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Abstract

The 28 September 2004 M 6.0 Parkfield and the 3 November 2002, M 7.9 Denali earthquakes

each triggered postseismic deformation, a phenomenon commonly captured by geodetic data, including
InSAR and GPS, in the aftermath of large earthquakes. Interpretations for postseismic deformation
include viscoelastic relaxation, poroelastic rebound, or brittle aftershocks. The large magnitude difference
between these two North-American strike-slip events leads us to question whether the rheological
mechanism most responsible for the postseismic signature is the same between the two events. Here, |
model geodetic time-series collected following both the Denali and Parkfield events, considering fourteen
different possible postseismic displacement relations. A Levenberg-Marquardt inversion routine was used
to fit these displacement functions through the time-series for the two events. A statistical method, the
Partial F Test, was then used to compare these fits. The Partial F Test was ultimately unsuccessful
because of noise in the GPS. Upon restricting the analysis to a study of one particular function, the
General Relaxation Law with an added linear trend, a clear difference between the Denali and Parkfield
datasets emerges. While the Denali postseismic dataset is best explained by Newtonian creep in a ductile
shear zone with a larger degree of remote tectonic loading following a linear trend, the Parkfield dataset is
best captured by brittle mechanisms supporting a rate-dependent friction with a relatively smaller linear
trend. The mechanisms apparently associated with these earthquakes are compatible with my hypothesis
that the Denali event, being larger than the Parkfield earthquake, activated deeper, ductile deformation
mechanisms.

l. Introduction

The earthquake cycle may be partitioned into three different time intervals: a loading period, a
coseismic (rupture) period, and a period of postseismic deformation (Montési, 2004). In this project, the
focus was on postseismic signals recorded by Global Positioning System (GPS) stations. Mechanical
explanations for this postseismic creep include brittle afterslip in the upper 15 km of the lithosphere,
poroelastic rebound driving fluids in the upper crust, and viscoelastic relaxation confined to the lower
crust and/or upper mantle (e.g. Blirgmann and Dresen, 2008). Afterslip is attributed to continued slip on
the earthquake’s original rupture area and viscoelastic relaxation is potentially localized deformation on a
ductile shear zone in the upper mantle or lower crust (Marone et al., 1991; Montési, 2004). Peltzer et al.
(1998) described poroelastic rebound as a change in the Poisson ratio (of transverse strain to axial strain)
from unsaturated to saturated regimes with the dissipation of pore-pressure gradients following rupture
events. This project aimed to compare the postseismic GPS relaxation signal following two North-

American strike-slip earthquake events, namely the 3 November 2002 M 7.9 Denali Earthquake

(63.5°N, 147.5°W) in south-central Alaska and the 28 September 2004 A 6.0 Parkfield earthquake
(35.8°N, 120.4°W) along the San Andreas Fault (SAF) in southern California (see Fig. 1).



Parkfield, CA

Figure 1: Locations of the Parkfield and Denali events. Both earthquakes occurred along strike-slip faults associated with the
movement of the Pacific and North American Plates. The Denali fault ruptured with oblique convergence with the collision of the
Yakutat terrain and stable North America, an intracontinental event strike-slip event; the Parkfield event occurred along the San
Andreas Fault.

The rupture length of the Denali event was ~330 km, compared to a mere 23 km for that of
Parkfield. The large magnitude difference between the Parkfield and Denali events corresponds to
different possible origins of postseismic deformation (Freed et al., 2006a, b; Freed 2007; Johnson et al.,
2006; 2009). This project evaluates to what extent the mechanisms most responsible for the captured
postseismic signal are different between the two events. The Denali earthquake, being large than the
Parkfield event, may have activated deeper deformation mechanisms, which give rise to different time
dependencies of the postseismic deformation. Postseismic deformation following the Parkfield and Denali
events has already been modeled on an individual basis in many publications with varying assumptions
and techniques, giving implications for mechanisms behind postseismic deformation. Most studies used
advanced numerical modeling from which only very specific questions could be asked. This project uses
the same analysis to compare postseismic deformation following both events. Although the chosen
inversion routine could not constrain where postseismic deformation actually occurs, it uses an analytical
formula for the time dependence of postseismic creep and it can capture a wide range of rheological

behaviors (Montési, 2004).The M 7.9 Denali earthquake was the largest strike-slip event in North
America since the 1906 San Francisco event (Eberhart-Phillips et al. 2003). Freed et al., (2006a, b) used
3-D Finite Elements method to show that the Denali postseismic signal requires a power law rheology,

implying strong variation in viscosity at depth, as a single linear rheology cannot fit initial GPS
displacements (Figure 2).
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Figure 2: Stress perturbations for the 2002 Denali event. The huge energy release of the main rupture event shows changes in
shear stress as deep as ~100km, below the crust-mantle boundary (Freed et al., 2006), where deformation is more likely brittle
than ductile.

Johnson et al. (2009) however, successfully fitted GPS time-series with a model combining
Denali afterslip on a fault zone, which was ignored by Freed et al. (2006a, b), with distributed creep in a
linear viscoelastic deeper layer in the lower crust and upper mantle (Figure 3).
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Figure 3: Slip extending as far deep as the mantle, ~90 km, following the 2002 Denali event (Johnson et al., 2009)

No single linear rheology could fit initial GPS displacements for the 2002 Denali event, as there was
strong variation in lateral viscosity at depth, most likely represented by some non-linear flow law, with no
need for afterslip. On the other hand, their technique cannot address non-linear distributed flow. Savage et
al. (2005) captured the trend of postseismic deformation using a description of GPS time-series that
assumes only a transient creep rheology but with a lack of spatial information. They did not test
alternative rheologies. These studies agree that postseismic deformation after the Denali event is due to
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several deformation mechanisms, including afterslip, possibly non-linear viscoelastic relaxation, and
poroelastic rebound (Freed et al., 2006a).

In contrast to the Denali event, the 2004 Parkfield earthquake is the smallest magnitude event for
which postseismic deformation has been recorded (Langbein et al., 2006). The 2004 Parkfield event is the
latest in a sequence of earthquakes that has lasted over the last century, occurring at unusually regular
intervals of roughly 20-25 years between earthquakes, with ruptures in 1934 and 1966. Therefore, the
2004 Parkfield event occurred in an extremely well instrumented area of the SAF with dense networks of
GPS. The Parkfield event displayed a surprisingly intense postseismic signal of deformation: like the
1994 Sanriku earthquake, the energy release of postseismic deformation exceeded the energy release of
the main rupture itself (Helmstetter and Shaw, 2008). Savage et al. (2005) suggested that the Parkfield
signature, like the Denali signal, can be modeled with a logarithmic time dependence associated with a
transient creep. However, 3D Finite Element models indicate that, unlike Denali, the postseismic
deformation for the smaller Parkfield event appears to be limited to shallow afterslip, probably because
the energy released in this event was not large enough to activate viscoelastic creep deep in the crust or
poroelastic rebound (Freed et al., 2007) (Figure 4):
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Figure 4: Afterslip associated with the 2004 Parkfield event; the smaller energy release of the rupture activated stresses confined
to only the upper 15-20 km of the crust, which dominates the postseismic signal of the Parkfield event. The star denotes of the
hypocenter of the Parkfield event, while the circle, where the circle indicates the greatest coseismic slip. (Freed ez al. 2007).

Likewise, Johnson et al. (2006) successfully modeled GPS time-series using only brittle afterslip
processes (Figure 5). Fig. 5 shows that for the Parkfield event, the signal of postseismic deformation was
limited only to shallow brittle afterslip in the upper 15 km of the crust.
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Figure 5: Afterslip for Parkfield, confined mostly to the upper 15-20 km of the lithosphere following the Parkfield event (Johnson
et al., 2006).
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Although these studies all use different assumptions and modeling techniques and each consider
only a limited number of physical processes, it seems most likely that postseismic deformation for the
Denali event can be attributed to several mechanisms with a clear contribution of deep creep processes,
while postseismic deformation following the Parkfield event can be explained solely using brittle
afterslip. These studies used mainly the direction and magnitude of postseismic displacement but not the
details of their time dependence. However, the rheologies used in these models are expected to produce
different time dependences of postseismic creep (Montési, 2004). Therefore, I analyzed GPS time-series
collected after the Denali and Parkfield events to determine if we can resolve a difference in their time
dependences. This problem is important in that we can learn more about the dynamics of the deforming
lithosphere in both south-central AK and in southern California. Implications carry over into a better
understanding of the earthquake cycle and prediction, which may also have major societal significance for
Americans in CA and AK.

