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Abstract  
 

The 28 September 2004 wM 6.0 Parkfield and the 3 November 2002, wM 7.9 Denali earthquakes 

each triggered postseismic deformation, a phenomenon commonly captured by geodetic data, including 
InSAR and GPS, in the aftermath of large earthquakes. Interpretations for postseismic deformation 
include viscoelastic relaxation, poroelastic rebound, or brittle aftershocks. The large magnitude difference 
between these two North-American strike-slip events leads us to question whether the rheological 
mechanism most responsible for the postseismic signature is the same between the two events. Here, I 
model geodetic time-series collected following both the Denali and Parkfield events, considering fourteen 
different possible postseismic displacement relations. A Levenberg-Marquardt inversion routine was used 
to fit these displacement functions through the time-series for the two events. A statistical method, the 
Partial F Test, was then used to compare these fits. The Partial F Test was ultimately unsuccessful 
because of noise in the GPS. Upon restricting the analysis to a study of one particular function, the 
General Relaxation Law with an added linear trend, a clear difference between the Denali and Parkfield 
datasets emerges. While the Denali postseismic dataset is best explained by Newtonian creep in a ductile 
shear zone with a larger degree of remote tectonic loading following a linear trend, the Parkfield dataset is 
best captured by brittle mechanisms supporting a rate-dependent friction with a relatively smaller linear 
trend. The mechanisms apparently associated with these earthquakes are compatible with my hypothesis 
that the Denali event, being larger than the Parkfield earthquake, activated deeper, ductile deformation 
mechanisms. 

 
I. Introduction 
 

The earthquake cycle may be partitioned into three different time intervals: a loading period, a 
coseismic (rupture) period, and a period of postseismic deformation (Montési, 2004). In this project, the 
focus was on postseismic signals recorded by Global Positioning System (GPS) stations. Mechanical 
explanations for this postseismic creep include brittle afterslip in the upper 15 km of the lithosphere, 
poroelastic rebound driving fluids in the upper crust, and viscoelastic relaxation confined to the lower 
crust and/or upper mantle (e.g. Bürgmann and Dresen, 2008). Afterslip is attributed to continued slip on 
the earthquake’s original rupture area and viscoelastic relaxation is potentially localized deformation on a 
ductile shear zone in the upper mantle or lower crust (Marone et al., 1991; Montési, 2004). Peltzer et al. 
(1998) described poroelastic rebound as a change in the Poisson ratio (of transverse strain to axial strain) 
from unsaturated to saturated regimes with the dissipation of pore-pressure gradients following rupture 
events. This project aimed to compare the postseismic GPS relaxation signal following two North-
American strike-slip earthquake events, namely the 3 November 2002 wM 7.9 Denali Earthquake 

(63.5°N, 147.5°W) in south-central Alaska and the 28 September 2004 wM 6.0 Parkfield earthquake 

(35.8°N, 120.4°W) along the San Andreas Fault (SAF) in southern California (see Fig. 1).  
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Figure 1: Locations of the Parkfield and Denali events. Both earthquakes occurred along strike-slip faults associated with the 
movement of the Pacific and North American Plates. The Denali fault ruptured with oblique convergence with the collision of the 
Yakutat terrain and  stable North America, an intracontinental event strike-slip event; the Parkfield event occurred along the San 
Andreas Fault. 

 

The rupture length of the Denali event was ~330 km, compared to a mere 23 km for that of 
Parkfield. The large magnitude difference between the Parkfield and Denali events corresponds to 
different possible origins of postseismic deformation (Freed et al., 2006a, b; Freed 2007; Johnson et al., 
2006; 2009). This project evaluates to what extent the mechanisms most responsible for the captured 
postseismic signal are different between the two events. The Denali earthquake, being large than the 
Parkfield event, may have activated deeper deformation mechanisms, which give rise to different time 
dependencies of the postseismic deformation. Postseismic deformation following the Parkfield and Denali 
events has already been modeled on an individual basis in many publications with varying assumptions 
and techniques, giving implications for mechanisms behind postseismic deformation. Most studies used 
advanced numerical modeling from which only very specific questions could be asked. This project uses 
the same analysis to compare postseismic deformation following both events. Although the chosen 
inversion routine could not constrain where postseismic deformation actually occurs, it uses an analytical 
formula for the time dependence of postseismic creep and it can capture a wide range of rheological 
behaviors (Montési, 2004).The wM 7.9 Denali earthquake was the largest strike-slip event in North 

America since the 1906 San Francisco event (Eberhart-Phillips et al. 2003). Freed et al., (2006a, b) used 
3-D Finite Elements method to show that the Denali postseismic signal requires a power law rheology, 
implying strong variation in viscosity at depth, as a single linear rheology cannot fit initial GPS 
displacements (Figure 2).  
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Figure 2: Stress perturbations for the 2002 Denali event. The huge energy release of the main rupture event shows changes in 
shear stress as deep as ~100km, below the crust-mantle boundary (Freed et al., 2006), where deformation is more likely brittle 
than ductile. 

 
Johnson et al. (2009) however, successfully fitted GPS time-series with a model combining 

Denali afterslip on a fault zone, which was ignored by Freed et al. (2006a, b), with distributed creep in a 
linear viscoelastic deeper layer in the lower crust and upper mantle (Figure 3).  

 
Figure 3: Slip extending as far deep as the mantle, ~90 km, following the 2002 Denali event (Johnson et al., 2009) 
 
No single linear rheology could fit initial GPS displacements for the 2002 Denali event, as there was 
strong variation in lateral viscosity at depth, most likely represented by some non-linear flow law, with no 
need for afterslip. On the other hand, their technique cannot address non-linear distributed flow. Savage et 
al. (2005) captured the trend of postseismic deformation using a description of GPS time-series that 
assumes only a transient creep rheology but with a lack of spatial information. They did not test 
alternative rheologies. These studies agree that postseismic deformation after the Denali event is due to 
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several deformation mechanisms, including afterslip, possibly non-linear viscoelastic relaxation, and 
poroelastic rebound (Freed et al., 2006a).  

 
In contrast to the Denali event, the 2004 Parkfield earthquake is the smallest magnitude event for 

which postseismic deformation has been recorded (Langbein et al., 2006). The 2004 Parkfield event is the 
latest in a sequence of earthquakes that has lasted over the last century, occurring at unusually regular 
intervals of roughly 20-25 years between earthquakes, with ruptures in 1934 and 1966. Therefore, the 
2004 Parkfield event occurred in an extremely well instrumented area of the SAF with dense networks of 
GPS. The Parkfield event displayed a surprisingly intense postseismic signal of deformation: like the 
1994 Sanriku earthquake, the energy release of postseismic deformation exceeded the energy release of 
the main rupture itself (Helmstetter and Shaw, 2008). Savage et al. (2005) suggested that the Parkfield 
signature, like the Denali signal, can be modeled with a logarithmic time dependence associated with a 
transient creep. However, 3D Finite Element models indicate that, unlike Denali, the postseismic 
deformation for the smaller Parkfield event appears to be limited to shallow afterslip, probably because 
the energy released in this event was not large enough to activate viscoelastic creep deep in the crust or 
poroelastic rebound (Freed et al., 2007) (Figure 4):  

 
Figure 4: Afterslip associated with the 2004 Parkfield event; the smaller energy release of the rupture activated stresses confined 
to only the upper 15-20 km of the crust, which dominates the postseismic signal of the Parkfield event. The star denotes of the 
hypocenter of the Parkfield event, while the circle, where the circle indicates the greatest coseismic slip. (Freed et al. 2007). 

