!!!!)

 
 

Equation 13:  ! = !
!(!!!)

 
 
Flexure is defined by the spatially variable vertical 
displacement field, w(x,y), which is very small 
compared to radius of the Earth. Therefore, parallel 
straight lines, or fibers, in the undeformed plate 
remain approximately straight and parallel even 
when flexed. Moreover, slopes are also assumed to 
be very small. Therefore, the shear stresses σxz and 
σyz are negligible. 

The bending of the plate generates horizontal 
stresses that shorten and lengthen fibers on the 
concave and convex sides of the bent plate. Stress 
increases in magnitude with zf, the distance from the 
neutral fiber (also the mid-point of the plate) and 
change sign on either side of the neutral fiber.  
The components of Equation 11 being defined as: 
 

Equation 14:   
 !!! = !! ! + 2!

!!
!!!

+ ! !
!!
!!!

 
 

Equation 15:   

!!! = !! !
!!!
!!! + ! + 2!

!!!
!!!  

 
 
 

Equation 16:  
 !!" = !!" = 2!"!

!!!
!"!#

 
 

The vertical stress σzz is the combination of the 
lithostatic pressure and a flexure-related stress 
generated by Poisson effect in response to the 
horizontal normal stresses. 
 

Equation 17:   

!!! = !!!ℎ! + !!!
!
2 − !! + !!!

!!!
!!! +

!!!
!!!  

 
Here, hv is the height of the volcanic load; ρv and ρl 
are the densities of the volcanic load and the 
lithosphere, respectively. If deformation is small, 
the lithostatic stress dominates (17). 

3.2.2 Numerical Implementation 
Analytical or semi-analytical solutions for the 

stress field associated with plate bending in the 
simple cases of a line load or a point load are 
available in the literature (e.g., Comer, 1983). 
However, we need to evaluate stress in a more 
general case of an arbitrary load. To do this, we use 
a finite difference approximation to the stress 
equations above. 

The displacement field w(x,y) is defined over a set 
of sampling points that form a regular Cartesian 
grid, with spacing h between any given two points. 
Each point is associated the indices i and j in the x 
and y direction, respectively. The first and second 
derivatives of w are evaluated using the nine points 
that surround an evaluation point (xi, yj). The slope 
is given by  

 
Equation 18:   

!"
!" !,!

=
!!!!,! − !!!!,!

2ℎ  

 
Equation 19:   

!"
!" !,!

=
!!,!!! − !!,!!!

2ℎ  
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Equation 20:   

!!!
!!!

!,!
= 

!"
!" !!!!,!

− !"!" !!!!,!

ℎ =
!!!!,! − 2!!,! + !!!!,!

ℎ!  
 
Equation 21:   

!!!
!!!

!,!
= 

!"
!" !,!!!!

− !"!" !,!!!!
ℎ =

!!,!!! − 2!!,! + !!,!!!
ℎ!  

 
Equation 22:   

!!!
!"!#

!,!
= 

!"
!" !,!!!

− !"!" !,!!!

2ℎ = 
!!!!,!!!−!!!!,!!!−!!!!,!!! + !!!!,!!!

4ℎ!  
 
The accuracy of the numerical scheme presented 
above is evaluated using predefined displacement 
fields for which there is an analytical solution for 
the first and second derivatives.  I input a known w 
into (14)-(17) and compare the numerical and 
analytical solutions to measure the relative error.  

 
Equation 23:  ! = ! = !! + !! 
Equation 24:  !!!

!!!
= !!

!!
 

 
Equation 25:  !!!

!!!
= !!

!!
 

 
Equation 26:  !!!

!"#
= !"

!!
 

 
 
To measure the relative error of our analytical 
model, I implemented the above numerical 
solutions for a known w into the script and compare 
the solution with the analytical solution using (27). 
 

Equation 27:   
Error = !"#$%&'()!!"#$%&'(#$

!"#$%&'(#$
 

3.2.3 Examples of Surface Stress 
The stress fields associated with the surface 

displacement generated by one randomly generated 
point load are shown in Figures 6-11. See Table 1 
for input parameters. 

Applying (16)-(17) to a MATLAB function, !!", 
and !!! stress fields are visualized.  
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Figure 10: Stress σxx  at the surface of the plate associated with 
the displacement field generated by one randomly located point 

load (See Figure 5). Note tension n in the y range, and 
compression in the x range. Source w is found (7) and applied to 

equation (14).	  