I1. Overview

This study aims to determine what mechanism is responsible for the postseismic creep produced
by the 2002 Denali and 2004 Parkfield earthquake events. Possible mechanisms include poroelastic
rebound, viscoelastic relaxation in the lower crust or upper mantle, or brittle shallow afterslip confined to
the upper 15-20 km of the crust. My hypothesis was that the time dependencies of postseismic creep
imply different rheologies for the Denali and Parkfield events. This hypothesis is based from the previous
research by Freed et al. (2006a, b. 2007) and Johnson et al. (2006, 2009). Two tests of this hypothesis
were devised. In the first, we consided fourteen proposed time dependencies for postseismic creep, many
of which are associated with a specific rheology. I attempted to determine statistically which of these is
most appropriate for each GPS time-series using a Partial F Test. However, this test proved too sensitive
to noise in the data for any meaningful conclusions to be made. Though this attempt to compare all
fourteen displacement functions between two very different major North-American events was
unsuccessful, this work was an important first step toward developing a successful strategy to compare all
displacement functions. It is the first attempt to consider all fourteen displacement relations and compare
them between two earthquakes.
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The second test was to select one function in particular: the General Relaxation Law (GRL) with
an added linear trend (GRL + L). One parameter of this relation, the stress exponent &, characterizes the
type of rheology used to predict the time dependence of postseismic deformation. I show that the
Parkfield dataset implies & ~ 0, which is characteristic of brittle creep, whereas the Denali dataset implies
& ~ 1, characteristic of Newtonian creep. Hence, I was able to document a fundamental difference in the
deformation mechanism used to explain postseismic deformation in these two events. This result supports
my hypothesis that postseismic deformation from the Parkfield event is generated as shallower depth in
the crust, where deformation is brittle, compared to the Denali event, where deformation is ductile.

I11. Background of the Displacement Relations, & Analysis of Uncertainty

Fourteen different mathematical laws as displacement functions of time have been proposed to
represent the time-dependence of the postseismic GPS signals (see Table 1 in Appendix A). Each of these
is associated with a particular rheology and mechanism responsible for postseismic creep. These fourteen
relations contained between two and five parameters that were determined using Levenberg-Marquardt
(LM) inversion routine. Some of these parameters have actual physical meaning (i.e. initial velocity on
fault plane after rupture, initial displacements, or time constants). Others describe the shape of the time
dependence function and may be related to the underlying rheological laws. For example, & in the General
Relaxation Law may correspond to the inverse of the stress exponent of a power law relationship, if 0 < §
< 1.Some of these laws were also formulated by taking one fundamental relation that is linked to a
rheology-motivated time dependence and adding a linear trend (and hence, one more parameter). The
linear trend represents processes not associated with postseismic creep, like large-scale plate motions or
residual signals from other nearby earthquakes.

It is expected that, the more parameters in the relation, the better fit to the GPS time-series.
Before rheological interpretations can be done concerning the physical origin of each of the displacement
relations, it is important to determine how many parameters can be constrained with the available data
and rank the relative success of all fourteen possible time dependencies for the various GPS stations. |
attempted to determine this ranking using a Partial F Test and a constructed hierarchy that links the
fourteen mathematical relations for possible time dependencies of postseismic deformation (Fig. 6).

In this project, datasets were accessed through the website of the USGS. Links to the time-series
are provided below Table 1 in Appendix A. The downloaded datasets contained uncertainty estimates for
every GPS data point. The Levenberg-Marquardt inversion routine provides a covariance matrix that is
used to estimate a formal uncertainty. However, the uncertainty reported here neglects coupling between
different fit parameters and is therefore a minimum estimate to the actual parameter uncertainty. The
Levenberg-Marquardt inversion routine is described in Appendix B. During the spring 2010 semester,

data tables containing fit parameters and y> values were collected for the Parkfield event.

A Partial F Test statistical analysis using the residual ;(2 of each fit was implemented to evaluate

rigorously which formulation of postseismic creep best captured observations for the Parkfield event.
During the spring 2011 semester, the same was done for the Denali event and a comparison was
attempted. A study of synthetic time-series was also conducted to evaluate the accuracy of the technique.
In the next section, I will give a brief overview of each of these laws, their origin based on past research,
and how they were applied to mechanisms responsible for postseismic creep. I will also review how these
fourteen different relations related to one another, presenting a hierarchy map that represented how I
attempted to compare the fourteen different fits.



IV. Overview of Fourteen Displacement Relations & their Hierarchy

The most general relations used in this work is the General Relaxation Law (GRL), with an added
linear trend (GRL+L), given by equation (1):

1

Dy (6) = D, + 0% 1—[1+(1—§)1j1_”§ Ty
& T
(1)

where D; is the displacement (mm) as function of time 7 in years, D, is the initial displacement, and ¥ the

initial velocity. The parameter defining the shear zone rheology & describes the shape of the displacement
relation (Montési, 2004). The original GRL relation was derived for power law creep in a ductile shear
zone rheology and applied to the 1994 Sanriku and 2001 Peru events by Montési (2004). The GRL arises
from the solution of an ordinary differential equation that links a spring representing the elastic
lithosphere and deforming region with a power law rheology. The stress exponent n of the shear zone
rheology is related to & according to & = 1/n. Adjusting the value of £ is equivalent to changing the
rheology of the shear zone from Newtonian creep (n = § = 1) to brittle creep (§ = 0). Note that & could
have negative values, which may reflect the presence of a long term steady motion of the GPS station that
is not related to the shear zone rheology (Montési, 2004).

In (1), V,is a deforming shear zone velocity and D, (an integration constant) is the initial

displacement of the shear zone immediately following the main rupture event in the beginning of the
postseismic time interval for time ¢ = 0. Also in (1), 7 is a time constant defined as the ratio of the shear

zone velocity to the shear zone acceleration at a time # = 0 with v, = 0. In the special case & = 1
(Newtonian rheology), Eq. 1 simplifies to a well-known exponential relaxation (Equation 2):

D (t)y=a+b exp(é} )

Dislocation creep is thought to be active in many rocks in the lower crust and upper mantle. It is
often described by a power law rheology with n = 3 or n = 5. We consider as a separate relation, the
power law relaxation, with the special case £&=1/3 of Eq. 1 that corresponds to dislocation creep (Eq. 3):

21 3/2
D¢ ()= D, +3Vor(1—(1+3—j ]
r

Brittle faults at low pressure and temperature may exhibit postseismic deformation if they obey velocity
strengthening frictional sliding, in which case postseismic deformation is described by Eq. 4 (Marone et
al., 1991):

3)

10



[%U):DO+%rb4}+£j @)
T

Eq. 4 is formally equivalent to Eq. 1 with § =0 (Montési, 2004). It is also occasionally called the Lomnitz
law (Savage et al, 2008). A linear trend v, may be added these laws for a better fit to the GPS time-series,

and create four new possible relations with one more parameter each. One more possible that law that was
considered in this project is given by (5). It is called the Modified Omori Law, and was originally
proposed to explain the decay rate of aftershock sequences.

Ds(t)=a+b[1-(1+an]™” )

It is mathematically similar to the GRL if p =1/ (1 - £) (Savage et al., 2008), but gives a different
parameterization, which may result in different fits if an iterative inversion relation is used. We also
considered the case of a Modified Omori law with an added linear trend. The displacement function (6) is
called the Burgers relation and it implies a Burgers body rheology.

D¢ (t) =a+b, exp(—a,t)+ b, (—a,t) (6)

The Burgers body rheology consists of a Maxwell fluid (with immediate elastic response,
ultimate Newtonian fluid behavior) and a Kelvin body assembled in series (Hetland and Hager, 2006).
We refrain from adding a linear trend to Eq. (6) because this would result in a 6-parameter displacement
relation. According to Biirgmann and Dresen (2008), the Burgers Body Law can represent the postseismic
responses defined with two relaxation times, which might occur in the lithosphere undergoing transient
creep or a nonlinear flow law with weak inclusions (Biirgmann and Dresen, 2008).

Savage et al. (2006) used a logarithmic trend to model postseismic creep following several
earthquakes, including the 2003 San Simeon and 2004 Parkfield earthquakes (Equation 7),

D (t)=a+blog(?) 7

where a (mm) and b (mm/yr) are constants to give a best fit and have little physical meaning. We may
add the usual linear trend to the logarithmic trend to obtain another relation. Finally, we consider a simple
linear trend (Equation 8),

Dy()=a+bt )

that represents the unlikely null hypothesis for which no transient postseismic creep can identified. Linear
trends are assumed only to result from remote plate motion or possible postseismic creep from residual
motion from other, earlier nearby earthquakes. For example, postseismic GPS displacements from the
2003 San Simeon earthquake, whose epicenter was only 50 km from Parkfield, may affect the Parkfield
postseismic time-series (Savage et al., 2005). The fourteen possible relations are summarized in Table 1
(Appendix A), which also indicates the number of parameters in each relation and provides references to
previous studies that used each relation.
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V. Hierarchy of the Fourteen Displacement Functions

The fourteen different proposed displacement functions of time are all mathematically
interconnected. Based on the numbers of parameters each relation contains and what rheologies are
implied (and hence what mechanism is implied to produce postseismic signals), we created a hierarchy
and grouped these fourteen relations. The purpose of this hierarchy was to determine which laws are
actually meaningful to compare relative to one another. For example, for a first grouping of these
relations, notice that the GRL relation with an added linear trend becomes the standard GRL relation

when v, — 0. The regular GRL (four parameters) relation then became the regular Lomnitz, Power, and
Exponential relations (with three parameters) when £§—0, E—1/3, E—1, respectively. The regular
Lomnitz, Power, and Exponential relations can also be obtained by removing their linear trends letting
v, = 0. In addition, the GRL Linear relation (five parameters) becomes the Lomnitz, Power, and
Exponential relations (with linear trends, each four parameters) when we let E-0, E—>1/3, and £—1,
respectively. The example just given can be considered as one grouping, where the GRL, Power,

Exponential, and Lomnitz laws (all with or without linear trends) were all be related to one another by
adjusting numbers of parameters.

