An Analysis of Apatite Chemistry in Garnet Porphyroblasts and in the Matrix of Metamorphic Rocks

Geology 394 Thesis April 28, 2006

David B. Limburg

Advisor: Dr. Philip Piccoli

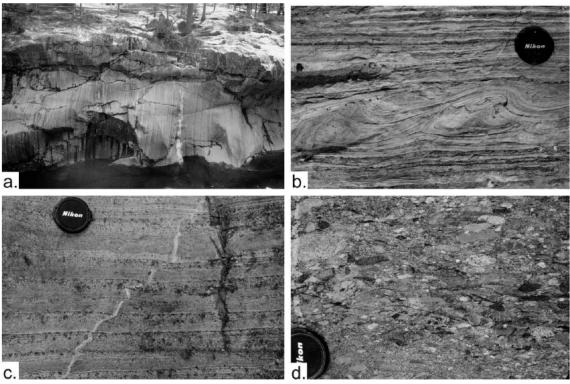
Abstract

Apatite is an accessory phase found in both metamorphic and igneous rocks. In this study I looked at apatite found in garnet porphyroblasts and in the matrix of rocks from Coos Canyon, Maine. Extensive petrographic analysis and the Electron Micro Probe were used to analyze samples collected in a previous study. Analysis of the samples showed that there was no difference in chemistry between apatite found inside of garnet porphyroblasts and of that found in the matrix of the rocks.

Introduction

There is a relatively small amount of data available relating to apatite chemistry in metamorphic rocks. In this paper I will attempt to analyze apatite in garnet porphyroblasts and in the matrix of metamorphic rocks to determine if petrographic location has and effect on the chemistry of the apatite. The analysis will focus mostly on apatite's halogen end members fluorine and chlorine. In order to accurately assess any measured difference the relative timing of garnet growth must also be determined.

Background


General Information on Metamorphism

Metamorphism is, in the most general sense, a change in rocks due to exposure to elevated temperatures and pressures. There are two different types of metamorphism: contact and regional. Contact metamorphism occurs near igneous intrusions. The metamorphism is caused primarily by heat and only occurs very close to the intrusion. The rocks that I am studying have been metamorphosed due to regional metamorphism. This occurs in large areas due to a tectonic event (i.e. plate collision). During regional metamorphism the rocks are exposed not only to high temperatures but elevated pressures as well. The pressure causes foliations to form as planes through the rocks. These foliations appear to be flat planes or show an infinite variations of folds and twists. It is during metamorphism that garnet porphyroblasts like the ones that I will be analyzing form.

Geologic Framework

The samples for this study were collected for another University of Maryland undergraduate research project in Coos Canyon, Maine. The rocks exposed at Coos Canyon are part of the Perry Mountain Formation. The Perry Mountain Formation is part of the Silurian clastic wedge, which was deposited on top of a very thick Late Ordovician clastic sequence in the Merrimack Synclinorium (Osberg et al. 1968; Bock et al. 2004) The rocks found here are bedded quartzite and sillimanite schist containing garnet (up to

0.5 cm diameter) porphyroblasts sharply interbedded with light gray plagioclase-quartz granofels and granular to vitreous light-gray quartzite (Burton et al. 2000).

Fig. 1. (a-c) Metamorphic rock of the Perry Mountain Formation from Coos Canyon in Byron, Maine. Photos highlight different metamorphic structures that are visible at Coos Canyon. (d) Conglomerate of the Rangeley Formation which was metamorphosed during the same origenic event. (After Solar and Brown 2001)

Much of the structural research has been done on this area by Solar and Brown who concluded that deformation occurred during the Early Devonian (Acadian) oblique convergence which developed zones of apparent flattening strain and zones of apparent constrictional strain which is highlighted in figure 1 (Solar and Brown 2001).

Fig. 2. Photomicrograph of a garnet porphyroblast from Coos Canyon. Apparent σ tails in quartz and mica strain shadows suggest a top-to-the-right sense of shear which indicates shear was along foliation in the direction of lineation. Long side of picture is 3.5 mm. (After Solar and Brown, 2001)

Apatite in Metamorphic Systems

Apatite is found in metamorphic rocks as an accessory phase (Kapustin 1986). It is found in rocks of all metamorphic grades, ranging from those found in transitional diagenetic environments to ultra high-pressure samples, and in rocks of different compositions including pelites, carbonates, basalts and ultramafics (Spear and Pyle 2002). Apatite is one of the accessory phases found in garnet porphyroblasts in metamorphic rocks. Apatite, Ca₅(PO₄)₃(OH, F, Cl), is usually found in metamorphic systems as fluorapatite (i.e. F as the primary end-member) but in a very small number of samples it is found as chlorapatite (i.e. Cl as the primary end-member) (Spear and Pyle 2002). Because the composition of apatite is defined by the end member concentrations there are an infinite number of possibilities for compositions of apatite.

While studying accessory phosphates in metamorphic rocks Spear and Pyle (2002) hypothesized that there were four possibilities for the reaction between two different phases in a metamorphic system. The two phases that were examined are garnet and monazite. It was hypothesized that: (a) the monazite and the garnet would both grow, (b) the monazite would be consumed while the garnet grew, (c) the monazite grows while the garnet is consumed, and (d) both the monazite and the garnet are both consumed (Spear and Pyle 2002). These relationships were studied to show that the presence of a mineral such as monazite or apatite alone does not mean it is part of an equilibrium assemblage. These relationships are important in my study so that if there is a difference in apatite chemistry the reaction relationship between the garnet and the apatite must be analyzed to determine if there is any significance in the measured chemical difference.

Yang and Rivers (2002) studied major and trace element zoning in garnets containing apatite and other minerals show LREE-enriched, chondrite-normalized patterns with negative Eu-anomalies in apatite crystals as shown in Fig. 3. LREE stands for light rare earth elements which are the lanthanide group on the periodic table of elements. Looking at the LREE's in a mineral gives us an idea of its metamorphic history

because the LREE's are highly insoluble and thus are not changed during metamorphism. The negative Eu-anomaly arises from the fact that Eu has a charge of 2+ while all the other REE's have a charge of 3+. This causes Eu to substitute readily for Ca2+ and is found in higher abundance in plagioclase feldspar and lower abundances in other phases like apatite in this case (White 2005).

Relative Timing

When examining garnets and other porphyroblasts in metamorphic systems, one must consider their timing of formation relative to foliation. There has been a considerable amount of work done on analyzing porphyroblasts to determine just that. Porphyroblasts can be put into three categories, they may be *prekinematic* (*predeformational*), *synkinematic* (*syndeformational*), or *postkinematic* (*postdeformational*) (Vernon 2004). A chart of general end members in each category under different types of strain is shown by the red arrows in figure 3.