 
Figure 12: Stress σxy  at the surface of the plate associated with the 
displacement field generated by one randomly located point load 

(See Figure 5). Source w is found in (7) and applied to (16) 
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Figure 13: Stress σzz  at the surface of the plate associated with the 
displacement field generated by one randomly located point load (See 

Figure 5). Note uniform gradient in both the y range, and in the x range 
at radial distances from points of displacement. Source w is found in (7) 

and applied to (17)) 

Figure 11: Stress σyy  at the surface of the plate associated with the 
displacement field generated by one randomly located point load (See 
Figure 5). Note tension in the y range, and extension in the x range. 

Source w is found in (7) and applied to (15)	  
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As expected, the errors calculated from (27) are 
practically zero throughout the planes in Figures 
14-17. This shows that the error within the analytic 
model is extremely small. 
 

 
 

 
 

 
 

 

 

 

 
	    

Figure 14: !!!  error using Equation 27. Note that 
practically all points in the field are 0. The points that 

are not 0 resemble the small amount of error in our 
model. Visualization is plotted on a log10 scale to 

accentuate detail. 
	  

Figure 16: !!!  error using Equation 27. Note that 
practically all points in the field are 0. The points 
that are not 0 resemble the small amount of error 
in our model. Visualization is plotted on a log10 

scale to accentuate detail. 
	  

Figure 15: !!"  error using Equation 27. Note that 
practically all points in the field are 0. The points that 

are not 0 resemble the small amount of error in our 
model. Visualization is plotted on a log10 scale to 

accentuate detail. 

Figure 17: !!! error using Equation 27. Note that 
practically all points in the field are 0. The points 
that are not 0 resemble the small amount of error 
in our model. Visualization is plotted on a log10 
scale to accentuate detail. Note that the corners 
are very large and are probability resultant from 

noise in the script. These regions have a large 
relative error. 
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3.3 Magma Propagation Criteria 
McGovern et al. (2013) and Rubin (1995) define 

three criteria to evaluate the magma ascent through 
the lithosphere in vertical dikes. These criteria are 
based on the principles that dike intrusions 
perpendicular to the direction of least 
comprehensive principal stress, that enough tension 
is present in that direction for the rocks to crack, 
and that there is a vertical pressure gradient that 
forces magma upwards to the surface. The criteria 
are formally written as follows: 
 

Equation 30:  Δ!!!"#   >   !!"#$! 
 
Equation 31:  Δ!!!"##"$ >   !!"#$! 
 
Equation 32:   

!Δ!!
!" =

(Δ!!!"# − Δ!!!"##"$)
ℎ > 0 

 
Where Δ!! is defined as the tectonic stress by 
Rubin (1995); it is the difference of vertical normal 
stress (!!) and horizontal normal stress 
perpendicular to the dike (!!), therefore Δ!! is 
defined as !! − !!. (30) and (31) express that 
enough tension should be present, at either the tip of 
the bottom of the plate, to exceed a local stress 
threshold value, !!"#$!, due to an assortment of 
factors such as regional stresses, and local 
inhomogeneities. However, based on the low tensile 
strength of highly damaged rocks in planetary 
lithospheres (Wieczorek et al., 2013) and on the 
absence of constraints on regional stress, I am 
taking !!"#$! to be zero, requiring both Δ!!!"# and 
Δ!!!"##"$ to be positive in order for a dike to form. 

In (32), the stress gradient must be positive for 
magma ascent to occur. At the top of the plate, 
differential compression must be at its smallest, and 
should increase with increasing depth. If 
compression is lowest at the bottom of the plate, 
magma ascent will be more restricted at larger depth 
as it ascends to the surface. The magma will 
experience an increasing horizontal compression as 
it ascends from its source, and it will eventually be 
pinched out before it reaches the surface of the 
plate. Therefore, magma must be ‘positively 

buoyant’ for it to be forced upward through the dike 
as opposed to downward (Rubin, 1995). 
 

 

 

 
  
 
 

Gravitational 
acceleration 

! 3.811 !
!! 

Mantle density !! 3500 !"
!! 
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Magma density 

!! 2700 !"
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Table 1: Input values used in model 
	  

Figure 18:A top-down view of the displacement from a point 
source (top), and the compression and tension shown at the top 

and the bottom of the plate, respectively. 
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3.3.1 Verified Criteria 
To affirm and test (30) and (31), the first two 

magma ascent criteria, the stress fields are evaluated 
for regions where the tectonic stress (Δ!!) is 
positive. In accordance with our axisymmetric 
displacement function, we see an axisymmetric 
response in the stresses shown in Figures 10-13, 
and therefore an axisymmetric orientation of the 
tectonic stresses. In Figures 19-20, the respective 
magma ascent criteria are verified where the 
tectonic stresses are positive. These regions are 
expectedly located in an axisymmetric distribution 
about the area of loading. 