As another example, consider the Burgers Law (five parameters) given by (6). This relation is the
sum of two exponential functions of time, each of which can be represented by the Exponential Law (2).
Also consider second logarithmic relation with a linear trend, which further decomposes into both the

linear trend and the logarithmic trend when we let v, — 0. Third, consider again the Modified Omori
Law given by (5). The Modified Omori Law becomes the Modified Omori Law with a linear trend by
adding v, f. By setting parameter values of more complex laws to fixed values; we can recover a simpler
relation with fewer parameters. All the laws will eventually simplify to a logarithmic or linear trend.

12
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Figure 6: Hierarchy relating 14 possible time-dependencies of postseismic creep. The fourteen possible laws are organized into
five stories corresponding to the number of parameters they contain. There are 20 links connecting the various laws. The numbers
in each of the arrows were merely used for indexing purposes, and have no physical meaning here.

We summarize all these relationships among our fourteen functions in Fig. 6. The figure is
essentially a map, analogous to a five-story building, where each successively higher level going up
contains one more parameter, varying between two and five. There are twenty links. More parameters

should make for a better fit to the displacement time-series, as quantified by a reduced ;(2 . However, the

improvement may not be statistically significant: the reduction in y* might have only been achieved by
fitting better noise in the dataset set rather than any actual physical motion. Thus, we need a statistical

analysis to determine if the reduction of ;(2 is significant compared to the increase number of parameters

along each link of Fig. 6. The Partial F Test was designed to conduct such analysis, but it proved to be too
sensitive to noise in the real GPS datasets to provide meaningful conclusions.

VI. The Partial F Test

The Partial F is intended to be an an estimate of the probability that the improvement in quality
of fit when following one the arrows in Figure 6 is not due to a random process (and therefore meaningful

from a physical standpoint). Let ;(12 denote the goodness of fit for a relation with /N, fitting parameters

and ;(22 denote the goodness of fit for another relation containing N, fitting parameters, where both

relations are linked together somewhere in Fig. 6. Also, let n be the number of displacement data points in
a particular GPS time-series. The fit improvement F is given by Equation 9:

13
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Then we compute the probability o that F is not due to a random process using the F cumulative
distribution function fcdf in MATLAB. For each GPS station, twenty partial F’ values were produced (for
the 20 links in Fig. 6), and for each partial F' value, an a value was computed using MATLAB’s pre-
programmed cumulative distribution function. When a > 0.95, we are very confident that the link
between the relations is valid, and hence we are justified to use the relation with more parameters to give
a best fit to the postseismic time-series. When a < 0.90, we are not confident that adding one more
parameter to our displacement will yield a significantly better fit. If one relation (with N parameters)
provides a significantly better goodness of fit than another relation (with NV - 1), then we expect the «o
value to be very close to one.

We tried to further increase our confidence by conducting a bootstrap analysis of the original
time-series, which was performed by using an increasing number of data points, n. First, the goodness of
fits and o were used for some small value of # in equation (9), perhaps around a few hundred data points
selected at random from the original dataset restricted in the postseismic interval. With only using a few
data points, we expected that many of our a values will be much less than one, sometimes being close to
zero. The Partial F Test was then performed again, this time using even more random data points in the
time-series. By using successively more random data points, the bootstrap method covers the entire given
time-series in the postseismic interval, yielding twenty Partial F and a values for each GPS time-series.

VI1I. Evaluation of the Partial F Test

As we conducted Partial F Test analyses on the Parkfield and Denali datasets, it proved difficult
to reach a consistent conclusion. This motivated an evaluation exercise of this type of analysis using a
synthetic dataset constructed in such a way that we know what the conclusion of the analysis should be; it
was successful. A first synthetic time-series was constructed using the exponential relaxation law
(Equation 2) and the total displacement (amplitude) of the MENT GPS station, which is just south of the
main Denali fault. Tests were conducted with four noise realizations: 1) no noise (Fig. 7); 2) random
noise only; 3) random walk only; 4) both random noise and random walk (Fig. 9).

14



Exponential Test
A=-5.93 + 0.0984
B=171 + 0.149
alpha=2 + 0.00465

= N
o
o o

100

n
o

displacement, mm

——M11IN1
-50 ' '

0 0.5 1 15
time, years

Figure 7: The Exponential relation fit through a MENT synthetic time-series with zero noise. The displayed fit parameters above
the plot A, B, and alpha correspond to a (mm), b (no units), and a (1/mm), respectively, seen in Equation 2.

Table 1 shows the corresponding y° values for all fourteen displacement functions fit through

the zero-noise time-series of Figure 7. Note that the Exponential relation has the smallest ;(2 value of all
the relations in Table 1. This is expected, as we know the time-series was created from Equation 2.
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Table 1: g~ Values, Synthetic MENT, Random Walk and Zero Noise

Relation 7 2 Relation P 2
Linear 1500 Exponential + Linear 0.040
Logarithmic 440 Modified Omori 0.098
Logarithmic + Linear 230 Power 28
Exponential 0.0045 Power + Linear 0.34
Lomnitz 61 Burgers 0.025
Lomnitz + Linear 0.56 Modified Omori + Linear 0.087
GRL 0.016 GRL + Linear 0.093

Table 1: Summary of the } ? values for the fourteen proposed time-dependencies of postseismic creep. These values were

compiled for a synthetic time-series with zero noise. Notice that the Exponential relation has the smallest } = .

Figure 8 meanwhile shows a hierarchy created for the same time-series:
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Figure 8: A hierarchy for a time-series with total displacement amplitude similar to the MENT time-series. Here the noise level is
reduced to zero. This synthetic record was created using the Exponential relation (2). Red arrows indicate o > 0.95, blue arrows
indicate 0.90 < a < 0.95, yellow arrows indicate 0.00 < a < 0.90, and white arrows o = 0. Here, the Exponential Law is the best
fit, as explained above.

Red arrows indicate o > 0.95, blue arrows indicate 0.90 < a < 0.95, yellow arrows indicate 0.00 <
o < 0.90, and white arrows o = 0. The hierarchy of Fig. 8 can be used to eliminate all but one of the
fourteen relations. The linear and logarithmic trends at the bottom are eliminated as there are other
relations (with more parameters) that yield a significantly better fit (as evidenced by the red arrows
leading away from these). As the GRL relation does not yield a significantly better fit than the
Exponential relation, GRL is eliminated. The GRL+L relation yields a significantly better fit than the
Power and Lomnitz relations (with linear trends), yet the GRL+L relation does not yield a better fit than,
say, the GRL relation (without the linear trend). This means that the GRL, Power, and Lomnitz relations
(with linear trends) are eliminated from consideration as a best possible representation of the time-series.
Also note that the Lomnitz relation with the linear trend yields a significantly better fit than the Lomnitz
relation without the linear trend. This eliminates the latter. The Modified Omori is also eliminated with an
improvement with adding the linear trend, while the Burgers relation is eliminated from the hierarchy as it
cannot provide an improvement the Exponential relation.

Using the simplest remaining relations (Exp, Exp + L, and Lomnitz + L); we can compare their
X % values to see that the Exponential relation, without the linear trend, is the best fit to the time-series

(see Table 1). This validates the approach of using a partial F test analysis, as the Exponential relation
was used to create the synthetic time-series in the first place. While this method had its flaws, including
not being able to compare relations (with connecting arrows) with the same number of parameters, just as
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well as some relations having no arrows leading to them (i.e. Lomnitz), it was still able to narrow down
the possible candidates to just a few of the relations.

A more realistic time-series would include noise, both normal noise and random walk. In the real
GPS time-series, the random and normal noise may have been due to seasonal variations in the time-
series (i.e. groundwater movements). Figure 9 shows the Exponential relation fit through a MENT

synthetic time-series with normal and random-walk noise.
Exponential Test
A=-8.29 + 0.0847
E=152 +0.128
alpha=2.15 + 0.00473

200 . : :
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1
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Figure 9: The Exponential relation fit through a MENT synthetic time-series with a normal and random-walk noise

Goodness of fit x> values for this particular synthetic time-series (Exponential, random walk
with normal noise) are given in Table 2, and the corresponding relation hierarchy is shown in Figure 10.
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Table 2: g~ Values, Synthetic MENT, Random Walk and Normal Noise

Relation 7 2 Relation 7 2
Linear 1100 Exponential + Linear 34
Logarithmic 320 Modified Omori 34
Logarithmic + Linear 216 Power 61
Exponential 34 Power + Linear 33
Lomnitz 90 Burgers 34
Lomnitz + Linear 32 Modified Omori + Linear 33
GRL 34 GRL + Linear 33

2 . . .
Table 2: Summary of the } "~ values for the fourteen proposed time-dependencies of postseismic creep. These values were
compiled for a synthetic time-series with normal and random noise.