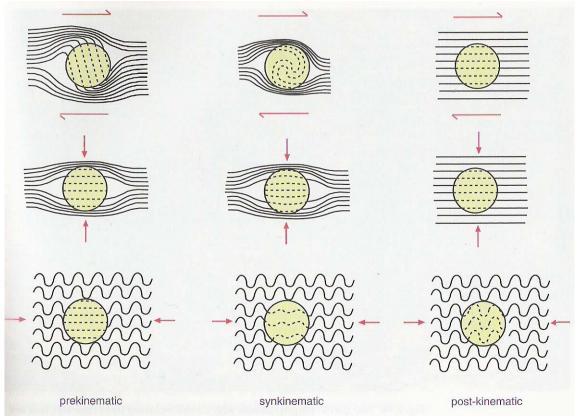


Fig 3. A chart showing relative timing of porphyroblast formation after Vernon (2004)

There are many problems that arise when trying to analyze the relative timing of prophyroblast growth in a metamorphic system. A major precaution that must be taken before analyzing a thin section is to determine the orientation of the cut relative to the

foliation. Figure 4 shows how a cut parallel to microfolding can look completely different than a cut that is perpendicular to fold direction.

Fig. 4 shows how foliation and inclusions can look different depending on cut angle. (A) Shows a cut parallel to foliation and (B) shows cut perpendicular to foliation after Vernon 2004.

To avoid making mistakes in analysis cuts from multiple angles relative to folding should be analyzed to ensure accurate interpretation (Vernon 2004).

Methodology

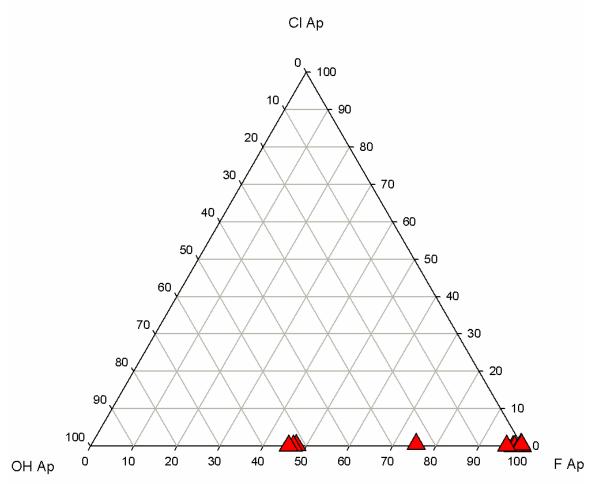
To accurately assess the question I have proposed I am using two different methods to analyze my samples. The first method I am using is petrographic analysis with a petrographic microscope. The petrographic analysis I am doing serves a two fold purpose: (1) to look at samples to find garnets with a large number of inclusions and to find what possibly might be apatite in the matrix and (2) to analyze the garnets, inclusion orientation, and foliation orientation to determine time of growth relative to metamorphism. After analysis of the covered thin sections that were previously made from my samples I have determined that the garnet growth is most likely synkinematic

(top row, middle in figure 2). As I have previously discussed there are precautions that must be taken before the relative timing can be determined. I have analyzed thin sections of my samples that were cut both perpendicular and parallel to foliation. Some of the sections I have selected to analyze for apatite chemistry do not show relative timing in the thin sections that already exist. I will be using those samples because they have larger garnets with more inclusions of apatite both in the garnets and in the matrix.

After I have identified apatite in the garnets and in the matrix I will be using a JEOL 8900R WDS Electron Probe Microanalyzer (EPMA) to analyze the chemical composition of apatite. The EPMA works by creating an X-ray signature from the mineral that is being analyzed and identifying those X-rays. Electrons are liberated by heating a tungsten cone to 2300K causing it to release electrons. The beam then passes through a hole in a positively charged plate which concentrates the electrons into a beam. The electrons are funneled through the hole creating a beam between 5 and .5 μ m in diameter, which is directed at the mineral to be analyzed. For my analysis I used a 5 μ m beam. The beam has three properties that are important. First is the acceleration voltage. This is measured in kV and determines the speed of the electrons that are directed at the mineral to be analyzed. For my analysis I will be using an acceleration voltage of 15 kV. The next important thing to consider is the cup current. This current is measured in nA. For my analysis a cup current of 10 nA was used. The spectrometers were looking for F, Cl, Fe, Mn, P, and Ca.

For the initial set of data, an analysis of 12 apatite grains was done using the EPMA. Four of the apatite crystals that were analyzed were located inside of a garnet. The remaining eight were located in the matrix, four of those were associated with quartz grains and the other four were most likely associated with biotite.

More petrographic analysis was done to select 6 samples to be made into uncovered thin sections for use in the EPMA. When the new sections arrived the sections were scanned to use as maps while using the probe. More petrographic analysis was then done to locate apatite grains both inside garnets and in the matrix. The sections were then taken to the EPMA for analysis. Analysis was run on approximately 150 different points spread across the six sections noting the approximate size of each grain and the other phases that the apatite was associated with. The number of elements that were analyzed in the preliminary analysis was increased from 6 to 14. This was done to ensure a more thorough analysis of the apatite.


After the samples were run in the probe the data was compiled into a table so that the results could be analyzed. From there the standard deviations from the mean of elemental weight percent were calculated. In order to find a trend in the data the charts were arranged by sample number, mineral association and apatite grains that were found in garnet versus those associated with other mineral phases. The final step was to create ternary diagrams so that the data could be analyzed visually.