To test (32), the third magma ascent criterion, the 
gradient of tectonic stress throughout the plate, and 
variations in magma pressure were evaluated in 
regions where there were positive. If differential 
stress decreases from the bottom to the top of the 
plate, dikes are able to form from the large amounts 
of tension experienced at the bottom of the plate. 
This tension forms cracks through work magma 
ascent can initiate. As the magma rises through the 
plate, it experiences a decrease in horizontal 
stresses, therefore encouraging upward motion 
towards the surface. Figure 21 shows region where 
this scenario is positive and possible; again in an 
axisymmetric orientation about the area of loading.    
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Figure 19: Regions where the first magma ascent criterion, 
expressed by (30), are verified at the top of the plate. The more 
positive a region is, the larger the tectonic stress is. Therefore, 

regions where the tectonic stress is large are where the criterion 
is more verified. 

Figure 20: Regions where the second magma ascent criterion, expressed 
by (31), are verified at the bottom of the plate. The more positive a region 
is, the larger the tectonic stress is. Therefore, regions where the tectonic 

stress is large are where the criterion is more verified. 

Figure 21: Regions where the third magma ascent criterion, expressed by 
(32), are verified throughout the plate. The more positive a region is, the 
larger the difference in tectonic stresses is. Therefore, regions where the 

differential compression increases towards the top of the plate are where the 
criterion is more verified. 
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3.3.2 Total Score	  
Magma	  ascent	  is	  likely	  to	  occur	  in	  regions	  

where	  the	  most	  magma	  ascent	  criteria	  are	  
verified.	  There	  are	  regions	  where	  three	  and	  two	  
criteria	  overlap	  and	  are	  both	  verified,	  and	  there	  
are	  regions	  where	  only	  one	  sole	  criterion	  is	  
verified.	  These	  regions	  were	  assigned	  a	  score,	  
from	  three	  to	  one,	  depending	  on	  how	  many	  
criteria	  were	  verified	  in	  that	  location.	  The	  
regions	  of	  scoring	  are	  axisymmetric	  in	  their	  
locations,	  reflecting	  the	  axisymmetric	  nature	  of	  
the	  stresses	  in	  the	  plate.	  The	  scoring	  of	  the	  
deflected	  region	  is	  shown	  in	  Figure	  22.	  

3.4 Site Sample Statistics 
As	  noted	  in	  the	  visualizations	  in	  sections	  3.3.1	  

and	  3.3.2,	  the	  regions	  where	  all	  three	  magma	  
ascent	  criteria	  are	  verified	  are	  oriented	  
axisymmetrically	  about	  the	  area	  of	  loading.	  

Therefore	  we	  must	  use	  statistical	  methods	  to	  
choose	  the	  location	  where	  the	  next	  load	  is	  likely	  
to	  be	  emplaced.	  The	  next	  load	  has	  equal	  potential	  
to	  be	  emplaced	  in	  any	  region	  where	  all	  three	  
criteria	  are	  verified.	  The	  location	  of	  the	  next	  load	  
is	  determined	  by	  randomly	  sampling	  a	  statistical	  
distribution	  of	  emplacement	  positions	  described	  
by	  its	  probability	  distribution	  function	  (PDF).	  
Two	  different	  distributions	  of	  potential	  eruptive	  
sites	  are	  considered.	  Each	  new	  point	  is	  checked	  
for	  its	  score.	  If	  the	  score	  is	  three,	  the	  coordinates	  
of	  the	  point	  are	  recorded,	  a	  new	  load	  is	  emplaced	  
at	  that	  position,	  the	  flexure	  calculation	  is	  
updated,	  and	  another	  random	  point	  is	  selected.	  If	  
the	  score	  of	  the	  point	  is	  not	  three,	  the	  location	  is	  
removed	  from	  the	  pool,	  and	  the	  script	  moves	  
onto	  the	  next	  randomly	  selected	  point.	  	  

3.4.1 Uniform Probability 
In	  one	  of	  the	  probability	  density	  functions,	  a	  

uniform	  density	  of	  sampling	  points	  was	  applied	  
to	  the	  scored	  regions	  of	  criteria.	  This	  sampling	  
distribution	  considers	  a	  uniform	  density	  of	  
points	  throughout	  the	  radius	  of	  potential	  
eruptive	  sites.	  Therefore,	  the	  probability	  of	  any	  
point	  in	  this	  area	  to	  be	  an	  eruptive	  site	  can	  be	  
expressed	  as:	  
	  