 
Likewise, Johnson et al. (2006) successfully modeled GPS time-series using only brittle afterslip 

processes (Figure 5). Fig. 5 shows that for the Parkfield event, the signal of postseismic deformation was 
limited only to shallow brittle afterslip in the upper 15 km of the crust.  
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Figure 5: Afterslip for Parkfield, confined mostly to the upper 15-20 km of the lithosphere following the Parkfield event (Johnson 
et al., 2006).  

 
Although these studies all use different assumptions and modeling techniques and each consider 

only a limited number of physical processes, it seems most likely that postseismic deformation for the 
Denali event can be attributed to several mechanisms with a clear contribution of deep creep processes, 
while postseismic deformation following the Parkfield event can be explained solely using brittle 
afterslip. These studies used mainly the direction and magnitude of postseismic displacement but not the 
details of their time dependence. However, the rheologies used in these models are expected to produce 
different time dependences of postseismic creep (Montési, 2004). Therefore, I analyzed GPS time-series 
collected after the Denali and Parkfield events to determine if we can resolve a difference in their time 
dependences. This problem is important in that we can learn more about the dynamics of the deforming 
lithosphere in both south-central AK and in southern California. Implications carry over into a better 
understanding of the earthquake cycle and prediction, which may also have major societal significance for 
Americans in CA and AK. 

II. Overview  

 
This study aims to determine what mechanism is responsible for the postseismic creep produced 

by the 2002 Denali and 2004 Parkfield earthquake events. Possible mechanisms include poroelastic 
rebound, viscoelastic relaxation in the lower crust or upper mantle, or brittle shallow afterslip confined to 
the upper 15-20 km of the crust. My hypothesis was that the time dependencies of postseismic creep 
imply different rheologies for the Denali and Parkfield events. This hypothesis is based from the previous 
research by Freed et al. (2006a, b. 2007) and Johnson et al. (2006, 2009). Two tests of this hypothesis 
were devised. In the first, we consided fourteen proposed time dependencies for postseismic creep, many 
of which are associated with a specific rheology.  I attempted to determine statistically which of these is 
most appropriate for each GPS time-series using a Partial F Test. However, this test proved too sensitive 
to noise in the data for any meaningful conclusions to be made. Though this attempt to compare all 
fourteen displacement functions between two very different major North-American events was 
unsuccessful, this work was an important first step toward developing a successful strategy to compare all 
displacement functions. It is the first attempt to consider all fourteen displacement relations and compare 
them between two earthquakes.  
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The second test was to select one function in particular: the General Relaxation Law (GRL) with 
an added linear trend (GRL + L). One parameter of this relation, the stress exponent , characterizes the 
type of rheology used to predict the time dependence of postseismic deformation.  I show that the 
Parkfield dataset implies  ~ 0, which is characteristic of brittle creep, whereas the Denali dataset implies 
 ~ 1, characteristic of Newtonian creep. Hence, I was able to document a fundamental difference in the 
deformation mechanism used to explain postseismic deformation in these two events. This result supports 
my hypothesis that postseismic deformation from the Parkfield event is generated as shallower depth in 
the crust, where deformation is brittle, compared to the Denali event, where deformation is ductile. 

III. Background of the Displacement Relations, & Analysis of Uncertainty 

 
Fourteen different mathematical laws as displacement functions of time have been proposed to 

represent the time-dependence of the postseismic GPS signals (see Table 1 in Appendix A). Each of these 
is associated with a particular rheology and mechanism responsible for postseismic creep. These fourteen 
relations contained between two and five parameters that were determined using Levenberg-Marquardt 
(LM) inversion routine. Some of these parameters have actual physical meaning (i.e. initial velocity on 
fault plane after rupture, initial displacements, or time constants). Others describe the shape of the time 
dependence function and may be related to the underlying rheological laws. For example,  in the General 
Relaxation Law may correspond to the inverse of the stress exponent of a power law relationship, if 0 <  
≤ 1.Some of these laws were also formulated by taking one fundamental relation that is linked to a 
rheology-motivated time dependence and adding a linear trend (and hence, one more parameter). The 
linear trend represents processes not associated with postseismic creep, like large-scale plate motions or 
residual signals from other nearby earthquakes.  

 
It is expected that, the more parameters in the relation, the better fit to the GPS time-series. 

Before rheological interpretations can be done concerning the physical origin of each of the displacement 
relations, it is important to determine how many parameters can be constrained with the available data 
and rank the relative success of all fourteen possible time dependencies for the various GPS stations. I 
attempted to determine this ranking using a Partial F Test and a constructed hierarchy that links the 
fourteen mathematical relations for possible time dependencies of postseismic deformation (Fig.  6).  

 
In this project, datasets were accessed through the website of the USGS. Links to the time-series 

are provided below Table 1 in Appendix A. The downloaded datasets contained uncertainty estimates for 
every GPS data point. The Levenberg-Marquardt inversion routine provides a covariance matrix that is 
used to estimate a formal uncertainty. However, the uncertainty reported here neglects coupling between 
different fit parameters and is therefore a minimum estimate to the actual parameter uncertainty. The 
Levenberg-Marquardt inversion routine is described in Appendix B. During the spring 2010 semester, 

data tables containing fit parameters and 2  values were collected for the Parkfield event.  
 

A Partial F Test statistical analysis using the residual 2 of each fit was implemented to evaluate 
rigorously which formulation of postseismic creep best captured observations for the Parkfield event. 
During the spring 2011 semester, the same was done for the Denali event and a comparison was 
attempted. A study of synthetic time-series was also conducted to evaluate the accuracy of the technique. 
In the next section, I will give a brief overview of each of these laws, their origin based on past research, 
and how they were applied to mechanisms responsible for postseismic creep. I will also review how these 
fourteen different relations related to one another, presenting a hierarchy map that represented how I 
attempted to compare the fourteen different fits.  
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IV. Overview of Fourteen Displacement Relations & their Hierarchy 

 
The most general relations used in this work is the General Relaxation Law (GRL), with an added 

linear trend (GRL+L), given by equation (1):   
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where Ds is the displacement (mm) as function of time t in years, D0 is the initial displacement, and 0V the 

initial velocity. The parameter defining the shear zone rheology ξ describes the shape of the displacement 
relation (Montési, 2004). The original GRL relation was derived for power law creep in a ductile shear 
zone rheology and applied to the 1994 Sanriku and 2001 Peru events by Montési (2004). The GRL arises 
from the solution of an ordinary differential equation that links a spring representing the elastic 
lithosphere and deforming region with a power law rheology. The stress exponent n of the shear zone 
rheology is related to  according to  = 1/n. Adjusting the value of  is equivalent to changing the 
rheology of the shear zone from Newtonian creep (n =  = 1) to brittle creep ( = 0). Note that  could 
have negative values, which may reflect the presence of a long term steady motion of the GPS station that 
is not related to the shear zone rheology (Montési, 2004). 