Results

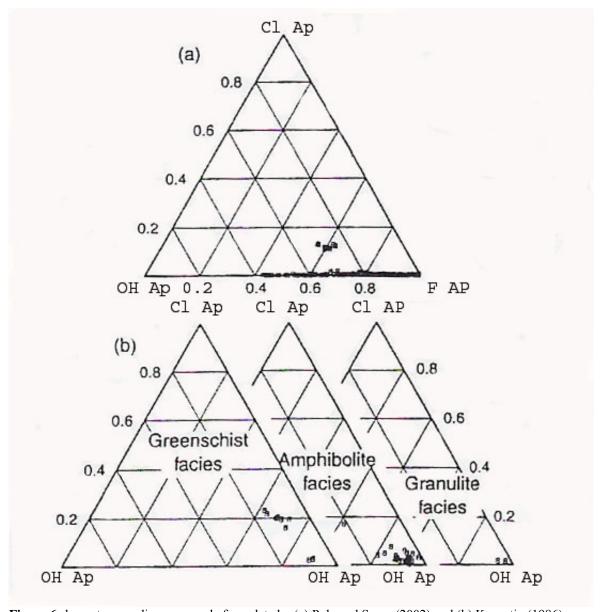
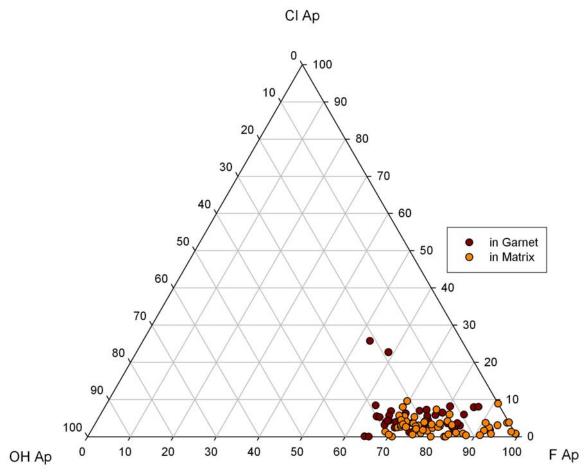
. Table 1 below shows the concentrations for the 6 elements that were analyzed in the 12 different locations. The raw x-ray counts were corrected using the ZAF algorithm.

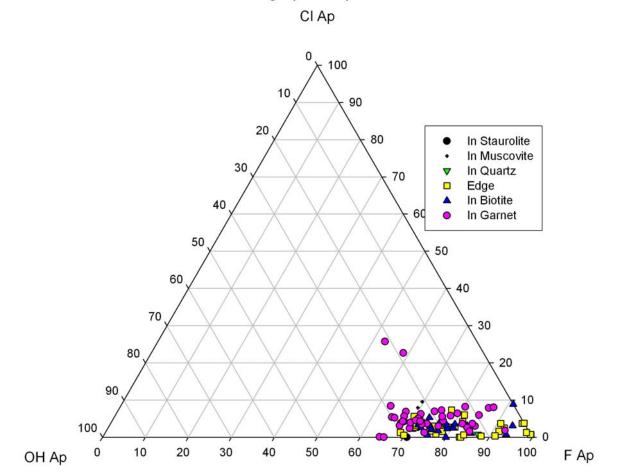
No.	F	CaO	P2O5	FeO	CI	MnO	Total	Commen	F Ap	CI Ap	ОН Ар
	Wt%	Wt%	Wt%	Wt%	Wt%	Wt%	Wt%				
1	3.07	50.25	40.86	1.965	0.0154	0.165	96.32	in Grt	0.814	0.002	0.184
2	2.66	51.72	43.68	1.994	0.0106	0.143	100.2	in Grt	0.705	0.002	0.293
3	2.47	48.35	42.25	4.533	0.0189	0.18	97.81	in Grt	0.659	0.003	0.338
4	1.77	49.35	42.15	2.035	0.0106	0.034	95.33	in Grt	0.467	0.002	0.531
5	3.94	50.6	39.26	0.916	0.0333	0.076	93.15	in matrix	0.995	0.005	0
6	3.09	55.5	40.67	B.D	B.D	0.034	98.01	in matrix	0.819	0	0.181
7	2.79	50.21	37.77	0.081	B.D	0	89.68	in matrix	0.74	0	0.26
8	2.79	55.23	40.98	B.D	B.D	0.059	97.88	in matrix	0.741	0	0.259
9	2.52	54.88	40.93	0.066	B.D	0.116	97.45	in matrix	0.668	0	0.332
10	3.63	52.17	39.13	B.D	0.0407	0.075	93.5	in matrix	0.962	0.006	0.032
11	3.4	53.54	39.98	B.D	0.0266	0.017	95.53	in matrix	0.903	0.004	0.093
12	3.41	54.47	41.75	0.135	0.0009	0.009	98.33	in matrix	0.904	0	0.095

Table 1. Compositions in weight percent of elements measured in initial analysis and converted data for use in ternary diagram.

Figure 5. Data from preliminary analysis. The labels on axis refer to F, Cl, and OH concentrations in the apatite. The concentrations are normalized to total 100%. All of the points plot similarly to Spear and Pyle (2004) in figure 6.

The points on the ternary diagram seem to suggest that there could be separate populations in the samples of apatite. But when the data table is compared to the ternary diagram the apatite grains from the matrix are located in both populations as are the apatite grains found in the matrix.


Figure 6 shows ternary diagrams made from data by (a) Pyle and Spear (2002) and (b) Kapustin (1986)

The results of my preliminary data looks similar to the experiment done by Spear and Pyle (2002) with most of the data points falling on the OH-F join, and enriched in F. The data of Kapustin (1986) looks different that what both Pyle and Spear and I have found. No one has been able to reproduce the experiment done by Kapustin (1986) so I do not see his data having an effect on my data.

Table 2 shows a sample of the data collected in the complete analysis that was done. The weight percents were calculated in the same manor that was described above. The conditions and settings of that the probe was run at were also the same as described above.

Figure 7. Ternary plot showing apatite grains found in garnet and in the matrix. No significant difference in chemistry can be correlated due to this separation. Chlorapatite content magnified by 40x.

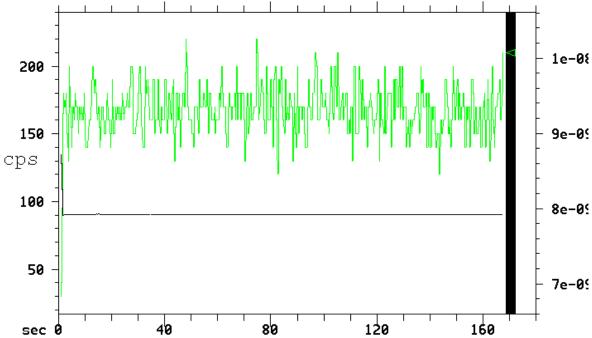

Petrographic seperation

Figure 8. Ternary plot showing apatite chemistry separated by petrographic location of the apatite samples. There appears to be no correlation between chemistry and petrographic location. Chlorapatite content magnified by 40x (Cl on Plot = Cl weight % x 40).

Discussion

Error Analysis

A potential problem in analyzing fluorine with an electron microprobe has been noted in previous studies (Stormer et al.1993). The beam of electrons used in analysis has the potential to cause diffusion of the F rendering counts that are up to 200% of the actual value and then dropping well below the actual value (Stormer et al.1993). To make sure this was not the case the beam was touched to a sample for 3 minutes. If diffusion of F were to occur it would be visible during this extended analysis. The results of this test suggest that no appreciable diffusion occurs suing the operating conditions used here. Figure 9 is a representation of counts per second vs. time and clearly shows that the counts remain stable over the whole test period.