Equation	  33:	  	  P	  is	  constant	  

	  
With	  the	  P	  being	  the	  probability,	  and	  r	  being	  the	  
radial	  distance	  of	  a	  potential	  eruptive	  site	  to	  the	  
source.	  This	  probability	  is	  verified	  if	  ! < !!,	  with	  
!!	  being	  the	  radius	  of	  the	  entire	  magma	  source.	  
The	  radius	  of	  our	  magma	  source	  is	  taken	  to	  be	  
3!.	  Figure	  23	  shows	  this	  cumulative	  probability	  
function	  applied	  within	  a	  circle	  with	  radius	  !!,	  
and	  a	  radial	  slice	  (!)	  of	  the	  circle	  from	  0	  to	  !!.	  
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Figure 22: Regions where one criterion, or multiple criteria 
overlap and are verified are given a ‘score’ of one, two, or three. 
Magma ascent is likely to occur in regions where all three ascent 

criteria are verified, shown in white with a ‘score’ of three. 
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	   Figure 24: A visualization of 500 sampling points (ns=500) distributed with uniform density about a circle (top) with radius !!, 
the radius of a potential magma source. Each one of these points will be randomly tested as potential eruptive sites if they have 
a score of three. It appears as through there is a higher concentration of points near the center of the circle, however, when a 
radial slice of the distribution is taken (bottom), the distribution is uniform. This is because the points are evenly distributed 
with radial distance from the source, and not uniformly distributed per unit area of the circle.  

Figure 23: A visualization of 500 sampling points (ns=500) distributed with uniform density about a circle (top) with radius !!, 
the radius of a potential magma source. Each one of these points will be randomly tested as potential eruptive sites if they have a 
score of three. It appears as through there is a uniform distribution of points throughout the circle, however, when a radial slice 
of the distribution is taken (bottom), the distribution shows a lower density of points near the center of the circle, and a higher 
density towards the outer edges of the magma source. This is because the points are distributed equal to the radial distance from 
the source, and not uniformly distributed with increasing radial distance.  
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3.4.2 Probability Proportional to Area 
For	  the	  other	  probability	  density	  function	  

considered	  here,	  a	  probability	  proportional	  to	  
unit	  area	  was	  applied	  to	  the	  scored	  regions	  of	  
criteria.	  This	  sampling	  distribution	  considers	  a	  
non-‐uniform	  density	  of	  points	  throughout	  the	  
radius	  of	  potential	  eruptive	  sites.	  Therefore,	  the	  
probability	  of	  any	  point	  in	  this	  area	  to	  be	  an	  
eruptive	  site	  can	  be	  expressed	  as:	  	  
	  
Equation	  34:	  	   ! = !	  
	  

With	  the	  P	  being	  the	  probability,	  and	  r	  being	  the	  
radial	  distance	  of	  a	  potential	  eruptive	  site	  to	  the	  
source.	  Therefore,	  the	  larger	  the	  radius	  is	  from	  
the	  source,	  the	  larger	  the	  density,	  and	  the	  higher	  
the	  cumulative	  probability.	  This	  probability	  is	  
also	  verified	  if	  ! < !!,	  with	  !!	  being	  the	  radius	  of	  
the	  entire	  magma	  source.	  The	  radius	  of	  our	  
magma	  source	  is	  taken	  to	  be	  3!.	  Figure	  24	  shows	  
this	  cumulative	  probability	  function	  applied	  
within	  a	  circle	  with	  radius	  !!,	  and	  a	  radial	  slice	  
(!)	  of	  the	  circle	  from	  0	  to	  !!.	  

4. Results 
4.1 Load Updates 
The	  case	  of	  a	  single	  point	  load	  is	  initially	  

considered	  in	  the	  beginning	  our	  main	  loop.	  For	  
this	  one	  point,	  its	  respective	  displacement	  is	  
modeled	  (Figure	  9),	  and	  its	  flexure-‐induced	  
stress	  components	  (Figures	  10-‐13),	  and	  principal	  
stress	  directions	  are	  calculated	  (Figure	  18).	  
These	  stress	  components	  dictate	  how	  and	  where	  
magma	  ascent	  and	  consecutive	  emplacement	  can	  
occur	  (30)-‐(32).	  Applying	  the	  cumulative	  
probability	  functions	  (33)	  and	  (34),	  we	  are	  able	  
to	  determine	  where	  the	  next	  load	  will	  be	  
emplaced.	  With	  each	  consecutive	  emplacement,	  
the	  overall	  displacement	  will	  change,	  as	  well	  as	  
all	  of	  the	  respective	  flexure-‐induced	  components.	  
The	  stress-‐field,	  principal	  stress	  directions,	  and	  
magma	  ascent	  criteria	  are	  re-‐calculated	  with	  
each	  consecutive	  load.	  Furthermore,	  the	  magma	  
score	  of	  each	  region	  changes	  with	  every	  new	  
load,	  and	  the	  cumulative	  probability	  functions	  

are	  re-‐applied	  to	  determine	  where	  the	  following	  
load	  will	  appear.	  