 
In (1), 0V is a deforming shear zone velocity and 0D (an integration constant) is the initial 

displacement of the shear zone immediately following the main rupture event in the beginning of the 
postseismic time interval for time t = 0. Also in (1),  is a time constant defined as the ratio of the shear 
zone velocity to the shear zone acceleration at a time t = 0 with Lv = 0. In the special case  = 1 
(Newtonian rheology), Eq. 1 simplifies to a well-known exponential relaxation (Equation 2): 
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Dislocation creep is thought to be active in many rocks in the lower crust and upper mantle. It is 

often described by a power law rheology with n = 3 or n = 5. We consider as a separate relation, the 
power law relaxation, with the special case =1/3 of Eq. 1 that corresponds to dislocation creep (Eq. 3):  
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Brittle faults at low pressure and temperature may exhibit postseismic deformation if they obey velocity 
strengthening frictional sliding, in which case postseismic deformation is described by Eq. 4 (Marone et 
al., 1991):  
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Eq. 4 is formally equivalent to Eq. 1 with  = 0 (Montési, 2004). It is also occasionally called the Lomnitz 
law (Savage et al, 2008). A linear trend Lv may be added these laws for a better fit to the GPS time-series, 
and create four new possible relations with one more parameter each. One more possible that law that was 
considered in this project is given by (5). It is called the Modified Omori Law, and was originally 
proposed to explain the decay rate of aftershock sequences.  

 
p

S tbatD  1)]1(1[)(          (5) 
 
It is mathematically similar to the GRL if p = 1 / (1 - ) (Savage et al., 2008), but gives a different 

parameterization, which may result in different fits if an iterative inversion relation is used. We also 
considered the case of a Modified Omori law with an added linear trend. The displacement function (6) is 
called the Burgers relation and it implies a Burgers body rheology.  

 
)()exp()( 2211 tbtbatDS          (6) 

 
The Burgers body rheology consists of a Maxwell fluid (with immediate elastic response, 

ultimate Newtonian fluid behavior) and a Kelvin body assembled in series (Hetland and Hager, 2006). 
We refrain from adding a linear trend to Eq. (6) because this would result in a 6-parameter displacement 
relation. According to Bürgmann and Dresen (2008), the Burgers Body Law can represent the postseismic 
responses defined with two relaxation times, which might occur in the lithosphere undergoing transient 
creep or a nonlinear flow law with weak inclusions (Bürgmann and Dresen, 2008).  

 
Savage et al. (2006) used a logarithmic trend to model postseismic creep following several 

earthquakes, including the 2003 San Simeon and 2004 Parkfield earthquakes (Equation 7), 
 

)log()( tbatD S          (7) 
 
where a (mm) and b (mm/yr) are constants to give a best fit and have little physical meaning. We may 
add the usual linear trend to the logarithmic trend to obtain another relation. Finally, we consider a simple 
linear trend (Equation 8), 

 
btatDS )(           (8) 

 
that represents the unlikely null hypothesis for which no transient postseismic creep can identified. Linear 
trends are assumed only to result from remote plate motion or possible postseismic creep from residual 
motion from other, earlier nearby earthquakes. For example, postseismic GPS displacements from the 
2003 San Simeon earthquake, whose epicenter was only 50 km from Parkfield, may affect the Parkfield 
postseismic time-series (Savage et al., 2005). The fourteen possible relations are summarized in Table 1 
(Appendix A), which also indicates the number of parameters in each relation and provides references to 
previous studies that used each relation. 
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V. Hierarchy of the Fourteen Displacement Functions 
 
The fourteen different proposed displacement functions of time are all mathematically 

interconnected. Based on the numbers of parameters each relation contains and what rheologies are 
implied (and hence what mechanism is implied to produce postseismic signals), we created a hierarchy 
and grouped these fourteen relations. The purpose of this hierarchy was to determine which laws are 
actually meaningful to compare relative to one another. For example, for a first grouping of these 
relations, notice that the GRL relation with an added linear trend becomes the standard GRL relation 
when Lv  0. The regular GRL (four parameters) relation then became the regular Lomnitz, Power, and 

Exponential relations (with three parameters) when 0, 1/3, 1, respectively. The regular 
Lomnitz, Power, and Exponential relations can also be obtained by removing their linear trends letting  

Lv  0. In addition, the GRL Linear relation (five parameters) becomes the Lomnitz, Power, and 

Exponential relations (with linear trends, each four parameters) when we let 0, 1/3, and 1, 
respectively. The example just given can be considered as one grouping, where the GRL, Power, 
Exponential, and Lomnitz laws (all with or without linear trends) were all be related to one another by 
adjusting numbers of parameters.  

 
As another example, consider the Burgers Law (five parameters) given by (6). This relation is the 

sum of two exponential functions of time, each of which can be represented by the Exponential Law (2). 
Also consider second logarithmic relation with a linear trend, which further decomposes into both the 
linear trend and the logarithmic trend when we let Lv  0. Third, consider again the Modified Omori 
Law given by (5). The Modified Omori Law becomes the Modified Omori Law with a linear trend by 
adding tvL . By setting parameter values of more complex laws to fixed values; we can recover a simpler 
relation with fewer parameters. All the laws will eventually simplify to a logarithmic or linear trend. 
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Figure 6: Hierarchy relating 14 possible time-dependencies of postseismic creep. The fourteen possible laws are organized into 
five stories corresponding to the number of parameters they contain. There are 20 links connecting the various laws. The numbers 
in each of the arrows were merely used for indexing purposes, and have no physical meaning here. 

 
We summarize all these relationships among our fourteen functions in Fig. 6. The figure is 

essentially a map, analogous to a five-story building, where each successively higher level going up 
contains one more parameter, varying between two and five. There are twenty links. More parameters 

should make for a better fit to the displacement time-series, as quantified by a reduced 2 . However, the 

improvement may not be statistically significant: the reduction in 2 might have only been achieved by 
fitting better noise in the dataset set rather than any actual physical motion. Thus, we need a statistical 

analysis to determine if the reduction of 2 is significant compared to the increase number of parameters 
along each link of Fig. 6. The Partial F Test was designed to conduct such analysis, but it proved to be too 
sensitive to noise in the real GPS datasets to provide meaningful conclusions.  
 
VI. The Partial F Test 

 
The Partial F is intended to be an  an estimate of the probability that the improvement in quality 

of fit when following one the arrows in Figure 6 is not due to a random process (and therefore meaningful 

from a physical standpoint). Let 2
1 denote the goodness of fit for a relation with 1N  fitting parameters 

and 2
2  denote the goodness of fit for another relation containing 2N fitting parameters, where both 

relations are linked together somewhere in Fig. 6. Also, let n be the number of displacement data points in 
a particular GPS time-series. The fit improvement F is given by Equation 9: 
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Then we compute the probability  that F is not due to a random process using the F cumulative 
distribution function fcdf in MATLAB. For each GPS station, twenty partial F values were produced (for 
the 20 links in Fig. 6), and for each partial F value, an α value was computed using MATLAB’s pre-
programmed cumulative distribution function. When α > 0.95, we are very confident that the link 
between the relations is valid, and hence we are justified to use the relation with more parameters to give 
a best fit to the postseismic time-series. When α < 0.90, we are not confident that adding one more 
parameter to our displacement will yield a significantly better fit. If one relation (with N parameters) 
provides a significantly better goodness of fit than another relation (with N - 1), then we expect the  α 
value to be very close to one.  