Figure 9. Electron Microprobe image showing that no diffusion of F occurred during analysis. No spike or rapid fall off occurred which are the signs of diffusion noted by Stormer (1993)

Accuracy and Precision

In any scientific study before you can attempt to draw any conclusions it is important to assess the accuracy and precision of the data that has been collected. Accuracy is a measure of how close the measured results that were obtained are to the actual values which are determined with the use of standards. In this study standards were used to calibrate the probe. From these standards error can be measured. If the error in a measurement was found to be above an acceptable level the data was discarded. Doing this ensures that the data is accurate. As a measure of accuracy, for each probe session, I measured the composition of Durango Apatite. Durango Apatite has the accepted value of 3.53 weight % F and 0.41 weight % Cl. The Durango Apatite was analyzed 25 times by the probe and yielded 3.58 weight % F and 0.44 weight % Cl.

Precision is a measure of how close the data points are in proximity to the population of rest of the data. In this study the data is fairly precise with the exception of two points that lie away from the majority of the data.

Findings

After analysis of the data collected there was no distinguishable difference in the composition of apatite based on petrographic location or in any other way the data was correlated. There were two points out of the 100 good points that seemed to be different than the rest. These two points which are from a garnet in slide 27D have a chlorapatite content that is an order of magnitude higher than the rest of the samples (.05 as apposed to .005 in most other samples). There are a few ways that these two anomalous data points can be looked at. First is that these samples were taken from a very small apatite grain and that the beam may have touched another phase which would cause the readings

to be different. Another cause for the difference in chlorine content could be because this apatite grain formed at a different time than the other grains that were looked at. If this is true than the apatite grain that showed a difference in chemistry would have formed under different conditions thus causing a change in chemistry. A third possibility is that in reality the difference in composition between the apatite grain that I have labeled different actually has no significant difference. In the ternary plots it is impossible to notice any difference with out magnifying the chlorapatite content by a factor of 40.

Although zoning has been noted in apatite (Spear and Pyle 2002), I was only able to locate one grain that showed zoning. This zoned grain showed a homogenous chemical make up, and showed no difference in chemistry from all the other un-zoned apatite grains. With regard to the question of whether apatite chemistry was a function of its petrographic location, I found there to be no correlation between chemistry and location. While there was a variation of chemistry between different apatite grains, there is no evidence to suggest that petrographic location is a factor in this difference. The size of the apatite grain also showed to have no significant effect on chemistry.

The data that was obtained is consistent with the findings of Pyle (2001) and Kapustin's (1986) analysis of apatite from amphibolite facies rocks. Both found that metamorphic apatite is found mostly as end member fluorapatite. This is probably not a coincidence because the rocks analyzed in this study and both the studies mentioned above all come from different environments and locations. The reason that fluorapatite is so prevalent in metamorphic rocks is because of the size of a F- ion. The F- ion fits better into the "anion column" than either the Cl- ion or the OH- ion (Spear and Pyle 2002). Moderate amounts of Cl have been found in rocks of the greenschist facies (Kapustin 1986). The validity of this study comes under question because the Electron Microprobe was not used to obtain the data. The study used wet chemistry to determine the halogen content. No one has been able to replicate Kapustin's study so it is unclear whether apatite ever has a Cl content as high as reported in this study.

Conclusion

Analysis of the data on the composition of apatite in metamorphic rocks from Coos Canyon, Maine shows that petrographic location of apatite is not a factor in influencing the chemical make up of apatite. All of the apatite grains analyzed fell somewhere along the F-OH divide with just one grain showing a small amount of Cl. Apatite that was found as an inclusion in garnet porphyroblasts had the same chemistry is apatite found in between grains of biotite, quartz or any other mineral present in the samples. I had speculated that the apatite in the garnet porphyroblasts might have a different chemistry because garnet is much harder than the other phases in the samples. Being very hard and relatively impenetrable, a garnet could theoretically shield an inclusion such as apatite from any change in chemistry that might occur due to metamorphism. One possibility in explaining the findings of this study is that apatite

always occurs primarily as fluorapatite in metamorphic rocks no matter what changes it has undergone.

References

- Bock, B., et al., 2004, Scale and timing of Rare Earth Element redistribution in the Taconian foreland of New England: Sedimentology, v. 51, pp. 885-897
- Burton et al. 2000, Bedrock Geologic Map of the Hubbard Brook Experimental Forest, Grafton County, New Hampshire: USGS Open Report
- Kapustin, Yu. L., 1986, The Composition of Apatite from Metamorphic Rocks: Geokhimiya, n. 9, pp. 1269-1276
- Pyle, J. M., 2001, Distribution of select trace elements in pelitic metamorphic rocks: pressure, temperature, mineral assemblage, and reaction-history controls. PhD dissertation, Rensselaer Polytechnic Institute, Troy, New York
- Solar, G. S. and Brown, M., 2000, Deformation partitioning during transpression in response to Early Devonian oblique convergence, northern Appalachian orogen, USA: Journal of Structural Geology, v. 23, pp. 1043-1065
- Spear, F. S. and Pyle, J. M., 2002, Apatite, Monazite, and Xenotime in Metamorphic Rocks: Reviews in Mineralogy and Geochemistry, v. 48, pp. 293-335
- Stormer, JCJ, Pierson, MJ, Tacker, RC, 1993, Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis. American Mineral 78:641-648
- Vernon, R. H., 2004 A Practical Guide To Rock Microstructure, Cambridge University Press, New York, New York
- Yang, P. and Rivers, T., 2002, Trace element zoning in politic garnet, apatite and epidote group minerals: The origin of Y annuli and P zoning in Garnet: Geological Materials Resources, v. 4, pp. 1-35
- White, W. M., 2005, Geochemistry, http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML

Appendix 10 MM

Fig. 10 Photomicrograph of apatite in garnet

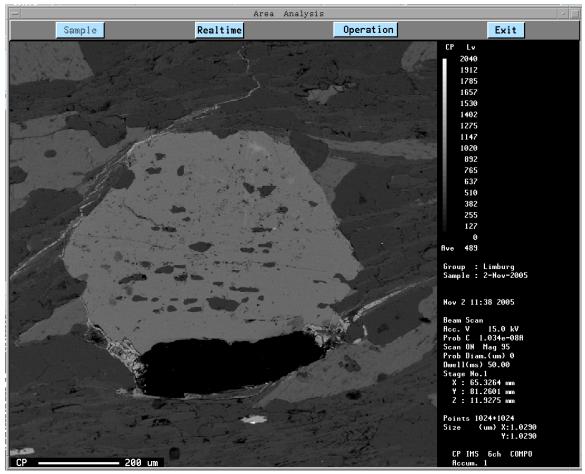


Fig 11. Photomicrograph of garnet containing apatite

No.	F SI) F	CI SI	D CI I	'A	27 D P2O5	D C	40_	4I	O II CaO S	44_I_ D CaO MgO			III MnO S	D MnO	SO3 S	D SO3	1-202 6	D La2O3	E:02 E	D SiO2	Ce2O3 SE	0-202	T-1-1 6	D=F.CI	Comment
No. 15	2.89	0.93	0.018	0.016318	40.33	9.879	2.652	1.683	0.000	53.194	8.337	0.005	0.009	0.068	0.069	0.952	0.950	0.170	0.162	0.164	0.164	0.128	0.097	100.575	1.222	99.354 Sample 17A Grain (#7) in Ms
1 3	3.13 3.04	0.74		0.00725	41.46 41.37	2.296 3.596	0.919	1.832 1.946	0.000	54.918 54.487	10.812 8.352	0.006	0.008	0.000	0.097	0.000	0.058	0.000	0.050	0.000	0.012	0.093	0.041	100.524 99.786	1.317	99.207 Sample 17A Grain #1 Qtz, Bt 98.504 Sample 17A Grain #1 Qtz, Bt
4	2.78	1.23	0.010	0.006943	40.26	10.178	0.900	1.841	0.000	54.418	7.890	0.000	0.010	0.016	0.096	0.000	0.058	0.000	0.050	0.000	0.012	0.055	0.063	98.438	1.173	97.265 Sample 17A Grain #1Qtz, Bt
5	3.14	0.79 0.52	0.000	0.00725	41.50 41.86	1.444 5.277	1.088	1.737 1.894	0.000	53.948 54.151	3.362 5.768	0.032	0.030	0.045	0.086	0.003	0.058	0.000	0.050 0.050	0.000	0.012	0.000	0.083	99.755 99.917	1.322	98.433 Sample 17A Grain (#2) Qtz, Bt 98.655 Sample 17A Grain (#2) Qtz, Bt
7	3.17	0.91		0.007171	42.02	6.433	0.485	1.991	0.000	54.165	5.895	0.000	0.010	0.024	0.094	0.005	0.058	0.000	0.050	0.000	0.012	0.147	0.121	100.020	1.336	98.684 Sample 17A Grain (#2) Qtz, Bt
8	2.74 2.77	1.32	0.004	0.005863	41.58 41.27	2.211 4.570	1.861	0.857 0.688	0.000	54.837 54.357	10.390 7.452	0.021	0.019 0.010	0.000	0.097	0.000	0.058	0.122	0.111	0.000	0.012	0.055	0.063	101.224 100.489	1.155 1.167	100.069 Sample 17A Grain (#3) Qtz, Bt 99.322 Sample 17A Grain (#3) Qtz, Bt
13	3.96 2.85	2.54 1.05	0.016	0.014749	38.03	16.663 7.460	3.104	2.332 2.940	0.000	50.867	17.653	0.044	0.043	0.055	0.080	0.111	0.094	0.000	0.050	0.161	0.161	0.000	0.083	96.355	1.671	94.684 Sample 17A Grain (#6) Incl in Bt SMALL
16 22	3.56	1.05		0.005863	40.85	6.365	0.580	1.966	0.000	53.448	6.514	0.049	0.048	0.065	0.072	0.000	0.058	0.073	0.053	0.000	0.012	0.311	0.300	99.820	1.500	101.088 Sample 17A Grain (#8) in Bt 98.320 Sample 27D Grain (#3) Qtz, Bt
23 24	3.12 3.24	0.71		0.005436	41.36 41.12	3.715 5.792	0.532	1.979 1.982	0.000	53.243 52.855	8.014 10.269	0.003	0.010	0.092	0.032 0.052	0.000	0.058	0.315	0.311	0.000	0.012	0.018	0.081	98.687 98.005	1.315	97.371 Sample 27D Grain (#3) Qtz, Bt 96.642 Sample 27D Grain (#4) in Bt
25	3.55	1.83	0.001	0.007143	41.49	1.686	0.440	2.002	0.000	53.583	5.292	0.038	0.037	0.064	0.073	0.021	0.054	0.197	0.190	0.000	0.012	0.056	0.062	99.438	1.494	97.944 Sample 27D Grain (#4) in Bt
17 18	2.66 2.84	1.47	0.058	0.057913	40.56 39.87	8.907 11.589	3.699 2.808	3.080	0.105	52.511 52.851	11.904 10.288	0.044	0.043	0.097	0.006	0.071	0.041	0.121	0.110 0.050	0.000	0.012 0.012	0.000	0.083	99.925 98.685	1.133	98.791 Sample 27D Grain (#1) Incl in Grt 97.478 Sample 27D Grain (#1) Incl in Grt
38	3.30	1.29	0.001	0.007126	41.51	1.159	0.798	1.888	0.000	54.293	6.972	0.020	0.017	0.081	0.053	0.008	0.058	0.242	0.237	0.000	0.012	0.000	0.083	100.254	1.390	98.863 Sample 40A _ _ Grain (#3) in Qtz
39 36	2.78 2.78	1.23	0.006	0.004384	41.47 41.71	2.207 3.911	0.650	1.943 1.694	0.000	54.342 53.536	7.348 5.743	0.000	0.010	0.149	0.114	0.005	0.058	0.000	0.050	0.000	0.012	0.000	0.083	99.400 99.442	1.173	98.227 Sample 40A _ _ Grain (#3) in Qtz 98.271 Sample 40A _ _ Grain (#2)
37	2.83	1.11	0.010	0.006552	41.93	5.850	0.976	1.802	0.000	52.983	9.589	0.000	0.010	0.113	0.057	0.013	0.057	0.000	0.050	0.000	0.012	0.018	0.081	98.875	1.193	97.682 Sample 40A _ _ Grain (#2)
34 35	3.24 3.05	1.13 0.23		0.007029	42.09 41.63	6.878 2.897	1.208	1.656 1.231	0.000	53.857 53.472	1.218 6.312	0.009	0.004	0.108	0.047	0.047	0.035	0.000	0.050	0.000	0.012	0.074	0.039	100.637	1.366	99.271 Sample 40A _ _ Grain (#1) in Bt 98.684 Sample 40A _ _ Grain (#1) in Bt
45	2.92	0.86	0.009	0.006009	41.76	4.440	1.787	1.003	0.000	53.453	6.469	0.000	0.010	0.114	0.060	0.000	0.058	0.000	0.050	0.000	0.012	0.000	0.083	100.042	1.230	98.811 Sample 40A _ _ Grain (#5) in Bt