N,

‘
[
e

Figure 10: Hierarchy for synthetic MENT time-series. Another hierarchy for a time-series with total displacement amplitude
similar to the MENT time-series. Here the noise level is that of a normal and/or random walk present in the time-series. Note the
large shift in the a values (and hence, the colors of the arrows) with even just a moderate amount of noise added to the time-
series.

Synthetic MENT
Normal Noise/
Random Walk
Lomnitz

Power law Lomnitz law

‘ a=0.95
> 0.90<0<0.95
|:> 0.00<a<0.90
—— > a=0.00

\

Burgers

19



Notice the change in the hierarchy with the added random and normal noise. Also notice that the
X ? values in Table 2 are generally much larger than in Table 1. No relation has a smallest value of ;(2 in

Table 2. Also, from Fig. 10, it is clear that the desired Exponential relation clearly is not the best relation
of the fourteen considered here. The GRL seems to provide a significantly better fit than the Exponential
relation. Hence, any actual real-life time-series, such as those following the Parkfield and Denali events
are too noisy to make any valid conclusions here. This example shows that even with just normal noise
and some random walk injected into the time-series, the inference of which function best represents the
time-series based on the partial ' analysis fluctuates wildly. The Partial F Test is too sensitive the level
of noise in the actual time-series to be useful. Hence, it is not possible to use the statistical analysis
developed here to compare the relations and determining which of them best fit a particular time-series.

Appendix C reports tables of parameter values, their errors, and their ;(2 values. Appendix C also

gives tables of parameter values and their corresponding hierarchies for synthetic tests created out of both
the Lomnitz and Exponential relations. Hence, there are sixteen tables (and hierarchies) in Appendix C,
four tables (for the four noise realizations) with a MENT amplitude created from the Exponential relation,
four more tables for MENT created from the Lomnitz relation, four for a FAIR amplitude created from
the Lomnitz relation, and four tables with a FAIR amplitude created from Lomnitz.

VIII. Results based on the GRL with a Linear Trend

As the partial F test has proven to be unable to determine which the fourteen possible
displacement laws best represents a given GPS time-series, | pursued an alternative approach to search for
a systematic difference between the Denali and Parkfield records: 1 compared fits made to each time-
series using only the GRL relation with an added linear trend (GRL+L) (equation 1). This relation was
chosen for its versatility in that it can account for a wide range in rheologies by adjusting its stress
exponent & (Section IV). By adding a linear trend, we can study long-term remote tectonic
contributions to the postseismic signal. Rheological inferences can be made by comparing the §
values for multiple time-series for the Parkfield and Denali events.

In this project we defined a signal-to-noise ratio (SNR) is defined as the ratio of the total
displacement of a particular record (over the ~1.6 year time span following each event) to the mean noise
in the record. The noise was fairly consistent going across the time-series for both records, while the
amplitude of particular records amplitude varied greatly. Two of Parkfield’s records, USLO and LCOV,
had very low SNRs, indicating small amplitudes of displacement when compared to the other Parkfield
time-series. This makes sense, as USLO and LCOV were much further than the main Parkfield fault than
the other stations analyzed. The time-series for the Parkfield event are shown on the map in Figure 11,
and displacement data are plotted for the LCOV and HOGS time-series in Figure 12.
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Figure 11: GPS velocities following the Parkfield event. These velocities range a timespan several years following the 28
September 2004 event. Running roughly from the top-left corner down to the bottom right is the main Parkfield fault. The time-
series for the USLO (much further to the southeast) and LCOV (much further to the northwest) (both of which are not shown)
GPS stations, both with low SNRs, are far away from the main Parkfield fault and are not shown.
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Figure 12: Displacements following the Parkfield earthquake for the LCOV (green) and HOGS (blue) time-series. HOGS was
very close to the fault, while the LCOV station was far to the northwest. Note that the HOGS time-series has a much higher
amplitude of displacement, and hence a much higher SNR.

Outputted parameter values and their respective errors, along with ;(2 values, were constrained
by the Levenberg-Marquardt (LM) inversion routine. SNR values for each GPS record were calculated by
taking the total displacement of the record (in mm), and dividing through by the mean uncertainty in that
particular time-series. The mean uncertainty was a propagated error that took into account the individual
error reported by USGS in both the eastward and westward displacements of each time-series. Hence, if
the displacement D is a function of both the individual eastward and westward components of the record,
then the mean uncertainty is defined as < o, >, the average of the error in the displacements. This error is

generally defined as Equation 10,

U oD _ 2+ oD
P oD, oD,

Oy ) (10)

where D, and D, are the displacements in the eastward and northward components and ¢, and o, are

their errors, respectively. Table 3 summarizes the parameter values, SNR, ;(2 and & values, and ratios of
v, 'V, for Parkfield. Note that most of the ratios of v, /¥, are very close to zero, indicating only a small

linear trend seen in the Parkfield records analyzed here. Note the huge errors in the parameters and
v, 'V, for USLO and LCOV. Ultimately the fits to these stations yielded parameter values that lacked

physical meaning.
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Table 3: A table summarizing parameter values, } 2 ,Vr / Vo , and SNRs for the Parkfield time-series. These were compiled

using the GRL+L relation (1). Notice how the values for LCOV and USLO seem to deviate from those of the other Parkfield
time-series. Such values probably lack physical meaning here, which is reflective of the huge error associated. The error in

vV, / Vo was computed by using error propagation with the individual uncertainties in v, and Vo .

2
GPS D, Vo T S Vi X v, !V
Station (mm) (mm/yr) | (vears) (mm/yr) NR
HOGS -3.1£1.5 3.0E3+£5.9E2 0.0+£0.0 0.03+0.02 46+0.62 7.0 0.015+0.0
60

MASW 0.14+1.2 1.9E3+2 9E2 0.01+0.0 0.12+0.03 45+0.67 0.02+0.0

5 370
PKDB -16£9E3 1.0E6+2.5E11 | 0.0+0.0 -0.32+0.04 39+1.3 0.0+0.10

2 50
RNCH -1146.0 1.7E4+2.2E4 0.0+0.0 -0.17+£0.02 41+0.66 0.0+£0.0

2 80
LOWS -2.2+1.3 1.2E3+£510 0.0+£0.0 -0.03+0.06 47+0.68 0.04+0.02

2 40
POMM -8.4+0.80 9.4E3+810 0.0+0.0 -0.02+0.01 44+0.32 0.0+0.0

0 10
CARH -4.4+0.43 8.0E2+34 0.039+0.0 0.15+0.03 41£1.0 0.05+0.00

5 90
LAND -5.5£1.8 5.8E3+1.1E3 0.0+£0.0 0.01+0.02 46+0.57 0.01+0.0

.5 10
USLO -0.5+0.26 4.6E2+1.1E5 154+3.6E3 -120+3E4 -395+1E5 -0.9+£330

.6 7
LCOV -0.2+0.72 34+5.2E3 -0.025+24 50+5.8E3 -21+4.7E3 -0.6x£170

.8 4
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In general, the Denali records had much smaller values of the SNR due to smaller amplitudes of
displacement than the Parkfield records, and hence, generally smaller SNR values. The Denali records
also contained fewer displacement data points on average. Some of Denali’s records contained as few as
forty-six displacement points. Figure 13 shows the time-series of Denali, in relation to the main Denali
fault (solid red line) in south-central AK. Note the large distance the FAIR station is from the main fault.

¥ ¥ ¥ Ty ) ] ¥ ¥ ¥ ¥ Y .
o

L L _| ="
1 'l 1 1

| I Il Il Il I I I 1
B L L g K R v g P L T T r gl T T g B B F S Tl g T g N By

Figure 13: Locations of the GPS time-series relative to the main Denali fault (solid red line), south-central Alaska (USGS). Blue
arrows indicate the continuous velocities of the stations’ movement in the postseismic interval. Notice that stations located far
away from the main fault (POT3, FAIR, TLKA) have random displacement magnitudes and directions that do not follow a
similar trend to those very close to the main fault, like MENT.

Like Parkfield, some Denali stations had much smaller SNR values than other Denali stations.
Figure 14 shows displacements of the MENT time-series plotted against the FAIR times-series. Note that
MENT, a station much closer to the main Denali fault, had a much larger total amplitude of displacement
than FAIR, which is located much further to the north (Figure 13). Hence, FAIR had a much smaller SNR
value than that of MENT.

24



160

40—

i
=]
T

=
=]
T

@
=]
T

displacement,mm
T

40

0 1 I I | | I i
20028 2003 2003.2 2003.4 20036 0038 2004 2004.2 2004 4 20046

time, years

Figure 14: High and low SNR time-series for the Denali event. Red is the for MENT, green for FAIR. Note that MENT
has a much greater amplitude of displacement than the FAIR station. The FAIR time-series was much further north away from
the main Denali fault (Figure 13), whereas the MENT time-series was just below the fault.

Table 4 summarizes the parameter values, SNR, ;(2 and & values, and ratios of v, /¥, for Denali.

Note that Denali generally has much smaller SNR values than Parkfield, but generally higher values
ofv, /V,.
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Table 4: A table summarizing parameter values, } 2 , Vr / Vo , and SNRs for the Denali time-series. These were compiled using

the GRL+L relation (1). Generally, the Denali time-series had much lower SNRs here. This is reflected in the huge errors on
some of the parameter values, which may even be larger than the parameters themselves. Such values probably lack physical

meaning here, which is reflective of the huge error associated. The error in V; / Vo was computed by using error propagation

with the individual uncertainties in V; and VO .