4.1.1 Load Geometry 
The	  displacement	  caused	  by	  a	  load	  at	  one	  given	  

point,	  is	  shown	  in	  the	  above	  example	  of	  Figure	  9.	  
This	  approximation	  works	  well	  mathematically,	  
but	  the	  loads	  in	  this	  experiment	  need	  to	  have	  
geologic	  analogues.	  Brotchie	  and	  Silvester	  
[1969]	  clearly	  set	  the	  playing	  field	  for	  steady	  
state,	  analytic	  solutions	  of	  deflection	  from	  
axisymmetric	  point	  loading,	  which	  can	  be	  found	  
in	  Section	  5.1.2.	  These	  solutions	  for	  concentrated	  
loading	  were	  taken	  further	  by	  Wolf	  [1984],	  
Watts	  et	  al.,	  [1975]	  and	  Lambeck	  [1980],	  whom	  
all	  considered	  loading	  from	  different	  geometries.	  
In	  our	  examples	  of	  loading,	  we	  are	  considering	  
the	  potential	  volcanic	  load	  increment	  to	  be	  a	  
large	  cylinder,	  of	  dimensions	  Wl=100	  m	  and	  Rl	  
=10	  km,	  with	  Wl	  and	  Rl	  being	  the	  height	  and	  
radius	  of	  the	  cylinder,	  respectively.	  Examples	  of	  
this	  cylindrical	  loading	  can	  be	  found	  in	  Watts	  
[2001]	  pp.	  110-‐111.	  	  	  
Deflection	  (w)	  of	  circular	  plates	  for	  a	  

concentrated	  load	  P	  is	  defined	  as:	  
	  
Equation	  35:	   ! = !!!

!!"
!"# !

!
	  

 
The load P is a force (which can be described as a 
weight) from each consecutive load applied to areas 
atop the plate. These forces can overlap in areas 
where consecutive magma piles are emplaced, 
eventually leading to the formation of topographic 
profiles. We define the force of concentrated load P 
as: 
 

Equation 36:  ! = !!!  !" 
 

g is the gravitational acceleration at the surface of 
Mars, !! is the density of the lava that makes up 
each magma pile, and dA is the area on the grid over 
which the force is applied. In the simulations, I 
assume that the magma source (r0) is roughly 25-50 
km in size, that the eruption radius (rE) is 10 km, 
and that each magma pile has a thickness (Le) of 
50-100 m. 
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4.1.2 Step Growth (Uniform Probability) 
Thirty	  consecutive	  loads	  are	  emplaced	  atop	  a	  

plate	  of	  thickness	  Te=1	  km	  and	  the	  evolving	  
deflection,	  lava	  pile	  thickness,	  and	  topography	  
are	  visualized	  in	  Figure	  25.	  Uniform	  density	  
function	  (33)	  was	  used	  as	  a	  probability	  density	  
function	  for	  site	  sampling.	  	  
	  

	  
	  
	  
	  
	  
  

Figure 25: Consecutive deflection, lava pile thickness, topography, and topographic contours of a 
30-step size edifice with 50x VE using a uniform probability site sampling method. Note the 

dendritic nature of where consecutive loads were emplaced. 
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4.1.3 Step Growth  
(Probability Proportional to Area) 
Thirty	  consecutive	  loads	  are	  emplaced	  atop	  a	  

plate	  of	  thickness	  Te=1	  km	  and	  the	  evolving	  
deflection,	  lava	  pile	  thickness,	  and	  topography	  
are	  visualized	  in	  Figure	  26.	  Probability	  
proportional	  to	  area	  equation	  (34)	  was	  used	  as	  a	  
probability	  density	  function	  for	  site	  sampling.	  	  
 

  

Figure 26: Consecutive deflection, lava pile thickness, topography, and topographic contours of a 
30-step size edifice with 50x VE using a probability proportional to area site sampling method. 