46 47	3.65	2.01 0.28	0.005		42.00 41.63	6.311 2.938	1.508	1.387	0.000	54.750 53.991	9.921	0.000	0.010	0.093	0.027	0.000	0.058	0.049	0.009	0.000	0.012	0.000	0.083	102.053	1.536	100.516 Sample 40A _ _ Grain (#6) in Bt 98.678 Sample 40A Grain (#6) in Bt
40	3.20	1.00	0.006		41.61	2.679	0.502	1.987	0.000	53.806	2.002	0.023	0.020	0.115	0.062	0.021	0.054	0.000	0.050	0.000	0.012	0.128	0.097	99.413	1.349	98.064 Line 1 Sample 40A _ _ Trav Grain #4
41 42	3.31 3.29	1.30 1.26	0.006	0.0051	41.09 40.21	6.010 10.364	0.870 0.813	1.855 1.881	0.000	54.141 52.458	5.674 12.137	0.029	0.027 0.027	0.132	0.089	0.092	0.071	0.000	0.050 0.214	0.000 0.502	0.012 0.502	0.000	0.083	99.661 98.019	1.393	98.268 Line 2 Sample 40A _ _ Trav Grain #4 96.631 Line 3 Sample 40A _ _ Trav Grain #4
43 44	3.23 3.56	1.09	0.004 (0.005798	40.63 41.86	8.559 5.276	3.946 0.697	3.372 1.927	0.000	52.422 54.115	12.289 5.413	0.086	0.085	0.100	0.026	1.177	1.175 0.058	0.000	0.050 0.050	0.311	0.311	0.000	0.083	101.909 100.532	1.361	100.548 Line 4 Sample 40A Tray Grain #4
146	2.65	1.50	0.001	0.007195	41.44	2.682	0.697	1.813	0.000	54.577	8.919	0.000	0.017	0.098	0.062	0.000	0.058	0.000	0.050	0.000	0.012	0.204	0.063	99.806	1.114	99.034 Line 5 Sample 40A Trav Grain #4 98.692 Sample 40A Gr (#1) Matrix
147 148	3.74	2.18	0.002	0.006901	42.13	7.138	1.227	1.641	0.033	55.284 54.591	12.539	0.028	0.026	0.053	0.081	0.002	0.058	0.000	0.050	0.000	0.012	0.260	0.246	102.761 103.103	1.575 1.665	101.186 Sample 40A Gr (#1) Matrix
148 149	3.95	2.52 1.15	0.011	0.002858	42.31 41.64	8.121 3.062	1.830 2.304	0.921 1.053	0.000	54.591 54.266	9.003 6.760	0.017 0.026	0.013 0.024	0.169	0.013 0.138	0.220	0.054 0.212	0.000	0.050 0.054	0.000	0.012 0.012	0.277 0.258	0.264	102.215	1.665	101.438 Sample 40A Gr (#2) Matrix 100.844 Sample 40A Gr (#2) Matrix
150 67	2.89	0.96	0.003 0.015	0.006669	42.14 41.44	7.168 2.666	0.258 1.168	2.033	0.000	53.349 53.485	7.277 6.200	0.014	0.009	0.166 0.114	0.135	0.000	0.058	0.000	0.050	0.000	0.012	0.000	0.083	98.813 99.211	1.215	97.598 Sample 40A Gr (#3) Matrix 98.015 Sample 44A _ _ Grain (#3) in qtz
65	3.94	2.51	0.001	0.007157	41.76	4.410	0.607	1.957	0.000	53.980	3.844	0.000	0.010	0.024	0.094	0.020	0.055	0.049	0.010	0.000	0.012	0.018	0.081	100.401	1.661	98.740 Sample 44A _ _ Grain (#2) Bt, Qtz
66 68	3.91	2.46 2.19	0.001	0.007126	42.08 41.75	6.789	1.105	1.726	0.000	54.519 54.511	8.557 8.506	0.006	0.008	0.000	0.097	0.005	0.058	0.147	0.138	0.000	0.012	0.037		101.810	1.648	100.162 Sample 44A _ _ Grain (#2) Bt, Qtz 99.963 Sample 44A _ _ Grain (#4) Bt, Ms
69	3.50	1.74	0.003	0.006707	41.24	4.292	1.673	1.184	0.000	54.132	5.580	0.023	0.021	0.072	0.039	0.000	0.058	0.024	0.044	0.000	0.012	0.165	0.142	100.882	1.475	99.407 Sample 44A _ _ Grain (#4) Bt, Ms
84 85	2.78 2.62	1.23	0.010 (41.98 41.52	6.143 0.556	3.081 2.832	2.301	0.000	54.281 54.183	6.879 6.058	0.024	0.022	0.197	0.171	0.023	0.054	0.000	0.050 0.050	0.000	0.012	0.165		102.538 101.294	1.173	101.365 Sample 44A _ _ Grain (#12) in Grt 100.190 Sample 44A Grain (#12) in Grt
86	2.83	1.11	0.007	0.001433	41.94	5.874	3.335	2.632	0.000	54.359	7.472	0.000	0.010	0.160	0.127	0.000	0.058	0.000	0.050	0.000	0.012	0.000	0.083	102.629	1.193	101.436 Sample 44A _ Grain (#12) in Grt
94 95	3.05 2.93	0.31	0.005	0.005588	41.70 41.71	3.790 3.975	1.725 0.998	1.106 1.790	0.000	54.034 54.106	4.537 5.323	0.029	0.027	0.111	0.055	0.386	0.381	0.000	0.050	0.000	0.012	0.296	0.285	101.338 99.895	1.287	100.051 Sample 44A Gr (#16) at Grt (#2) edg 98.660 Sample 44A Gr (#16) at Grt (#2) edg
62	3.10	0.62	0.004	0.005798	42.00	6.290	1.963	0.590	0.000	53.776	2.696	0.042	0.041	0.037	0.090	0.008	0.058	0.000	0.050	0.000	0.012	0.000	0.083	100.930	1.307	99.623 Sample 44A _ _ Grain (#1) in Bt
63 64	2.96 3.01	0.70	0.003	0.006591	41.87 41.78	5.335 4.654	2.009	0.404	0.000	53.608 54.064	5.028 4.884	0.015	0.011	0.100	0.024	0.003	0.058	0.073	0.053	0.000	0.012	0.000	0.083	100.635 100.851	1.246 1.267	99.389 Sample 44A _ _ Grain (#1) in Bt 99.583 Sample 44A _ _ Grain (#1) in Bt