GPS D, o T S Vi R
Station (mm) (mm/yr) (years) (mm/yr) NR
MENT -16£1.7 6.9E2+64 0.100.01 0.61£0.090 | 43+3.25 53 0.0620.01

7
USLM 72424 7.5E2+1.0E2 0.110.040 | 0.93+0.25 5433.6 4.0 0.070.01

1
FAIR 6.4+7.8 3.9E2+5.8E4 0.0+12 -53+3.2E3 -310+2E4 0.89 [ 0.07+0.01

4
GNAA -0.23+0.31 | 140+5.0 0.18%0.01 1.240.01 15.240.71 030 [ 0.11+0.01

6
POT3 2.740.80 | 11050 0.100.10 0.49+1.2 7.0£14 8.3 0.060.13

2
TLKA 8.6+2.6 64440 0.06=15 1.743.3E2 17+49E2 |53 -0.27+7.88

9
FRIG 12427 5.9E2+1.2E2 0.08=0.02 0.70+0.20 72+7.0 2.9 0.12£0.03

;
PAXC -0.32+0.21 | 5.8E2+1.3E2 0.68+0.10 0.84+0.90 -260+130 94 -0.45+0.24

7
DNLC 5.4+1.4 2.5E2:45 0.08+0.02 0.3620.15 4475262 110 | 0.020.01

2
DRMC 0.86=1.0 | 36091 0.59+0.76 0.530.79 1.4+79 570 | 0.0x0.22

2

26




Hence a greater linear trend is seen in the Denali time-series than for the Parkfield time-series.
This is more clearly seen in Figure 15, which shows values of v, /¥ for Parkfield and Denali against

their SNR values. A greater linear trend contribution is clearly seen in the Denali times-series.

0.3

1 10 100 1000 10000

@ Denali @ Parkfield

-0.2

SNR

Figure 15: v, / Vo values for the Parkfield and Denali events plotted against SNRs. Each dot represents a particular time-series

seen in Figures 13 (Denali) and 11 (Parkfield), red for Parkfield, blue for Denali. Note that a greater linear trend is present in the
Denali time-series If the error bar is not seen on a particular point, then the error is small enough to be within the point itself.

Figure 16 shows & values plotted against SNRs for both the Denali and Parkfield events. Records with
low SNR are generally unreliable, but it is clear that for SNR above a particular critical value, records for

each earthquake give consistent results: £ is between 0.5 and 1 for Denali data whereas & is between 0 and
0.4 for the Parkfield data.
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Figure 16: SNR values against 1/n. Blue dots are for the Denali event, while red dots are for the Parkfield event. Notice that the
Denali cluster indicates that on average, Denali’s time-series had much higher mean uncertainties and hence Jower SNRs. Notice
that the Denali points tend to have much higher uncertainties, as given by the vertical error bars. If error bars are not shown on a
dot, then the uncertainty is small enough in that it is within the dot itself, as was the case for most of the Parkfield data present
here. Evidently the Denali time-series contained much more noise in the dataset, rendering fits more difficult to its time-series.
Errors in the values of § are given by the LM algorithm (see Appendix B), and values are present in the Appendix D data tables.

Despite lower SNRs, the most important thing to note from Figure 16 are the & for the Denali
event. In fact, most of the Parkfield & values seem to cluster close to zero, while those of Denali seem to
cluster closer to a value closer to one. In fact, the average value of § for the five Denali time-series
clustered close together (blue points in Fig. 16, the PAXC, FRIG, MENT, USLM, DRMC stations) was
0.81, with a standard deviation 0.25. The average & value for eight of the Parkfield stations was 0.10, with
a standard deviation of 0.11. In this calculation, the LCOV and USLO time-series were not considered, as
their extreme fit parameters lacked physical meaning (see the corresponding values in Table 3).

Recall that the GRL relation becomes the Exponential (Newtonian creep in a ductile shear zone,
viscous flow) and Lomnitz (rate-dependent friction, afterslip) Laws when we let the stress parameter &
approach one, and zero, respectively. Hence, by comparing the & values between the Parkfield and Denali
events using fits made with the GRL relation with the linear trend, there is evidence here that the a
Newtonian creep in a ductile shear zone may be contributing most to the postseismic signal observed in
the Denali time-series, while brittle aftershocks in the upper crust may be contributing most to the
postseismic signal of the Parkfield event.
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IX. Conclusions

The Partial F Test applied to our 14-relation hierarchy was ultimately unsuccessful. This resulted
from the Partial F Test being far too sensitive to even slight amounts of noise in the data. This was shown
as an example with a synthetic time-series (similar amplitude to MENT from Denali), whereas noise was
added and very different flow-charts shown. Hence, this particular test was not effective in allowing us to
compare all 14 displacement functions between both the Parkfield and Denali events, as originally
desired. Despite this setback, however, the rheology behind the signals of postseismic relaxation may still
be analyzed with the GRL+L relation alone. This relation was able to encompass a range of rheologic
behaviors by adjusting a stress parameter &. Despite the much higher noise levels in the Denali time-
series, which limited our study to only a few its time-series, comparisons were drawn with
Parkfield. It was shown that the analyzed Denali & values were within a standard deviation of a
value of one, indicating a Newtonian creep in a ductile shear zone rheology being more
responsible for Denali’s signal than brittle mechanisms. The Parkfield time-series, meanwhile,
were with a GRL+L with observations fitting a trend showing & within a standard deviation of
zero. This indicates that brittle mechanisms were most responsible for the signals observed in the
vicinity of Parkfield in the postseismic interval. This was consistent with my original hypothesis,
whereas the huge energy release of the Denali event was enough to active ductile deformation
deep in the crust and/or upper mantle, while the smaller magnitude of the Parkfield active
postseismic deformation confined to the upper ~15 km of the crust.

X. Future Work

In this particular area, there is much work to be done. This project was the first of its kind in that
it attempted to unify theory as to what particular rheologic mechanisms are most responsible for
postseismic signals following the Parkfield and Denali earthquakes. It attempted to test a large number of
time-dependencies derived from multiple authors and make reasonable correlations. Perhaps a more
refined statistical test less sensitive to noise in GPS time-series would be more effective. If this were to
succeed, there would be profound implications to unifying the theory behind understanding earthquake
cycle.
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Appendix A: A Summary of the Fourteen Displacement Functions

Here we provide a table summarizing the fourteen time-dependencies of postseismic creep that
were considered in this project. Table Al is organized such that the number of parameters increasing from
two to five parameters going down the rows. A reference is also provided of where the particular law was
applied in previous research. Then, on the right, a brief description may be given describing the rheology
mechanism behind the postseismic creep. Below Table Al are links to the USGS from where the raw
GPS time-series were obtained.
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Table Al

Dependence Equation Reference Rheology
Linear Remote plate motion,
D_(t)=a+bt postseismic creep from other,
* earlier earthquakes
Logarithmic Savage et al., | Transient creep, rapid initial

D (t)=a+blogt

2005.

displacements

Logarithmic +
Linear

D (t)y=a+blogt+v,t

Exponential D_(t) = a +bexp(—at) Savage et al., | Newtonian creep in a ductile
‘ 2005 shear zone.
Equivalent to GRL § — 1

Lomnitz D(s)=a+blog(l + at) Marone et al., | Rate-dependent friction

2001; Savage | Equivalent to GRL § — 0

et al., 2005;

Savage  and

Langbein,

2008
Power Dislocation creep in a ductile

¢ 3/2
D (t)=D,+3V,r 1—(1+—)
3r

shear zone; special case of
GRL &=1/3

Exponential +
Linear

D (t)=a+bexp(—at)+v,t

Lomnitz +
Linear

D(s)=a+blog(l+at)+v,t

Power Law +
Linear

2t 3/2
Ds(t)=D0+3Vor{l—(1+—j J+th

37

Modiﬁed D, (l‘)=A+B[1—(1+0{l‘)]l_p Savage, 2007; | Based on a similarity. With
Omori (MO) Savage and | aftershock sequences; similar
Yu, 2007 to GRL
General 7 1 Montési, 2004 | Power-law creep in a ductile
g T )i/
E:i:xatlon D.(t)=D, + -~ 1_(1 +(1- é:)—) shear zone.
& T
Modified D (1)=A+B[1-(1+at)]" +v,t
Omori +
Linear
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General

1
Relaxation <DS0)=ZZ)+LET[1—(1+(L—§)tJI”5J+\Qt
0

Law + Linear

Burgers D, (t) = a+b, exp(-a,t) + b, exp(—a,t) Hetland and | Burgers body rheology,
Hager, 2006; | Maxwell fluid and Kelvin
Burgmann body assembled in series.
and Dresen,
2008

A link to the USGS Denali time-series:
http://earthquake.usgs.gov/monitoring/eps/Denali/

A link to the USGS Parkfield time-series:
http://earthquake.usgs.gov/monitoring/eps/Parkfield/

Appendix B: The Levenberg-Inversion Routine and the GPS Time-Series

Here, we give a more detailed description on how the Levenberg-Marquardt (LM) inversion
routine acted on a particular downloaded USGS time-series. We used a LM inversion routine to solve the

least-squares problem and provide the best fit ;(2 to the time-series for each displacement function. Our
GPS datasets consisted of, say, U pairs (¢,,D,), fori=1, 2, ... U, where D, (displacement) is a function

of time ¢,. The number of data points varied anywhere from ~50 to ~600 data points for the same time
interval (~1.6 years) following both the Parkfield and Denali events. Each downloaded data set contained
eastward and northward components for D,, both of these components yielding data pairs with ¢, as the

independent variable.