Note the somewhat irregular and de-centralized nature of where consecutive loads were emplaced. 
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4.2 Variable Plate Thickness 
I	  predict	  that	  that	  there	  is	  a	  correlation	  

between	  the	  shape	  of	  a	  volcanic	  edifice,	  and	  the	  
elastic	  thickness	  of	  the	  underlying	  lithosphere.	  
For	  one	  of	  the	  final	  steps	  in	  my	  experiment,	  I	  
setup	  my	  main	  loop	  to	  place	  an	  initial	  magma	  
load	  atop	  a	  plate	  of	  a	  given	  thickness,	  and	  have	  
the	  script	  calculate	  the	  deflection,	  the	  stress	  
orientations,	  the	  magma	  ascent	  criteria,	  the	  
score,	  and	  the	  statistically	  probable	  location	  of	  
the	  next	  load	  for	  200-‐400	  consecutive	  loads	  in	  
each	  loop.	  	  I	  ran	  this	  loop	  multiple	  times	  with	  
varying	  values	  of	  r0,	  rE,	  Le,	  Te,	  with	  each	  of	  the	  
two	  probability	  density	  functions	  ((33)	  and	  (34))	  
applied,	  and	  visualized	  the	  result	  growth	  	  final	  
topographic	  form	  that	  the	  consecutive	  magma	  
piles	  (loads)	  formed.	  
	  
	   	  

Figure 27: Topography of volcano at steps 112 and 250 atop a very 
thin plate of 500 m. Input variables: 50 km magma source radius, 10 

km eruption radius, and site sampling is uniform. Note the mote 
defined by the black lines surrounding the edifice base. 

Figure 28: Plate deflection and topography of volcano at step 250 
atop a plate of 1 km. Input variables: 50 km magma source radius, 
10 km eruption radius, and site sampling is proportional to area 

Figure 29: Plate deflection and topography of volcano at step 250 atop a 
plate of 1 km. Input variables: 50 km magma source radius, 10 km 

eruption radius, and site sampling is uniform throughout. Note that the 
choice of the site-sampling function made the topographic relief of the 
edifice slightly larger than the edifice in Figure 28. Also note that the 

radial extent of the edifice is slightly smaller than the edifice of Figure 28  
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Figure 30: Topography and topographic contours of volcano at step 400 atop a plate of 10 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that the overall topographic 
relief is lower than Figures 31-32, and that the topographic contours are more diffuse at the edge of the edifice. A 

more prominent mote/annular trend is apparent in the region surrounding the base of this edifice. 

Figure 31: Topography and topographic contours of volcano at step 500 atop a plate of 40 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that with a thicker plate, the 

edifice becomes higher in elevation, and it forms more steeply flanking sides.  

Figure 32: Topography and topographic contours of volcano at step 400 atop a plate of 60 km. Input variables: 50 
km magma source radius, 10 km eruption radius, and site sampling is uniform. Note that with this thick plate, the 

edifice becomes even higher in elevation, and has very steep flanks. As the plate has thickened from the 
visualizations in Figures 30-32, the edifice profiles have become less flat, have grown in elevation, and have 

evolved to be more domical and conical in nature.  
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4.3 Applications to Martian Volcanoes 

Elysium	  Mons	  is	  an	  example	  of	  a	  conical	  edifice	  
on	  Mars.	  The	  steeply	  flanked	  sides,	  moderate	  
topographic	  relief,	  and	  radial	  dike	  geometries	  
are	  all	  similarities	  that	  can	  be	  seen	  in	  our	  model	  
(Figure	  32).	  This	  indicates	  emplacement	  at	  a	  high	  
Te,	  which	  is	  supported	  by	  Te	  measurements	  in	  the	  
region	  obtained	  by	  McGovern,	  et	  al.,	  (2012).	  
The	  domical	  shapes	  of	  the	  Tharsis	  Montes	  are	  
great	  examples	  of	  the	  truncated	  cone	  
classification	  of	  the	  domical	  shape.	  We	  see	  
emplacement	  of	  these	  at	  intermediate	  Te	  values	  
(Figure	  31).	  The	  moderately	  sloped	  flanks,	  
relatively	  flat	  top,	  and	  diffuse	  radial	  extent	  are	  all	  
characteristics	  seen	  in	  both	  the	  model	  and	  on	  
Mars.	  	  
The	  flat	  annular	  shapes	  of	  Patera-‐type	  volcanoes	  
bear	  strong	  similarities	  with	  the	  Patera	  load	  
model	  (Figure	  30).	  Low	  topography,	  with	  a	  broad	  
radial	  extent,	  and	  loose	  lobes	  /flows	  around	  the	  
outer	  flanks	  of	  the	  edifice	  are	  all	  similarities	  seen	  
in	  both	  the	  model,	  and	  to	  Patera	  volcanoes	  on	  
Mars	  such	  as	  Thyrrhena	  Patera	  (Figure	  2).	  