72 77	3.13	0.75	0.006	0.003872	40.85 41.94	7.462 5.864	2.837	1.961	0.000	54.120 54.090	5.461 5.157	0.033	0.032	0.081	0.053	0.000	0.058	0.000	0.050	0.000	0.012	0.073		101.128	1.319	99.809 Sample 44A Grain (#6) in bt 99.731 Sample 44A Grain (#9) in Bt
98	2.89	1.21	0.008		41.94	6.090	3.011	2.205	0.000	52.685	11.106	0.028	0.026	0.072	0.065	0.000	0.058	0.000	0.050	0.000	0.012	0.056	0.062	99.920	1.175	99.731 Sample 44A _ _ Grain (#9) in Bt 98.745 Sample 44A _ _ Gr (#18) in Bt
99	2.90	0.90	0.005	0.005436	41.57	1.914 3.428	2.654	1.687 0.410	0.000	53.575 53.341	5.372	0.009	0.004	0.096	0.017	0.005	0.058	0.000	0.050 0.138	0.000	0.012	0.000	0.083	100.815	1.224	99.592 Sample 44A Gr (#18) in Bt 99.137 Sample 44A Gr (#19) in Bt
100 102	3.00 2.99	0.53	0.007	0.002642	41.67 42.11	7.010	2.285	1.012	0.000	53.363	7.341 7.172	0.000	0.010	0.042	0.087	0.025	0.053	0.146	0.137	0.000	0.012	0.000 0.257	0.243	101.231	1.266 1.262	99.969 Sample 44A _ Gr (#19) in Bt
87 90	3.29 2.85	1.25	0.015 (0.013147	40.73 41.92	8.087 5.747	3.331	2.627 0.986	0.000	53.609 54.314	5.013 7.138	0.041	0.040	0.115	0.062	0.049	0.032	0.000	0.050 0.050	0.000	0.012	0.018	0.081	101.196 101.750	1.388	99.808 Sample 44A _ _ Grain (#13) in Grt 100.549 Sample 44A _ _ Grain (#14) in Grt (#2)
91	2.98	0.59	0.013	0.010323	41.51	1.052	2.746	1.828	0.000	54.465	8.203	0.018	0.015	0.169	0.138	0.000	0.058	0.024	0.044	0.000	0.012	0.111	0.072	102.039	1.259	100.780 Sample 44A _ _ Grain (#14) in Grt (#2)
93 96	2.57 3.39	1.62		0.006419 0.007815	41.81 41.34	4.847 3.919	3.641 2.906	3.010 2.061	0.000	54.292 54.100	6.968 5.261	0.000	0.010 0.027	0.246	0.226	0.002	0.058	0.049 0.025	0.010 0.044	0.000	0.012	0.092	0.040 0.075	102.709 101.995	1.084	101.624 Sample 44A _ Grain (#15) in Grt (#2) 100.567 Sample 44A _ Gr (#17) at Grt (#3)
97	3.12	0.70	0.010	0.007448	41.19	5.265	2.389	1.228	0.000	53.416	6.766	0.032	0.031	0.133	0.091	0.022	0.054	0.025	0.044	0.000	0.012	0.260	0.246	100.595	1.315	99.280 Sample 44A _ Gr (#17) at Grt (#3)
124 110	2.67	1.46	0.000	0.00725	41.65 41.64	3.232	1.762	1.046 0.712	0.000	53.568 54.713	5.435 9.714	0.014	0.009	0.064	0.073	0.016	0.056	0.000	0.050	0.000	0.012 0.012	0.130	0.100	99.872 101.717	1.124	98.749 Sample 44A Gr (#9) in St 100.482 Sample 44A Gr (#4) in Grt#(2) edge Q
121	3.21	1.03	0.007	0.001343	42.10	6.908	0.831	1.873	0.000	54.092	5.177	0.000	0.010	0.096	0.015	0.005	0.058	0.000	0.050	0.000	0.012	0.000	0.083	100.334	1.353	98.982 Sample 44A Gr (#8) Matrix in St/Qtz
122 123	3.15 3.32	0.81 1.34		0.01118	41.53 41.38	0.683 3.460	1.576	1.310 1.848	0.000	53.019 53.583	9.388 5.285	0.018	0.015 0.007	0.034	0.091	0.004	0.058	0.073	0.053	0.000	0.012 0.012	0.201	0.183	99.614 99.580	1.328	98.286 Sample 44A Gr (#8) Matrix in St/Qtz 98.180 Sample 44A Gr (#8) Matrix in St/Qtz
128	3.55	1.83	0.006	0.003241	41.85	5.225	0.676	1.935	0.000	54.714	9.720	0.002	0.010	0.077	0.059	0.036	0.046	0.000	0.050	0.000	0.012	0.000	0.083	100.911	1.496	99.415 Sample 44A Gr (#11) in Bt edge
129 118	3.45 2.79	1.63		0.007223	42.33 41.31	8.239 4.234	0.981	1.799 0.995	0.000	54.749 53.243	9.919 8.016	0.027	0.025 0.010	0.000	0.097	0.015	0.056	0.219	0.214	0.000	0.012 0.012	0.111	0.072 0.075	101.884 99.368	1.451	100.432 Sample 44A Gr (#11) in Bt edge 98.190 Sample 44A Gr (#7) Matrix in Bt
119	2.81	1.15	0.004	0.00573	41.13	5.745	1.507	1.389	0.000	52.642	11.312	0.011	0.003	0.126	0.080	0.056	0.015	0.073	0.053	0.000	0.012	0.201	0.183	98.559	1.186	97.373 Sample 44A Gr (#7) Matrix in Bt
120 103	2.90 3.19	0.91 0.97	0.012	0.006319 0.009103	41.02 41.84	6.432 5.169	2.197 3.456	0.791 2.783	0.000	53.249 54.297	7.976 7.005	0.014	0.009 0.017	0.024 0.113	0.094	0.155 0.012	0.144 0.057	0.097	0.083	0.000	0.012 0.012	0.110 0.018	0.071	99.773 102.963	1.222 1.346	98.551 Sample 44A Gr (#7) Matrix in Bt 101.617 Sample 44A Gr (#1) in Grt#(1)
104 105	3.05 2.64	0.27 1.50	0.013	0.010968	41.79 41.56	4.710 1.763	3.857	3.267 4.278	0.000	53.772	2.767 6.349	0.009	0.004	0.131	0.088	0.032	0.049	0.000	0.050	0.000	0.012 0.012	0.128	0.097	102.785	1.288	101.497 Sample 44A Gr (#1) in Grt#(1) 101.689 Sample 44A Gr (#2) in Grt#(1)