 
We tried to further increase our confidence by conducting a bootstrap analysis of the original 

time-series, which was performed by using an increasing number of data points, n. First, the goodness of 
fits and α were used for some small value of n in equation (9), perhaps around a few hundred data points 
selected at random from the original dataset restricted in the postseismic interval. With only using a few 
data points, we expected that many of our α values will be much less than one, sometimes being close to 
zero. The Partial F Test was then performed again, this time using even more random data points in the 
time-series. By using successively more random data points, the bootstrap method covers the entire given 
time-series in the postseismic interval, yielding twenty Partial F and α values for each GPS time-series. 
  
VII. Evaluation of the Partial F Test 

 
As we conducted Partial F Test analyses on the Parkfield and Denali datasets, it proved difficult 

to reach a consistent conclusion. This motivated an evaluation exercise of this type of analysis using a 
synthetic dataset constructed in such a way that we know what the conclusion of the analysis should be; it 
was successful. A first synthetic time-series was constructed using the exponential relaxation law 
(Equation 2) and the total displacement (amplitude) of the MENT GPS station, which is just south of the 
main Denali fault. Tests were conducted with four noise realizations: 1) no noise (Fig. 7); 2) random 
noise only; 3) random walk only; 4) both random noise and random walk (Fig. 9).  
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Figure 7: The Exponential relation fit through a MENT synthetic time-series with zero noise. The displayed fit parameters above 
the plot A, B, and alpha correspond to a (mm), b (no units), and α (1/mm), respectively, seen in Equation 2. 

 

Table 1 shows the corresponding 2 values for all fourteen displacement functions fit through 

the zero-noise time-series of Figure 7. Note that the Exponential relation has the smallest 2  value of all 
the relations in Table 1. This is expected, as we know the time-series was created from Equation 2.  
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Table 1: 2 Values, Synthetic MENT, Random Walk and Zero Noise 
Relation 2  

Relation 2  

Linear 1500 Exponential + Linear 0.040 

Logarithmic 440 Modified Omori 0.098 

Logarithmic + Linear 230 Power 28 

Exponential 0.0045 Power + Linear 0.34 

Lomnitz 61 Burgers 0.025 

Lomnitz + Linear 0.56 Modified Omori + Linear 0.087 

GRL 0.016 GRL + Linear 0.093 

 

Table 1: Summary of the 
2 values for the fourteen proposed time-dependencies of postseismic creep. These values were 

compiled for a synthetic time-series with zero noise. Notice that the Exponential relation has the smallest 
2 . 

 
Figure 8 meanwhile shows a hierarchy created for the same time-series:  
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Figure 8: A hierarchy for a time-series with total displacement amplitude similar to the MENT time-series. Here the noise level is 
reduced to zero. This synthetic record was created using the Exponential relation (2). Red arrows indicate α ≥ 0.95, blue arrows 
indicate 0.90 ≤ α < 0.95, yellow arrows indicate 0.00 < α < 0.90, and white arrows α = 0. Here, the Exponential Law is the best 
fit, as explained above.  

 
Red arrows indicate α ≥ 0.95, blue arrows indicate 0.90 ≤ α < 0.95, yellow arrows indicate 0.00 < 

α < 0.90, and white arrows α = 0. The hierarchy of Fig. 8 can be used to eliminate all but one of the 
fourteen relations. The linear and logarithmic trends at the bottom are eliminated as there are other 
relations (with more parameters) that yield a significantly better fit (as evidenced by the red arrows 
leading away from these). As the GRL relation does not yield a significantly better fit than the 
Exponential relation, GRL is eliminated. The GRL+L relation yields a significantly better fit than the 
Power and Lomnitz relations (with linear trends), yet the GRL+L relation does not yield a better fit than, 
say, the GRL relation (without the linear trend). This means that the GRL, Power, and Lomnitz relations 
(with linear trends) are eliminated from consideration as a best possible representation of the time-series. 
Also note that the Lomnitz relation with the linear trend yields a significantly better fit than the Lomnitz 
relation without the linear trend. This eliminates the latter. The Modified Omori is also eliminated with an 
improvement with adding the linear trend, while the Burgers relation is eliminated from the hierarchy as it 
cannot provide an improvement the Exponential relation.   

 
Using the simplest remaining relations (Exp, Exp + L, and Lomnitz + L); we can compare their 

2 values to see that the Exponential relation, without the linear trend, is the best fit to the time-series 
(see Table 1). This validates the approach of using a partial F test analysis, as the Exponential relation 
was used to create the synthetic time-series in the first place. While this method had its flaws, including 
not being able to compare relations (with connecting arrows) with the same number of parameters, just as 
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well as some relations having no arrows leading to them (i.e. Lomnitz), it was still able to narrow down 
the possible candidates to just a few of the relations. 

 
A more realistic time-series would include noise, both normal noise and random walk. In the real 

GPS time-series, the random and normal noise may have been due to seasonal variations in the time-
series (i.e. groundwater movements). Figure 9 shows the Exponential relation fit through a MENT 
synthetic time-series with normal and random-walk noise. 

 
Figure 9: The Exponential relation fit through a MENT synthetic time-series with a normal and random-walk noise 
 

Goodness of fit 2  values for this particular synthetic time-series (Exponential, random walk 
with normal noise) are given in Table 2, and the corresponding relation hierarchy is shown in Figure 10.  
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Table 2: 2 Values, Synthetic MENT, Random Walk and Normal Noise 
Relation 2  

Relation 2  

Linear 1100 Exponential + Linear 34 

Logarithmic 320 Modified Omori 34 

Logarithmic + Linear 216 Power 61 

Exponential 34 Power + Linear 33 

Lomnitz 90 Burgers 34 

Lomnitz + Linear 32 Modified Omori + Linear 33 

GRL 34 GRL + Linear 33 

Table 2: Summary of the 
2 values for the fourteen proposed time-dependencies of postseismic creep. These values were 

compiled for a synthetic time-series with normal and random noise.  

 
Figure 10: Hierarchy for synthetic MENT time-series. Another hierarchy for a time-series with total displacement amplitude 
similar to the MENT time-series. Here the noise level is that of a normal and/or random walk present in the time-series. Note the 
large shift in the α values (and hence, the colors of the arrows) with even just a moderate amount of noise added to the time-
series. 
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Notice the change in the hierarchy with the added random and normal noise. Also notice that the 

2 values in Table 2 are generally much larger than in Table 1. No relation has a smallest value of 2 in 
Table 2. Also, from Fig. 10, it is clear that the desired Exponential relation clearly is not the best relation 
of the fourteen considered here. The GRL seems to provide a significantly better fit than the Exponential 
relation. Hence, any actual real-life time-series, such as those following the Parkfield and Denali events 
are too noisy to make any valid conclusions here. This example shows that even with just normal noise 
and some random walk injected into the time-series, the inference of which function best represents the 
time-series based on the partial F  analysis fluctuates wildly. The Partial F Test is too sensitive the level 
of noise in the actual time-series to be useful. Hence, it is not possible to use the statistical analysis 
developed here to compare the relations and determining which of them best fit a particular time-series.  