5. Summary 
 I have applied three types of stress-based magma 

ascent criteria to the flexure-induced stresses from 
axisymmetric loading atop a lithosphere modeled as 
a thin elastic shell. With the magma ascent criteria 
applied and scored, consecutive loads were chosen 
by the use of two probability density functions; 
uniform site-sampling with constant probability, 
and site-sampling with probability proportional to 
area. Each of these two sampling methods had an 
effect on the outcome of the edifice shape (Figures 
25-26), however, not enough to change the overall 
edifice classification. There appears to be a range of 
Te for each edifice shape; High values of Te (i.e., Te 
> 40 km), result in low stress gradients in the plate, 
allowing conical edifices to from flows originating 
anywhere on the edifice. For intermediate values of 
Te (i.e., 15 km < Te < 40 km), high stress gradients 
throughout the plate, and comprehensive stresses in 
the lower lithosphere tend to cut off magma ascent 
near the center of a conical edifice, therefore 

creating a more domical edifice. At the lowest 
values of Te (i.e., Te < 40 km), large stress gradients 
cut off practically all central magma ascent, 
inhibiting the growth of either a conical or domical 
edifice. However, the narrowly spaced zones in 
which the lithosphere experiences short-wavelength 
deflections lead to the formation of flat annular 
edifices. Therefore, my hypothesis is verified! 

My work only considers a purely self-consistent 
loading scenario, with the deflection, stress 
gradients, and magma ascent criteria recalculate 
with each consecutive load. The loads used in this 
model were strictly surface-loads, and these 
methods do not include subsurface loading from 
viscous or other mechanisms. Despite my 
experiments application of only one loading 
mechanism/scenario, the verification of my model 
suggests that elastic deformation from flexure-
induced stresses is a primary influence in volcanic 
edifice morphology.  

Further implications can be drawn on global, 
regional, and local thermal gradients across and 
throughout the Martian surface and lithosphere. 
These thermal contractions can provide better 
insight into the rates of cooling of terrestrial bodies, 
and more specifically, the variable rate(s) of 
thickening of the Martian lithosphere. 
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7. Appendices 
Appendix A 
 
MATLAB function used to define KEI 
function [out]=KEI(x) 
X=[0:0.1:10]; 
K=[-0.785398163 
-0.776850647 
-0.758124933 
-0.733101912 
-0.703800212 
-0.671581695 
-0.637449495 
-0.602175452 
-0.566367651 
-0.530511122 
-0.494994637 
-0.460129528 
-0.426163604 
-0.393291827 
-0.361664782 
-0.331395562 
-0.302565474 
-0.275228834 
-0.249417069 
-0.225142235 
-0.202400068 
-0.181172644 
-0.161430701 
-0.143135677 
-0.126241488 
-0.110696099 
-0.096442891 
-0.083421858 
-0.071570649 
-0.060825473 
-0.051121884 
-0.042395447 
-0.034582313 
-0.027619697 
-0.021446287 
-0.016002569 
-0.011231096 
-0.007076704 
-0.003486665 
-4.11E-04 
0.002198399 
0.004385818 
0.006193613 
0.007661269 
0.008825624 
0.009720919 
0.010378865 
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0.010828725 
0.011097399 
0.011209526 
0.011187587 
0.011052008 
0.010821278 
0.010512056 
0.010139286 
0.009716307 
0.009254964 
0.008765716 
0.008257737 
0.007739025 
0.007216492 
0.006696059 
0.006182749 
0.005680767 
0.005193579 
0.004723992 
0.004274219 
0.003845946 
0.003440398 
0.003058385 
0.002700365 
0.002366486 
0.002056629 
0.001770454 
0.001507429 
0.001266868 
0.001047959 
8.50E-04 
6.71E-04 
5.12E-04 
3.70E-04 
2.44E-04 
1.34E-04 
3.81E-05 
-4.45E-05 
-1.15E-04 
-1.74E-04 
-2.23E-04 
-2.63E-04 
-2.95E-04 
-3.19E-04 
-3.37E-04 
-3.49E-04 
-3.55E-04 
-3.57E-04 
-3.56E-04 
-3.51E-04 
-3.43E-04 
-3.33E-04 
-3.21E-04 
-3.08E-04]; 
out=interp1(X,K,x); 
end 
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Appendix B 
 
MATLAB function to define !!", !!", and !!" stress components. 
 