106	2.43	1.83	0.000	0.007249	41.48	1.967	3.579	2.934	0.000	53.732	3.468	0.000	0.010	0.105	0.040	0.005	0.058	0.000	0.050	0.000	0.012	0.018	0.081	101.346	1.023	100.323 Sample 44A Gr (#3) in Grt#(2)
107	2.47	1.78	0.000	0.00725	41.82 41.58	4.942 2.124	3.490	2.825	0.000	53.901 54.248	2.496 6.617	0.015	0.011	0.110	0.052	0.007	0.058	0.170	0.162	0.000	0.012	0.000		101.977	1.039	100.939 Sample 44A Gr (#3) in Grt#(2) 101.421 Sample 44A Gr (#5) in Grt#(3)
112	2.71	1.37	0.012	0.010105	41.69	3.737	4.143	3.600	0.000	54.651	9.362	0.018	0.015	0.182	0.154	0.031	0.050	0.000	0.050	0.000	0.012	0.184	0.164	103.626	1.145	102.481 Sample 44A Gr (#5) in Grt#(3)
113 114	2.83 2.81	1.10 1.16	0.002 (0.006956 0.005134	42.03 41.20	6.468 5.146	1.850 3.058	0.882 2.270	0.000	53.532 53.023	5.782 9.364	0.000 0.021	0.010 0.019	0.056	0.080	0.024	0.053 0.579	0.000	0.050 0.189	0.000	0.012 0.012	0.000		100.321 101.020	1.193 1.185	99.128 Line 1 Sample 44 Grain #6 (Zoned) 99.835 Line 2 Sample 44 Grain #6 (Zoned)
115	2.71	1.37	0.004	0.005927	41.00	6.576	2.512	1.453	0.000	52.942	9.809	0.000	0.010	0.090	0.036	0.303	0.298	0.000	0.050	0.000	0.012	0.370	0.361	99.935	1.143	98.792 Line 3 Sample 44 Grain #6 (Zoned)
116 117	2.88	0.98		0.003413	41.16 41.65	5.481 3.262	1.408	1.489	0.000	53.423 53.681	6.715 4.174	0.006	0.008	0.040	0.088	0.011	0.057	0.000	0.050 0.139	0.000	0.012 0.012	0.056	0.062	98.989 100.063	1.213	97.775 Line 4 Sample 44 Grain #6 (Zoned) 98.871 Line 5 Sample 44 Grain #6 (Zoned)
130	3.03	0.19	0.008	0.002924	41.75	4.339	2.847	1.976	0.000	54.443	8.057	0.020	0.017	0.097	0.007	0.002	0.058	0.097	0.083	0.000	0.012	0.220	0.204	102.518	1.279	101.239 Sample 44A Gr (#12) in Grt #(4)
132 133	3.04 2.67	0.01 1.44	0.010 0	0.006814 0.001767	40.92 42.08	7.063 6.797	2.982	2.167 1.409	0.000	53.562 53.582	5.495 5.302	0.032 0.057	0.030 0.057	0.100 0.147	0.024	0.066	0.030	0.000	0.050 0.050	0.000	0.012 0.012	0.000		100.711 101.067	1.282	99.429 Sample 44A Gr (#12) in Grt #(4) 99.939 Sample 44A Gr (#13) in Grt #(4)
134	2.59	1.58	0.009	0.005869	42.35	8.316	2.744	1.824	0.000	54.199	6.200	0.054	0.053	0.181	0.153	0.012	0.057	0.121	0.111	0.000	0.012	0.000	0.083	102.265	1.095	101.170 Sample 44A Gr (#13) in Grt #(4)
135 136	3.51 3.56	1.75		0.012535	41.70 41.57	3.861 1.912	2.101	0.465 1.390	0.000	54.588 54.645	8.987 9.324	0.039	0.038	0.139	0.100 0.084	0.045	0.037	0.000	0.050 0.050	0.000	0.012 0.012	0.202	0.184 0.121	102.341 102.582	1.481	100.861 Sample 44A Gr (#14) in Grt #(4) 101.082 Sample 44A Gr (#14) in Grt #(4)
137	2.69	1.42	0.010	0.007071	42.07	6.756	3.276	2.556	0.000	54.134	5.601	0.026	0.024	0.134	0.092	0.046	0.036	0.121	0.111	0.000	0.012	0.000	0.083	102.505	1.134	101.371 Sample 44A Gr (#15) in Grt #(4)
138 139	2.73 2.63	1.33		0.002133	42.22 41.78	7.606 4.603	3.309	2.598 2.327	0.000	53.350 53.652	7.271 4.534	0.024	0.022 0.025	0.097	0.005	0.235	0.228	0.000	0.050	0.000	0.012	0.000		101.970 101.380	1.152	100.818 Sample 44A Gr (#15) in Grt #(4) 100.273 Sample 44A Gr (#15) in Grt #(4)
140	2.78	1.22	0.008	0.003371	41.94	5.876	2.781	1.881	0.000	53.876	1.873	0.000	0.010	0.103	0.035	0.024	0.053	0.049	0.010	0.000	0.012	0.000	0.083	101.562	1.174	100.389 Sample 44A Gr (#16) in Grt #(4)
141 142	2.82 2.97	1.13 0.62	0.007 (0.001767	42.00 41.75	6.300 4.378	2.766	1.858 1.365	0.008	53.740 54.782	3.338 10.096	0.003	0.010 0.035	0.143	0.105 0.152	0.000	0.058 0.049	0.000	0.050 0.084	0.000	0.012 0.012	0.203	0.185 0.073	101.692 102.435	1.190 1.254	100.502 Sample 44A Gr (#16) in Grt #(4) 101.182 Sample 44A Gr (#17) in Grt #(4)
143 144	3.24	1.11	0.003	0.006777	41.77 41.49	4.550	2.245	0.917	0.000	54.166 53.861	5.905 1.397	0.002	0.010	0.119	0.069	0.026	0.052	0.172	0.164	0.000	0.012	0.019	0.081	101.760	1.363	100.397 Sample 44A Gr (#17) in Grt #(4)
144 145	2.82	1.13	0.008 (0.002111	41.49	1.620 6.024	3.296 3.681	2.582 3.057	0.000	53.861	6.979	0.017 0.011	0.014 0.003	0.096 0.081	0.016	0.029 0.015	0.051 0.056	0.049	0.009	0.000	0.012 0.012	0.000	0.083	101.671 100.932	1.190	100.481 Sample 44A Gr (#18) in Grt #(5) 99.809 Sample 44A Gr (#18) in Grt #(5)