5
Each of the fourteen functions had the form Dy (¢,,Z), with N adjustable parameters stored in a

N
vector Z . To find the parameter values for a best fit, we considered when the sum of the squared residuals

is minimized. The residual in our case is7; = D, — D¢ (¢;,Z). We solved this problem of least-squares

here by invoking the iterative LM inversion routine (Press et al., 1992), as was applied by Montési (2004)
with the GRL relation to postseismic time-series for several events. A derivation of the LM inversion
routine and its applicability to our least-squares problem is provided shortly. When the number of
adjustable parameters N is constrained by the LM algorithm to minimize the residuals, a measure of the
goodness of a fit is given by (11):

N I
S DS(ti)_DS(ti’Z)

2 _
Y

1

(11

In (11), E,is the formal uncertainty for each data point. This is represented graphically in the

plots by a vertical bar in each displacement point. If the inversion routine is to minimize our squared
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residuals between the predicted value given by one of the fourteen relations and the actual data point, an
-
initial guess for parameter values in the vector Z must be provided. Then, the increment of each
-
parameter in Z is set to some value between two end members: a steepest descent and an inverse Hessian

method, which both use the first and second partial derivatives of (11) in our parameter space. An
example for this method as applied to the Power Law function (3 parameters) follow and its application to
the nonlinear least squares problem.

If the LM inversion (Press et al., 1992) routine is to minimize the squared residual in (11), an
-
initial guess for the parameter values in Z must be provided. Each iterative step makes our parameter
- -
vector Z become, for some 77, which is found by approximating D (¢;,Z+17) as in the linearization (12)

(below):
Ds(tiaZ+77)zDs(th)+Ji77 (12)
g oD (t;,2)
0Z

The second expression in (12) is the Jacobian of Dg(¢,,Z+ 1) . For example, the following are

the Jacobian for the 3-parameter Power Relation given by equation (3), which consists of partial
-
derivatives with respect to each of the three parameters stored in the vector Z , which are given below:

Zl DO
Z=\Z,|=|V,
Z, T
aDS(ti’z) 1
oD,

oD (t,,7) . 1_(“%)3/2
ov, 37
- 3/2 1/2
M:WO 1—(1+2tj —31(1+2tj
or 37 37

When the sum of squares (11) is minimized, the partial derivative of (12) (with respect to77) is

zero. Upon differentiating the squared residuals in (11) using the linearization given by (12), we obtain
(13). The right side of the equation gives us a vector notation. Upon taking the derivative of (12) with
respect to N and setting the expression to zero, we also obtain (14):
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- U - - - - S0P
S(Z+m) =Y (D, = Dy(t,,2)=J )" =|D,=Ds(Z)=J 1

i=1

(13)
(7 })7723 [Bi_D_;(})] (14)

N
From (11) we can obtain a set of linear equations that is solved for7. In (14), J is a Jacobian

- - -
matrix containing partial derivatives with respect to each parameter inZ . Each ith row in Jis J, and

- - -
Dy is a vector within the ith D¢ (#;,Z+17) and data point D, . Both Levenberg and Marquardt modified
(14) to give the inversion algorithm we perform on the postseismic time-series we use here. An alternate
version of (14) offered by Levenberg and Marquardt as given by (15). This gives us the increment 77 that

we seek. The damping factor ¢@in (15) is slightly adjusted with each iteration.
T T T

(7 3+(pdiag(3 7))77=3 [D,-—DS(E)] (15)
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Appendix C: GRL+L Data Tables, Synthetic Test Tables, and their Hierarchies

Here are tables of parameter values, their errors, and their y* values for the synthetic datasets.

Following each table is the corresponding function hierarchy for the fourteen relations considered in this
project. There are sixteen tables (and hierarchies), four tables (for the four noise realizations) with a
MENT amplitude created from the Exponential relation, four more tables for MENT created from the
Lomnitz relation, four for a FAIR amplitude created from the Lomnitz relation, and four tables with a
FAIR amplitude created from Lomnitz.
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Table C1: Parameter and ¥ ? values for the F1ON1 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Lomnitz Relation. Here there is zero noise.

Function

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Parameter 5

X
Linear 1120.041 29+0.070 3
Logarithmic | 36+0.037 9.8+0.023 )
Logarithmic | 25+0.11 6.1+£0.043 14+0.13 D
and Linear
Exponential | 2:9+0.075 43+0.14 1.8+0.015 36
Lomnitz 0.11£0.12 18+0.13 8.0+0.18 0.078
Lomnitz and | -0.56%0.15 16+0.39 10.0+0.48 1.3£0.39 0.037
Linear
GRL 0.19+0.15 140+3.7 0.14+0.0085 0.077+0.027 0.039
Exponentia] 0.97+0.10 26+0.25 3.7+0.064 12+0.23 0.36
and Linear
Modified 0.33+0.14 130£19 5.2+0.45 1.2+0.038 0.099
Omori
Power 0.92+0.099 110£1.2 0.22+0.0032 0.42
Power and | 0-17+0.13 130+2.3 0.16+0.0053 4.8+0.37 0.032
Linear
Burgers 0.11+0.14 13+0.67 7.0+£0.41 43+0.46 0.91+0.049 0.024
Modified 0.14+0.17 110+81 5.7+1.6 1.2+0.21 1.9+0.21 0.028
Omori and
Linear
GRL and | 0.24+0.17 130+7.0 0.16+£0.017 0.24+0.14 1.9+£2.8 0.069
Linear
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Medified Omori

Figure C1: Hierarchy corresponding to Table C1.
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Table C2: Parameter and ¥ 2 values for the F10N2 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be
obtained. Here there is normal noise and random walk.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 | Parameter 5 ZZ
Linear 14+0.069 1120.12 39
Logarithmic | 25+0.062 5.6+0.039 18
Logarithmic | 34+0.20 8.8+0.077 -110.23 17
and Linear

Exponential | 0.14+0.20 24+0.19 6.2£0.10 12
Lomnitz -9.3+1.6 5.7+0.055 450+140 7
Lomnitz and | 0.34£0.24 26+0.98 6.9+0.43 -30+0.83 9.9
Linear

GRL N/A N/A N/A N/A N/A
Exponential | NA N/A N/A N/A N/A
and Linear

Modified N/A N/A N/A N/A N/A N/A
Omori

Power 4.1+0.42 420423 0.029+0.0014 16
Power and | NVA N/A N/A N/A N/A
Linear

Burgers N/A N/A N/A N/A N/A N/A
Modified N/A N/A N/A N/A N/A N/A
Omori  and

Linear

GRL and | WA N/A N/A N/A N/A N/A
Linear
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0.90=a<0.95

= 0.00<a<0.90
BBBBB = a=0.00

Figure C2: Hierarchy corresponding to Table C2.
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Table C3: Parameter and ¥ 2 values for the F10N3 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be
obtained. Here there is noise from random-walk only.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 | Parameter 5 ZZ
Linear 6.10.041 25+0.070 20
Logarithmic | 27+0.037 8.0+0.023 70
Logarithmic | 13%0.11 3.00.043 18=0.13 110
and Linear

Exponential | 1.9+0.067 44+0.29 1.1£0.014 95
Lomnitz 1.2+0.085 24+0.31 2.6+0.065 95
Lomnitz and | 1.6+0.093 51+£5.3 1.3+0.12 -12+1.9 95
Linear

GRL 1.6+0.092 52:0.91 0.70+0.042 0.67+0.07 95
Exponential 1.6+0.086 20+1.6 1.6+0.081 6.5+0.82 95
and Linear

Modified 1.6+0.092 55+3.5 0.46+0.13 3.1+£0.67 95
Omori

Power 1.40.078 560.59 0.53+0.010 95
Power and | NVA N/A N/A N/A N/A
Linear

Burgers 1.6+0.086 29+0.0 1.6+£0.050 -5.1E6+0.0 6.6E-07+0.0 240
Modified N/A N/A N/A N/A N/A N/A
Omori  and

Linear

GRL and | WA N/A N/A N/A N/A N/A
Linear
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Figure C3: Hierarchy corresponding to Table C3.
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Table C4: Parameter and } 2 values for the F10N4 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be
obtained. Here there is noise is normal noise only.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 4.5+0.18 18+0.30 37
Logarithmic | 190.16 5.8+0.096 a7
Logarithmic | 11047 2.6%0.19 11£0.56 ER|
and Linear

Exponential | 0-50+0.30 28+0.78 1.5+0.093 35
Lomnitz 0.36+0.38 15£1.0 3.34+0.50 26
Lomnitz and | 0-96+0.33 460730 0.27+0.25 -88+82 24
Linear