 

Appendix C reports tables of parameter values, their errors, and their 2 values. Appendix C also 
gives tables of parameter values and their corresponding hierarchies for synthetic tests created out of both 
the Lomnitz and Exponential relations. Hence, there are sixteen tables (and hierarchies) in Appendix C, 
four tables (for the four noise realizations) with a MENT amplitude created from the Exponential relation, 
four more tables for MENT created from the Lomnitz relation, four for a FAIR amplitude created from 
the Lomnitz relation, and four tables with a FAIR amplitude created from Lomnitz. 
 
VIII. Results based on the GRL with a Linear Trend 

 
As the partial F test has proven to be unable to determine which the fourteen possible 

displacement laws best represents a given GPS time-series, I pursued an alternative approach to search for 
a systematic difference between the Denali and Parkfield records: I compared fits made to each time-
series using only the GRL relation with an added linear trend (GRL+L) (equation 1). This relation was 
chosen for its versatility in that it can account for a wide range in rheologies by adjusting its stress 
exponent  (Section IV). By adding a linear trend, we can study long-term remote tectonic 
contributions to the postseismic signal. Rheological inferences can be made by comparing the  
values for multiple time-series for the Parkfield and Denali events.  

 
In this project we defined a signal-to-noise ratio (SNR) is defined as the ratio of the total 

displacement of a particular record (over the ~1.6 year time span following each event) to the mean noise 
in the record. The noise was fairly consistent going across the time-series for both records, while the 
amplitude of particular records amplitude varied greatly. Two of Parkfield’s records, USLO and LCOV, 
had very low SNRs, indicating small amplitudes of displacement when compared to the other Parkfield 
time-series. This makes sense, as USLO and LCOV were much further than the main Parkfield fault than 
the other stations analyzed. The time-series for the Parkfield event are shown on the map in Figure 11, 
and displacement data are plotted for the LCOV and HOGS time-series in Figure 12.  
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Figure 11: GPS velocities following the Parkfield event. These velocities range a timespan several years following the 28 
September 2004 event. Running roughly from the top-left corner down to the bottom right is the main Parkfield fault. The time-
series for the USLO (much further to the southeast) and LCOV (much further to the northwest) (both of which are not shown) 
GPS stations, both with low SNRs,  are far away from the main Parkfield fault and are not shown.  
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Figure 12: Displacements following the Parkfield earthquake for the LCOV (green) and HOGS (blue) time-series. HOGS was 
very close to the fault, while the LCOV station was far to the northwest. Note that the HOGS time-series has a much higher 
amplitude of displacement, and hence a much higher SNR.  

 

Outputted parameter values and their respective errors, along with 2  values, were constrained 
by the Levenberg-Marquardt (LM) inversion routine. SNR values for each GPS record were calculated by 
taking the total displacement of the record (in mm), and dividing through by the mean uncertainty in that 
particular time-series. The mean uncertainty was a propagated error that took into account the individual 
error reported by USGS in both the eastward and westward displacements of each time-series. Hence, if 
the displacement D is a function of both the individual eastward and westward components of the record, 
then the mean uncertainty is defined as < D >, the average of the error in the displacements. This error is 
generally defined as Equation 10, 
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where ED and ND are the displacements in the eastward and northward components and E  and N are 

their errors, respectively. Table 3 summarizes the parameter values, SNR, 2 and ξ values, and ratios of 

0/VvL  for Parkfield. Note that most of the ratios of 0/VvL are very close to zero, indicating only a small 

linear trend seen in the Parkfield records analyzed here. Note the huge errors in the parameters and 

0/VvL  for USLO and LCOV. Ultimately the fits to these stations yielded parameter values that lacked 

physical meaning.  
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Table 3: A table summarizing parameter values,
2 , 0/VvL , and SNRs for the Parkfield time-series. These were compiled 

using the GRL+L relation (1). Notice how the values for LCOV and USLO seem to deviate from those of the other Parkfield 
time-series. Such values probably lack physical meaning here, which is reflective of the huge error associated. The error in 

0/VvL was computed by using error propagation with the individual uncertainties in Lv and 0V . 

GPS 
Station 

0D  
(mm) 

0V  
(mm/yr) 

τ 
(years) 

ξ 
Lv  

(mm/yr) 

2  0/VvL  
NR 

HOGS -3.1±1.5 3.0E3±5.9E2 0.0±0.0 0.03±0.02 46±0.62 7.0 0.015±0.0 
60 

MASW 0.14±1.2 1.9E3±2.9E2 0.01±0.0 0.12±0.03 45±0.67 
.5 

0.02±0.0 
370 

PKDB -16±9E3 1.0E6±2.5E11 0.0±0.0 -0.32±0.04 39±1.3 
.2 

0.0±0.10 
50 

RNCH -11±6.0 1.7E4±2.2E4 0.0±0.0 -0.17±0.02 41±0.66 
2 

0.0±0.0 
80 

LOWS -2.2±1.3 1.2E3±510 0.0±0.0 -0.03±0.06 47±0.68 
.2 

0.04±0.02 
40 

POMM -8.4±0.80 9.4E3±810 0.0±0.0 -0.02±0.01 44±0.32 
0 

0.0±0.0 
10 

CARH -4.4±0.43 8.0E2±34 0.039±0.0 0.15±0.03 41±1.0 
.5 

0.05±0.00 
90 

LAND -5.5±1.8 5.8E3±1.1E3 0.0±0.0 0.01±0.02 46±0.57 
.5 

0.01±0.0 
10 

USLO -0.5±0.26 4.6E2±1.1E5 15±3.6E3 -120±3E4 -395±1E5 
.6 

-0.9±330 
7 

LCOV -0.2±0.72 34±5.2E3 -0.025±24 50±5.8E3 -21±4.7E3 
.8 

-0.6±170 
4 
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In general, the Denali records had much smaller values of the SNR due to smaller amplitudes of 

displacement than the Parkfield records, and hence, generally smaller SNR values. The Denali records 
also contained fewer displacement data points on average. Some of Denali’s records contained as few as 
forty-six displacement points. Figure 13 shows the time-series of Denali, in relation to the main Denali 
fault (solid red line) in south-central AK. Note the large distance the FAIR station is from the main fault.  

 

 
 
Figure 13: Locations of the GPS time-series relative to the main Denali fault (solid red line), south-central Alaska (USGS). Blue 
arrows indicate the continuous velocities of the stations’ movement in the postseismic interval. Notice that stations located far 
away from the main fault (POT3, FAIR, TLKA) have random displacement magnitudes and directions that do not follow a 
similar trend to those very close to the main fault, like MENT.  

 
Like Parkfield, some Denali stations had much smaller SNR values than other Denali stations. 

Figure 14 shows displacements of the MENT time-series plotted against the FAIR times-series. Note that 
MENT, a station much closer to the main Denali fault, had a much larger total amplitude of displacement 
than FAIR, which is located much further to the north (Figure 13). Hence, FAIR had a much smaller SNR 
value than that of MENT.  
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Figure 14: High and low SNR time-series for the Denali event. Red is the for MENT, green for FAIR. Note that MENT 

has a much greater amplitude of displacement than the FAIR station. The FAIR time-series was much further north away from 
the main Denali fault (Figure 13), whereas the MENT time-series was just below the fault.  

 

Table 4 summarizes the parameter values, SNR, 2 and ξ values, and ratios of 0/VvL  for Denali. 