function [sigma_xx,errxx,sigma_yy,erryy,sigma_xy,errxy,sigma_zz,errzz, 
sigma_xz,sigma_yz] = stress(W,Xm,Ym)    
h=max(abs(Xm(1)-Xm(2)),abs(Ym(1)-Ym(2))); 
E=1; % Youngs modulus 
yf=1;   % distance from neutral surface to fiber 
v=.25; % Poissons ratio 
  
pxx = [1 -2 1]; %d^2w/dx^2 
pxx=pxx/h^2; 
  
pyy= [1 -2 1]'; %d^2w/dy^2 
pyy=pyy/h^2; 
  
pxy= [-1 0 1; %d^2w/dxdy 
    0 0 0; 
    1 0 -1]; 
pxy = pxy/(4*h^2); 
pxy=flipud(pxy);  
  
px=[-1 0 1]; %dw/dx 
px = px/(2*h); 
  
py=[-1 0 1]'; %dw/dy 
py=py/(2*h); 
  
wxx=zeros(size(Xm)); 
wyy=zeros(size(Xm)); 
wxy=zeros(size(Xm)); 
wx=zeros(size(Xm)); 
wy=zeros(size(Xm)); 
  
  
for i= 1:numel(Xm(1,:)) 
    for j=2:numel(Xm(1,:))-1 
        wxx(i,j)=sum(sum(pxx.*W(i,j-1:j+1))); 
        wyy(j,i)=sum(sum(pyy.*W(j-1:j+1,i))); 
        wx(i,j)=sum(sum(px.*W(i,j-1:j+1))); 
        wy(j,i)=sum(sum(py.*W(j-1:j+1,i))); 
       if (i>1) && (i<numel(Xm(1,:)));   
           wxy(i,j)=sum(sum(pxy.*W(i-1:i+1, j-1:j+1))); 
       end 
    end 
end 
  
  
lam=((E*v)/((1+v)*(1-2*v))); 
mu=(E/(2*(1-v))); 
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sigma_xx=yf*((lam+2*mu)*wxx + lam*wyy); 
sigma_yy=yf*(lam*wxx +(lam+2*mu)*wyy); 
sigma_zz= yf*lam*(wxx+wyy); 
sigma_xy=2*mu*yf*wxy; 
sigma_xz=2*mu*wx; 
sigma_yz=2*mu*wy; 
  
%Visualizations 
  
  
figure(3) 
contour(Xm, Ym, sigma_xy) 
title('sigmaxy shear stress','fontsize', 18) 
xlabel('x/\alpha', 'fontsize', 18) 
ylabel('y/\alpha', 'fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmaxy_stress.pdf 
  
figure(4) 
contour(Xm, Ym, sigma_zz) 
title('sigmazz stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmazz_stress.pdf 
  
figure(5) 
contour(Xm, Ym, sigma_xx) 
title('sigmaxx stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmaxx_stress.pdf 
  
figure(6) 
contour(Xm, Ym, sigma_yy) 
title('sigmayy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
zlabel('stress','fontsize', 18); 
set(gca, 'fontsize',14); 
axis equal; 
contourcbar 
print -dpdf sigmayy_stress.pdf 
  



GEOL394	   Linking	  volcano	  morphology	  and	  elastic	  thickness	  on	  Mars	   David	  Krasner	  
	  

	   29	  

Wt=sqrt(Xm.^2+Ym.^2); 
dxx=(Xm.^2)./(Wt.^3); 
dyy=(Ym.^2)./(Wt.^3); 
dxy=(Xm.*Ym)./(Wt.^3); 
  
sigma_xxt=yf*((lam+2*mu)*dxx + lam*dyy); 
sigma_yyt=yf*(lam*dxx +(lam+2*mu)*dyy); 
sigma_zzt= yf*lam*(dxx+dyy); 
sigma_xyt=2*mu*yf*dxy; 
errxx=(abs(sigma_xxt-sigma_xx)./sigma_xx); 
erryy=(abs(sigma_yyt-sigma_yy)./sigma_yy);  
errzz=(abs(sigma_zzt-sigma_zz)./sigma_zz); 
errxy=(abs(sigma_xyt-sigma_xy)./sigma_xy); 
  
figure(9) 
pcolor(Xm, Ym, errxx); 
contourcbar 
shading flat 
title('sigmaxx stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmaxx_stress.pdf 
  
figure(10) 
pcolor(Xm, Ym, erryy); 
contourcbar 
shading flat 
title('sigmayy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmayy_stress.pdf 
  
figure(11) 
pcolor(Xm, Ym, errzz); 
contourcbar 
shading flat 
title('sigmazz stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
axis equal 
print -dpdf errsigmazz_stress.pdf 
  
figure(12) 
pcolor(Xm, Ym, errxy); 
contourcbar 
shading flat 
title('sigmaxy stress','fontsize', 18) 
xlabel('x/\alpha','fontsize', 18) 
ylabel('y/\alpha','fontsize', 18) 
set(gca, 'fontsize',14); 
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axis equal 
print -dpdf errsigmaxy_stress.pdf 
  
end 
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