GRL N/A N/A N/A N/A N/A
Exponential | 0.92+0.33 120+140 0.53+0.36 -29+30.0 24
and Linear

Modified 0.52+0.29 28+0.85 6.5E-8+£0.038 22E7<1.1E13 25
Omori

Power 4.540.18 18=0.30 1.9E13+0.30 34
Power and | 4.5+0.18 1129 5.9E13+4.8E13 6.9+29 34
Linear

Burgers N/A N/A N/A N/A N/A N/A
Modified N/A N/A N/A N/A N/A N/A
Omori and

Linear

GRL and | N/A N/A N/A N/A N/A N/A
Linear
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Figure C4: Hierarchy corresponding to Table C4.
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Table C5: Parameter and ¥ 2 values for the F11NT1 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to
be obtained. Here there is a zero noise level.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 9.9+0.041 324+0.070 100
Logarithmic | 38+0.037 11+0.023 31
Logarithmic | 26+0.11 7.0+0.043 15.0+0.13 34
and Linear

Exponential 0.15+0.078 48+0.12 2.0+0.014 0.0061
Lomnitz -2.5+0.12 20.0+0.13 8.0+0.16 43
Lomnitz and -0.55+0.10 57+£2.0 2.34+0.087 -26+1.0 0.063
Linear

GRL 0.21+0.092 93+0.91 0.55+0.013 1.1+£0.023 0.080
Exponential | -0.16+0.088 48+0.88 2.0+0.040 0.17£0.53 0.0084
and Linear

Modified -0.47+0.099 51+0.55 0.31+0.061 7.5€1.3 0.094
Omori

Power -1.7+0.098 130£1.2 0.220.0028 2.0
Power and | -0-39+0.098 120+0.65 0.46+0.015 -17+0.89 0.075
Linear

Burgers -0.16£0.11 48+15 2.0+0.33 16+3.46E4 0.015+33 0.032
Modified -0.45+0.13 270+503 1.8+0.87 1.3£0.60 2111 0.043
Omori and

Linear

GRL and | N/A N/A N/A N/A N/A N/A
Linear
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ponential + Lin

* 0.90=a<0.95
= 0.00<a<0.90
BBBBB = a=0.00

Figure CS5: Hierarchy corresponding to Table C5.
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Table C6: Parameter and ¥ 2 values for the F11N2 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to
be obtained. Here there is normal noise and random walk.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 12+0.086 34+0.15 60
Logarithmic | 44+0.077 13+0.050 37
Logarithmic | 42:0.24 1320.096 142028 36
and Linear

Exponential -7.1+£0.19 53+.18 3.5+0.036 14
Lomnitz -8.50.36 1820.18 18+0.81 21
Lomnitz and | -5-6£0.22 95442 2.4+0.11 67+2.2 2
Linear

GRL N/A N/A N/A N/A N/A
Exponential | -5.7+0.19 74+1.3 2.4+0.051 17+0.87 12
and Linear

Modified N/A N/A N/A N/A N/A
Omori

Power -8.8+0.27 280+5.8 0.10+0.0024 19
Power and | NA N/A N/A N/A N/A
Linear

Burgers N/A N/A N/A N/A N/A N/A
Modified N/A N/A N/A N/A N/A N/A
Omori and

Linear

GRL and | N/A N/A N/A N/A N/A N/A
Linear
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Figure C6: Hierarchy corresponding to Table C6.
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Table C7: Parameter and ¥ 2 values for the F11N3 synthetic time-series. It was created with similar total displacement amplitude

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to
be obtained. The noise level is random-walk only.

Function Parameter 1 | Parameter 2 | Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 9.5+0.041 30+0.070 To6
Logarithmic | 36+0.037 11£0.023 750
Logarithmic | 25+0.11 6.8+0.043 1320.13 130
and Linear

Exponential | -0-81+0.079 45+0.11 2.2+0.015 9%
Lomnitz 2.7+0.12 19+0.12 8.6£0.17 99
Lomnitz and | -0-63£0.099 7142.8 1.9£0.072 35:1.8 5
Linear

GRL 0.41£0.09 92:0.88 0.5540.012 1.9£0.021 92
Exponential | -0-54+0.088 51+0.97 1.9+0.039 3.5+0.57 92
and Linear

Modified -0.81+0.079 45£0.11 5.6E-8+0.0031 3.8E7+2.1E12 92
Omori

Power 2.1£0.10 130+1.3 0.20+0.0026 9%
Power and | NA N/A N/A N/A N/A
Linear

Burgers N/A N/A N/A N/A N/A N/A
Modified -0.54+0.12 51+9.8 5.1E-3+0.31 380+2.3E4 3.624.1 92
Omori and

Linear

GRL and | N/A N/A N/A N/A N/A N/A
Linear
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YO, FTIN3
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‘ a=0.95
* 0.90=a<0.95
= 0.00<a<0.90
Burgers > a=0.00

Figure C7: Hierarchy corresponding to Table C7.
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Table C8: Parameter and ¥ 2 values for the F11N4 synthetic time-series. It was created with similar total displacement amplitude
to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to

be obtained. The noise level is normal noise only.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 | Parameter 5 ZZ
Linear -2.0+0.22 -49+0.36 10
Logarithmic | 38+0.19 14+0.12 78
Logarithmic -4.7+0.60 -1.2+0.24 53+0.70 10
and Linear

Exponential | 20+0.13 -8.6E-9+3.7E-8 -14+-2.7 30
LomnitZ N/A N/A N/A N/A
Lomnitz and | NVA N/A N/A N/A N/A
Linear

GRL N/A N/A N/A N/A N/A
Exponential | VA N/A N/A N/A N/A
and Linear

Modified N/A N/A N/A N/A N/A
Omori

Power N/A N/A N/A N/A
Power and | -2.1%0.23 50+-22 -3.3E13+1.4E13 -0.23+21 11
Linear

Burgers N/A N/A N/A N/A N/A N/A
Modified N/A N/A N/A N/A N/A N/A
Omori and

Linear

GRL and | N/A N/A N/A N/A N/A

Linear /
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Figure C8: Hierarchy corresponding to Table C8.
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Table C9: Parameter and ¥ : values for the M10ON1 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was
able to be obtained. The noise level is zero.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 3440.051 101+0.087 1.0E3
Logarithmic | 120+0.045 39+0.032 220
Logarlthmlc 97+0.15 29+0.063 33+0.17 45
and Linear

Exponential 2.3+0.097 150+0.16 1.9+0.0052 49
Lomnitz -11+0.18 58+0.14 10.4+0.088 1.0E-3
Lomnitz and | -12+0.23 58+0.52 11+0.19 0.52+0.51 0.010
Linear

GRL -11+0.26 590+7.9 0.10+0.0028 0.019+0.0093 0.028
Exponential | -5.1+0.13 93+0.29 3.9+0.023 43+0.28 47
and Linear

Modified 112025 1.5E3+300 8.940.31 1.0+0.010 0.098
Omori

Power 5.740.13 430+1.6 0.20+0.001 5.8
Power and | -9-5+0.19 510+3.6 0.14+0.0017 17+0.44 0.27
Linear

Burgers -9.1+0.21 50+0.75 7.2+0.14 150+0.53 0.93+0.017 0.15
Modified _11£0.32 380+92 6.9+0.72 1.2+0.067 8.4+2.4 0.091
Omori and

Linear

GRL and | -11£0.33 550+14 0.12+0.0057 0.17+0.045 8.8+2.4 0.068
Linear
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Synthetic MENT
Zero Noise Level
(Lomnitz)

P> 0.90<a<0.95
> 0.00<a<0.90
C—— = a=0.00

Figure C9: Corresponding hierarchy for Table C9.
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Table C10: Parameter and Y : values for the M10ON2 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was
able to be obtained. The noise level is normal noise and random walk.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 24+0.081 93+0.14 200
Logarithmic | 110+0.074 34+0.048 120
Logarithmic | 74%0.23 22:0.094 | 40.2+0.26 D)
and Linear

Exponential | 1.7+0.14 150+0.34 1.5+0.0074 19
Lomnitz -5.0+0.20 65+0.32 5.4+0.068 17
Lomnitz and | -3-7£0.24 78+2.0 4.2+0.14 -8.9£1.3 17
Linear

GRL 444027 340+5.8 0.210.0089 0.052+0.024 17
Exponential 16+0.11 8.2E-5+0.0020 -6.3%15 120+0.33 282
and Linear

Modified -4.6+0.28 2.1E3+1.4E3 4.9+0.33 1.0£0.025 18
Omori

Power -2.2+40.16 290+1.6 0.32+0.0028 17
Power and | -2.7+0.21 290+2.2 0.29+0.0079 45412 17
Linear

Burgers -19+1.1 30+1.0 26+1.2 150+0.47 1.2+0.011 13
Modified -3.7+0.36 8.4E3+1.8E05 42+12 1.0£0.21 _8.5+11 17
Omori and