Note that Denali generally has much smaller SNR values than Parkfield, but generally higher values 
of 0/VvL .  
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Table 4: A table summarizing parameter values,
2 , 0/VvL , and SNRs for the Denali time-series. These were compiled using 

the GRL+L relation (1). Generally, the Denali time-series had much lower SNRs here. This is reflected in the huge errors on 
some of the parameter values, which may even be larger than the parameters themselves.  Such values probably lack physical 

meaning here, which is reflective of the huge error associated. The error in 0/VvL was computed by using error propagation 

with the individual uncertainties in Lv and 0V .  

GPS 
Station 

0D  
(mm) 

0V  
(mm/yr) 

τ  
(years) 

ξ 
Lv  

(mm/yr) 

2  0/VvL  
NR 

MENT -16±1.7 6.9E2±64 0.10±0.01 0.61±0.090 43±3.25 5.3 0.06±0.01 
7 

USLM -7.2±2.4 7.5E2±1.0E2 0.11±0.040 0.93±0.25 54±3.6 4.0 0.07±0.01 
1 

FAIR 6.4±7.8 3.9E2±5.8E4 0.0±12 -53±3.2E3 -310±2E4 0.89 0.07±0.01 
.4 

GNAA -0.23±0.31 140±5.0 0.18±0.01 1.2±0.01 15.2±0.71 0.30 0.11±0.01 
.6 

POT3 -2.7±0.80 110±50 0.10±0.10 0.49±1.2 7.0±14 8.3 0.06±0.13 
2 

TLKA 8.6±2.6 64±440 0.06±15 1.7±3.3E2 -17±4.9E2 5.3 -0.27±7.88 
.9 

FRIG -12±2.7 5.9E2±1.2E2 0.08±0.02 0.70±0.20 72±7.0 2.9 0.12±0.03 
7 

PAXC -0.32±0.21 5.8E2±1.3E2 0.68±0.10 0.84±0.90 -260±130 94 -0.45±0.24 
7 

DNLC 5.4±1.4 2.5E2±45 0.08±0.02 0.36±0.15 4.47±2.62 110 0.02±0.01 
2 

DRMC 0.86±1.0 360±91 0.59±0.76 0.53±0.79 1.4±79 570 0.0±0.22 
2 
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Hence a greater linear trend is seen in the Denali time-series than for the Parkfield time-series. 
This is more clearly seen in Figure 15, which shows values of 0/VvL for Parkfield and Denali against 

their SNR values. A greater linear trend contribution is clearly seen in the Denali times-series.  
 

 
Figure 15: 0/VvL values for the Parkfield and Denali events plotted against SNRs. Each dot represents a particular time-series 

seen in Figures 13 (Denali) and 11 (Parkfield), red for Parkfield, blue for Denali. Note that a greater linear trend is present in the 
Denali time-series If the error bar is not seen on a particular point, then the error is small enough to be within the point itself. 
 
Figure 16 shows  values plotted against SNRs for both the Denali and Parkfield events. Records with 
low SNR are generally unreliable, but it is clear that for SNR above a particular critical value, records for 
each earthquake give consistent results:  is between 0.5 and 1 for Denali data whereas  is between 0 and 
0.4 for the Parkfield data.  
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Figure 16: SNR values against 1/n. Blue dots are for the Denali event, while red dots are for the Parkfield event. Notice that the 
Denali cluster indicates that on average, Denali’s time-series had much higher mean uncertainties and hence lower SNRs. Notice 
that the Denali points tend to have much higher uncertainties, as given by the vertical error bars. If error bars are not shown on a 
dot, then the uncertainty is small enough in that it is within the dot itself, as was the case for most of the Parkfield data present 
here. Evidently the Denali time-series contained much more noise in the dataset, rendering fits more difficult to its time-series. 
Errors in the values of  are given by the LM algorithm (see Appendix B), and values are present in the Appendix D data tables.  

 
Despite lower SNRs, the most important thing to note from Figure 16 are the  for the Denali 

event. In fact, most of the Parkfield  values seem to cluster close to zero, while those of Denali seem to 
cluster closer to a value closer to one. In fact, the average value of  for the five Denali time-series 
clustered close together (blue points in Fig. 16, the PAXC, FRIG, MENT, USLM, DRMC stations) was 
0.81, with a standard deviation 0.25. The average  value for eight of the Parkfield stations was 0.10, with 
a standard deviation of 0.11. In this calculation, the LCOV and USLO time-series were not considered, as 
their extreme fit parameters lacked physical meaning (see the corresponding values in Table 3).  

 
Recall that the GRL relation becomes the Exponential (Newtonian creep in a ductile shear zone, 

viscous flow) and Lomnitz (rate-dependent friction, afterslip) Laws when we let the stress parameter  
approach one, and zero, respectively. Hence, by comparing the  values between the Parkfield and Denali 
events using fits made with the GRL relation with the linear trend, there is evidence here that the a 
Newtonian creep in a ductile shear zone may be contributing most to the postseismic signal observed in 
the Denali time-series, while brittle aftershocks in the upper crust may be contributing most to the 
postseismic signal of the Parkfield event.  
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IX. Conclusions 
 
The Partial F Test applied to our 14-relation hierarchy was ultimately unsuccessful. This resulted 

from the Partial F Test being far too sensitive to even slight amounts of noise in the data. This was shown 
as an example with a synthetic time-series (similar amplitude to MENT from Denali), whereas noise was 
added and very different flow-charts shown.  Hence, this particular test was not effective in allowing us to 
compare all 14 displacement functions between both the Parkfield and Denali events, as originally 
desired. Despite this setback, however, the rheology behind the signals of postseismic relaxation may still 
be analyzed with the GRL+L relation alone. This relation was able to encompass a range of rheologic 
behaviors by adjusting a stress parameter . Despite the much higher noise levels in the Denali time-
series, which limited our study to only a few its time-series, comparisons were drawn with 
Parkfield. It was shown that the analyzed Denali  values were within a standard deviation of a 
value of one, indicating a Newtonian creep in a ductile shear zone rheology being more 
responsible for Denali’s signal than brittle mechanisms. The Parkfield time-series, meanwhile, 
were with a GRL+L with observations fitting a trend showing  within a standard deviation of 
zero. This indicates that brittle mechanisms were most responsible for the signals observed in the 
vicinity of Parkfield in the postseismic interval. This was consistent with my original hypothesis, 
whereas the huge energy release of the Denali event was enough to active ductile deformation 
deep in the crust and/or upper mantle, while the smaller magnitude of the Parkfield active 
postseismic deformation confined to the upper ~15 km of the crust.  
 
X. Future Work 

 
In this particular area, there is much work to be done. This project was the first of its kind in that 

it attempted to unify theory as to what particular rheologic mechanisms are most responsible for 
postseismic signals following the Parkfield and Denali earthquakes. It attempted to test a large number of 
time-dependencies derived from multiple authors and make reasonable correlations. Perhaps a more 
refined statistical test less sensitive to noise in GPS time-series would be more effective. If this were to 
succeed, there would be profound implications to unifying the theory behind understanding earthquake 
cycle. 
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Appendix A: A Summary of the Fourteen Displacement Functions 

 
Here we provide a table summarizing the fourteen time-dependencies of postseismic creep that 

were considered in this project. Table A1 is organized such that the number of parameters increasing from 
two to five parameters going down the rows. A reference is also provided of where the particular law was 
applied in previous research. Then, on the right, a brief description may be given describing the rheology 
mechanism behind the postseismic creep. Below Table A1 are links to the USGS from where the raw 
GPS time-series were obtained.  
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Table A1 
Dependence Equation  Reference Rheology 
Linear   

btatDs )(   

 Remote plate motion, 
postseismic creep from other, 
earlier earthquakes 

Logarithmic   

tbatDs log)( 
 

Savage et al., 
2005. 

Transient creep, rapid initial 
displacements  

Logarithmic +  
Linear 

tvtbatD Ls  log)(
 

  

Exponential )exp()( tbatDs 
 

Savage et al., 
2005 

Newtonian creep in a ductile 
shear zone. 
Equivalent to GRL   1 

Lomnitz )1log()( tbasD     

 

Marone et al., 
2001; Savage 
et al., 2005; 
Savage and 
Langbein, 
2008 

Rate-dependent friction  
Equivalent to GRL   0 

Power 
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
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

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2/3

00 3

2
113)(


 t

VDtDs

 Dislocation creep in a ductile 
shear zone; special case of 
GRL =1/3 

Exponential + 
Linear 

tvtbatD Ls  )exp()( 
 

  

Lomnitz + 
Linear 

tvtbasD L )1log()(   
  

Power Law + 
Linear tv

t
VDtD Ls 













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00 3

2
113)(




 

  

Modified 
Omori (MO) 

p
s tBAtD  1)]1(1[)( 

 
Savage, 2007; 
Savage and 
Yu, 2007 

Based on a similarity with 
aftershock sequences; similar 
to GRL  

General 
Relaxation 
Law 






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Montési, 2004 Power-law creep in a ductile 
shear zone. 

Modified 
Omori + 
Linear 
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p
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General 
Relaxation 
Law + Linear 

tv
tV

DtD Ls 


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
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 





 /11

1
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0 )1(11)(

  

Burgers )exp()exp()( 2211 tbtbatDs  
 

Hetland and 
Hager, 2006; 
Burgmann 
and Dresen, 
2008 

Burgers body rheology, 
Maxwell fluid and Kelvin 
body assembled in series.  

A link to the USGS Denali time-series:  
http://earthquake.usgs.gov/monitoring/gps/Denali/ 
A link to the USGS Parkfield time-series:  
http://earthquake.usgs.gov/monitoring/gps/Parkfield/ 
 
Appendix B: The Levenberg-Inversion Routine and the GPS Time-Series 

 
Here, we give a more detailed description on how the Levenberg-Marquardt (LM) inversion 

routine acted on a particular downloaded USGS time-series. We used a LM inversion routine to solve the 

least-squares problem and provide the best fit 2 to the time-series for each displacement function. Our 

GPS datasets consisted of, say, U pairs ),( ii Dt , for i = 1, 2, … U, where iD  (displacement) is a function 

of time it . The number of data points varied anywhere from ~50 to ~600 data points for the same time 

interval (~1.6 years) following both the Parkfield and Denali events. Each downloaded data set contained 
eastward and northward components for iD , both of these components yielding data pairs with it  as the 

independent variable.  
 

Each of the fourteen functions had the form ),(


ZtD iS , with N adjustable parameters stored in a 

vector


Z . To find the parameter values for a best fit, we considered when the sum of the squared residuals 

is minimized. The residual in our case is ),(


 ZtDDr iSii . We solved this problem of least-squares 

here by invoking the iterative LM inversion routine (Press et al., 1992), as was applied by Montési (2004) 
with the GRL relation to postseismic time-series for several events. A derivation of the LM inversion 
routine and its applicability to our least-squares problem is provided shortly. When the number of 
adjustable parameters N is constrained by the LM algorithm to minimize the residuals, a measure of the 
goodness of a fit is given by (11):  
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       (11) 
 
In (11), iE is the formal uncertainty for each data point. This is represented graphically in the 

plots by a vertical bar in each displacement point. If the inversion routine is to minimize our squared 
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residuals between the predicted value given by one of the fourteen relations and the actual data point, an 

initial guess for parameter values in the vector 


Z must be provided. Then, the increment of each 

parameter in 


Z is set to some value between two end members: a steepest descent and an inverse Hessian 
method, which both use the first and second partial derivatives of (11) in our parameter space. An 
example for this method as applied to the Power Law function (3 parameters) follow and its application to 
the nonlinear least squares problem.  

 
If the LM inversion (Press et al., 1992) routine is to minimize the squared residual in (11), an 

initial guess for the parameter values in 


Z must be provided. Each iterative step makes our parameter 

vector


Z become, for some , which is found by approximating ),( 


ZtD iS as in the linearization (12) 

(below):  
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The second expression in (12) is the Jacobian of ),( 


ZtD iS  . For example, the following are 

the Jacobian for the 3-parameter Power Relation given by equation (3), which consists of partial 

derivatives with respect to each of the three parameters stored in the vector


Z , which are given below:  
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When the sum of squares (11) is minimized, the partial derivative of (12) (with respect to ) is 

zero. Upon differentiating the squared residuals in (11) using the linearization given by (12), we obtain 
(13). The right side of the equation gives us a vector notation. Upon taking the derivative of (12) with 
respect to η and setting the expression to zero, we also obtain (14): 
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From (11) we can obtain a set of linear equations that is solved for . In (14), 


J is a Jacobian 

matrix containing partial derivatives with respect to each parameter in


Z . Each ith row in 


J is 


iJ and 


SD is a vector within the ith ),( 


ZtD iS  and data point


iD . Both Levenberg and Marquardt modified 

(14) to give the inversion algorithm we perform on the postseismic time-series we use here. An alternate 
version of (14) offered by Levenberg and Marquardt as given by (15). This gives us the increment  that 

we seek. The damping factor  in (15) is slightly adjusted with each iteration. 

)]([))((


 ZDDJJJdiagJJ Si

TTT

  (15)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 
 

 

Appendix C: GRL+L Data Tables, Synthetic Test Tables, and their Hierarchies 
 

Here are tables of parameter values, their errors, and their 2 values for the synthetic datasets. 
Following each table is the corresponding function hierarchy for the fourteen relations considered in this 
project. There are sixteen tables (and hierarchies), four tables (for the four noise realizations) with a 
MENT amplitude created from the Exponential relation, four more tables for MENT created from the 
Lomnitz relation, four for a FAIR amplitude created from the Lomnitz relation, and four tables with a 
FAIR amplitude created from Lomnitz. 
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Table C1: Parameter and 
2 values for the F10N1 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Lomnitz Relation. Here there is zero noise. 