Linear

GRL and | -1129.3 1.3E3+2E4 8.2E-3+0.044 -3.6+0.95 -210+55 15
Linear
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Figure C10: Corresponding hierarchy for Table C10.
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Table C11: Parameter and Y : values for the M10N3 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was

able to be obtained. The noise level is random walk only.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 36+0.051 99+0.087 1163
Logarithmic | 130+0.045 38+0.032 330
Logarithmic | 97+0.15 28+0.063 34+0.17 150
and Linear

Exponential | 5.1£0.097 150+0.16 1.9+0.0052 140
Lomnitz -7.5+0.17 59+0.14 9.8+0.082 98
Lomnitz and | -6.7£0.21 62+0.59 8.9+0.16 -3.3+0.55 98
Linear

GRL 624023 53046.2 0.120.0030 0.076+0.0097 98
Exponential | -1.8+0.13 93+0.31 3.7+0.023 42+0.29 99
and Linear

Modified -6.2+0.23 850498 7.4+0.26 1.120.011 98
Omori

Power -2.4+0.13 420+1.6 0.2120.0011 101
Power and | -5:2%0.18 470+3.2 0.15+0.0019 14.5+0.46 98
Linear

Burgers -3.7+0.19 60+1.3 5.4+0.12 150£1.2 0.71£0.027 97
Modified -4.340.24 140+8.0 2.5+0.27 22+0.17 24+1.7 98
Omori and

Linear

GRL and | -4.3+0.24 430+7.5 0.18+0.0057 0.54+0.035 25+1.7 98
Linear
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Lomnitz + Lin

Medified Omori

‘ a=0.95
* 0.90=a<0.95
= 0.00<a<0.90
> a=0.00

w GRL +Lin

Figure C11: Corresponding hierarchy for Table C11.
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Table C12: Parameter and Y : values for the M10N4 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was
able to be obtained. The noise level is normal noise only.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 36+0.21 94+0.35 T
Logarithmic | 120+0.19 38+0.13 T
Logarithmic | 110+0.60 34£0.25 14+0.69 93
and Linear

Exponential | -5-3£0.41 140+0.51 2.6£0.025 20
Lomnitz -22+0.98 49:+0.44 20.0£0.87 27
Lomnitz and | -9-9%0.66 110+4.2 5.1+0.28 -55+3.0 2.1
Linear

GRL 7.5+0.58 410+8.8 0.3%0.013 0.80+0.031 1.9
Exponential | -6.9+0.48 130£1.9 3.0+£0.068 12£1.5 1.8
and Linear

Modified -7.5+0.58 160+2.2 0.66+0.13 5.0£0.76 1.9
Omori

Power -14£0.6 590+10.3 0.13£0.0027 2.9
Power and | -9-2+0.6 490+8.0 0.23+0.010 29425 2.0
Linear

Burgers -6.9+0.0 130+0.0 3.0+0.0 4.3E6+0.0 2.1E-6+0.0 2.7
Modified -6.9+0.64 130+8.6 7.9E-7+0.27 3.8E06+1.3E12 12+4.5 1.8
Omori and

Linear

GRL and | -5-9+0.62 360+12 0.38+0.023 1.2+0.075 19+£2.6 1.8
Linear
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Figure C12: Corresponding hierarchy for Table C12.
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Table C13: Parameter and Y : values for the M11N4 synthetic time-series. It was created with similar total displacement
amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit

was able to be obtained. The noise level is normal noise.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 23+0.10 87+0.17 230
Logarithmic | 100+0.093 33+0.06 a1
Logarithmic | 84+0.29 27+0.12 23+0.33 39
and Linear

Exponential | -9-4+0.18 130+0.27 2.2+0.012 15
Lomnitz -18+0.33 51+0.27 11+0.19 30
Lomnitz and | -10.2+0.25 160+4.8 2.5+0.081 -76.7+2.5 16
Linear

GRL 9.3+0.23 29042.6 0.470.0098 1.020.018 14
Exponential | -9-7+0.22 130+1.7 2.3+0.035 2.7+1.1 15
and Linear

Modified -9.4+0.2 130+0.47 3.5E-7£0.021 6.3E6+3.8E11 15
Omori

Power 2320.10 87x0.17 42E13+2.3E12 232
Power and | NA N/A N/A N/A N/A N/A
Linear

Burgers -9.7+0.21 129+0.0 2.3+0.0 1.9E7+0.0 1.5E-7+0.0 15
Modified 29.7+0.22 130+1.6 1.5E7+0 1.5E7+0.0 2.9+1.1 15
Omori and

Linear

GRL and | -8.3£0.26 250+6.1 0.54+0.017 1.4+0.060 20.0+3.0 0.03
Linear
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Table Cl14: Parameter and Y : values for the M11IN3 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit
was able to be obtained. The noise level is random walk only.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 31+0.051 110+0.087 1.6E3
Logarithmic | 130+0.045 43+0.032 =30
Logarithmic | 100£0.15 33+0.062 34+0.17 330
and Linear

Exponential | -7-4+0.099 170£0.15 2.0+0.0047 90
Lomnitz -18+0.17 68+0.15 9.240.068 160
Lomnitz and | -8-5+0.13 21042.7 2.2£0.030 9914 90
Linear

GRL 7.240.12 340+1.2 0.5120.0043 1.020.0078 90
Exponential | 4.5£0.096 2.3E7+2.2E8 2.7E-3+0.014 6.3E4+3.1E5 192
and Linear

Modified -7.5+0.092 170+0.0 4.6E-7+0.0 4.5E6+0.0 90
Omori

Power -14£0.13 480+1.6 0.21£9.1E-4 120
Power and | -82%0.13 430+0.80 0.46+5.2E-3 _64+1.1 38
Linear

Burgers -7.3£0.11 170+1.0 2.0+0.014 1.8E7+0.0 -7.9E-840.0 89
Modified -7.3+0.11 170+3.0 1.1E-6+0.029 1.9E6+0.029 1.6+1.3 89
Omori and

Linear

GRL and | NA N/A N/A N/A N/A N/A
Linear
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Figure C14: Corresponding hierarchy for Table C14.
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Table C15: Parameter and Y : values for the M11IN2 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit
was able to be obtained. The noise is random walk and normal.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 27+0.047 98+0.077 1100
Logarithmic | 120+0.043 38+0.027 330
Logarithmic | 98+0.13 31+0.053 24£0.15 216
and Linear

Exponential | -8.3+0.084 150+0.13 2.1+0.0047 3
Lomnitz -18+0.15 57+0.13 11+0.087 90
Lomnitz and | -8-5£0.11 220+2.9 2.1+0.028 -105+1.3 32
Linear

GRL -7.120.098 310£1.0 0.55+0.044 1.2£0.0075 34
Exponential | -7-3+0.094 170+1.2 1.8+0.013 -13£0.68 34
and Linear

Modified -8.3+0.20 150+0.99 1.2E-7+0.045 1.6E7+0.045 1.6E7£6.0E12 34
Omori

Power -1420.11 4701.6 0.18+8.0E-4 61
Power and | -8.10.11 404+0.65 0.51£0.0059 _75.8£1.2 33
Linear

Burgers -7.1+0.13 210+93 1.7+£0.26 -86+58 0.57+0.85 34
Modified -8.2+0.16 940+670 1.5+0.31 1.3+0.25 -86+15 33
Omori and

Linear

GRL and | -8.5+0.17 490+30.7 0.51+0.0085 -0.42+0.26 -150+27 33
Linear
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* 0.90=a<0.95
= 0.00<a<0.90
BBBBB = a=0.00

Figure C15: Corresponding hierarchy for Table C15.
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Table C16: Parameter and Y : values for the M1IN1 synthetic time-series. It was created with similar total displacement

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit
was able to be obtained. There is zero noise here.

Function Parameter 1 | Parameter 2 Parameter 3 Parameter 4 Parameter 5 ZZ
Linear 31+0.051 110+0.087 1500
Logarithmic | 130+0.045 43+0.032 220
Logarithmic | 100+0.15 32+0.062 36£0.17 230
and Linear

Exponential -6.9+0.098 170+0.15 2.0+4.6E-3 0.0045
Lomnitz -17+0.16 69+0.15 8.8+0.063 61
Lomni‘[z and -8.24+0.13 210+£2.8 2.24+0.030 -95.4+ 0.56
Linear

GRL 6.940.12 340+1.3 0.50:£0.044 1.0£0.0081 0.016
Exponential | -7.0+0.11 170£1.1 2.0£0.014 1.3+0.65 0.040
and Linear

Modified -7.3+0.12 170+0.54 0.074+0.018 28+6.4 0.098
Omori

Power -130.13 47+1.6 0.21+9.3E-3 28
Power and | -7-9£0.13 420+0.80 0.46+0.0052 _62+1.1 0.34
Linear

Burgers -6.9+0.15 17017 2+0.11 21+4.5E5 0.0046=98 0.025
Modified -7.3+0.16 230+23 0.46+0.15 45+1.4 19£6.3 0.087
Omori and

Linear

GRL and | -6.6£0.15 320+4.8 0.52+0.0072 1.1£0.041 11£2.9 0.093
Linear
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ponential + Lin

* 0.90=a<0.95
= 0.00<a<0.90
BBBBB = a=0.00

Figure C16: Corresponding hierarchy for Table C16.
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