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 11±0.041 29±0.070    69 

Logarithmic 36±0.037 9.8±0.023    52 

Logarithmic 
and Linear 

25±0.11 6.1±0.043 14±0.13   12 

Exponential  2.9±0.075 43±0.14 1.8±0.015   3.6 

Lomnitz 0.11±0.12 18±0.13 8.0±0.18   0.078 

Lomnitz and 
Linear 

-0.56±0.15 16±0.39 10.0±0.48 1.3±0.39  0.037 

GRL 0.19±0.15 140±3.7 0.14±0.0085 0.077±0.027  0.039 

Exponential 
and Linear 

0.97±0.10 26±0.25 3.7±0.064 12±0.23  0.36 

Modified 
Omori 

0.33±0.14 130±19 5.2±0.45 1.2±0.038  0.099 

Power 0.92±0.099 110±1.2 0.22±0.0032   0.42 

Power and 
Linear 

0.17±0.13 130±2.3 0.16±0.0053 4.8±0.37  0.032 

Burgers 0.11±0.14 13±0.67 7.0±0.41 43±0.46 0.91±0.049 0.024 

Modified 
Omori and 
Linear 

0.14±0.17 110±81 5.7±1.6 1.2±0.21 1.9±0.21 0.028 

GRL and 
Linear 

0.24±0.17 130±7.0 0.16±0.017 0.24±0.14 1.9±2.8 0.069 

 
 
 
 
 



36 
 

 

 
Figure C1: Hierarchy corresponding to Table C1. 
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Table C2: Parameter and 
2 values for the F10N2 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be 
obtained. Here there is normal noise and random walk. 

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 14±0.069 11±0.12    39 

Logarithmic 25±0.062 5.6±0.039    18 

Logarithmic 
and Linear 

34±0.20 8.8±0.077 -11±0.23   17 

Exponential  0.14±0.20 24±0.19 6.2±0.10   12 

Lomnitz -9.3±1.6 5.7±0.055 450±140   17 

Lomnitz and 
Linear 

0.34±0.24 26±0.98 6.9±0.43 -30±0.83  9.9 

GRL N/A N/A N/A N/A  N/A 

Exponential 
and Linear 

N/A N/A N/A N/A  N/A 

Modified 
Omori 

N/A N/A N/A N/A N/A N/A 

Power -4.1±0.42 420±23 0.029±0.0014   16 

Power and 
Linear 

N/A N/A N/A N/A  N/A 

Burgers N/A N/A N/A N/A N/A N/A 

Modified 
Omori and 
Linear 

N/A N/A N/A N/A N/A N/A 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 
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Figure C2: Hierarchy corresponding to Table C2.  
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Table C3: Parameter and 
2 values for the F10N3 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be 
obtained. Here there is noise from random-walk only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 6.1±0.041 25±0.070    120 

Logarithmic 27±0.037 8.0±0.023    170 

Logarithmic 
and Linear 

13±0.11 3.0±0.043 18±0.13   110 

Exponential  1.9±0.067 44±0.29 1.1±0.014   95 

Lomnitz 1.2±0.085 24±0.31 2.6±0.065   95 

Lomnitz and 
Linear 

1.6±0.093 51±5.3 1.3±0.12 -12±1.9  95 

GRL 1.6±0.092 52±0.91 0.70±0.042 0.67±0.07  95 

Exponential 
and Linear 

1.6±0.086 29±1.6 1.6±0.081 6.5±0.82  95 

Modified 
Omori 

1.6±0.092 55±3.5 0.46±0.13 3.1±0.67  95 

Power 1.4±0.078 56±0.59 0.53±0.010   95 

Power and 
Linear 

N/A N/A N/A N/A  N/A 

Burgers 1.6±0.086 29±0.0 1.6±0.050 -5.1E6±0.0 6.6E-07±0.0 240 

Modified 
Omori and 
Linear 

N/A N/A N/A N/A N/A N/A 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 
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Figure C3: Hierarchy corresponding to Table C3. 
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Table C4: Parameter and 
2 values for the F10N4 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Lomnitz Relation. “N/A” here means that no reasonable fit was able to be 
obtained. Here there is noise is normal noise only. 

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 4.5±0.18 18±0.30    3.4 

Logarithmic 19±0.16 5.8±0.096    4.7 

Logarithmic 
and Linear 

11±0.47 2.6±0.19 11±0.56   3.1 

Exponential  0.50±0.30 28±0.78 1.5±0.093   2.5 

Lomnitz 0.36±0.38 15±1.0 3.3±0.50   2.6 

Lomnitz and 
Linear 

0.96±0.33 460±730 0.27±0.25 -88±82  2.4 

GRL N/A N/A N/A N/A  N/A 

Exponential 
and Linear 

0.92±0.33 120±140 0.53±0.36 -29±30.0  2.4 

Modified 
Omori 

0.52±0.29 28±0.85 6.5E-8±0.038 2.2E7±1.1E13  2.5 

Power 4.5±0.18 18±0.30 1.9E13±0.30   3.4 

Power and 
Linear 

4.5±0.18 11±29 5.9E13±4.8E13 6.9±29  3.4 

Burgers N/A N/A N/A N/A N/A N/A 

Modified 
Omori and 
Linear 

N/A N/A N/A N/A N/A N/A 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 

 
 
 
 
 



42 
 

 

 
Figure C4: Hierarchy corresponding to Table C4. 
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Table C5: Parameter and 
2 values for the F11N1 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to 
be obtained. Here there is a zero noise level.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 9.9±0.041 32±0.070    100 

Logarithmic 38±0.037 11±0.023    81 

Logarithmic 
and Linear 

26±0.11 7.0±0.043 15.0±0.13   34 

Exponential  0.15±0.078 48±0.12 2.0±0.014   0.0061 

Lomnitz -2.5±0.12 20.0±0.13 8.0±0.16   4.3 

Lomnitz and 
Linear 

-0.55±0.10 57±2.0 2.3±0.087 -26±1.0  0.063 

GRL 0.21±0.092 93±0.91 0.55±0.013 1.1±0.023  0.080 

Exponential 
and Linear 

-0.16±0.088 48±0.88 2.0±0.040 0.17±0.53  0.0084 

Modified 
Omori 

-0.47±0.099 51±0.55 0.31±0.061 7.5±1.3  0.094 

Power -1.7±0.098 130±1.2 0.22±0.0028   2.0 

Power and 
Linear 

-0.39±0.098 120±0.65 0.46±0.015 -17±0.89  0.075 

Burgers -0.16±0.11 48±15 2.0±0.33 16±3.46E4 0.015±33 0.032 

Modified 
Omori and 
Linear 

-0.45±0.13 270±503 1.8±0.87 1.3±0.60 -21±-11 0.043 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 
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Figure C5: Hierarchy corresponding to Table C5. 
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Table C6: Parameter and 
2 values for the F11N2 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to 
be obtained. Here there is normal noise and random walk.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 12±0.086 34±0.15    60 

Logarithmic 44±0.077 13±0.050    37 

Logarithmic 
and Linear 

42±0.24 13±0.096 1.4±0.28   36 

Exponential  -7.1±0.19 53±.18 3.5±0.036   14 

Lomnitz -8.5±0.36 18±0.18 18±0.81   21 

Lomnitz and 
Linear 

-5.6±0.22 95±4.2 2.4±0.11 -67±2.2  12 

GRL N/A N/A N/A N/A  N/A 

Exponential 
and Linear 

-5.7±0.19 74±1.3 2.4±0.051 17±0.87  12 

Modified 
Omori 

N/A N/A N/A N/A  N/A 

Power -8.8±0.27 280±5.8 0.10±0.0024   19 

Power and 
Linear 

N/A N/A N/A N/A  N/A 

Burgers N/A N/A N/A N/A N/A N/A 

Modified 
Omori and 
Linear 

N/A N/A N/A N/A N/A N/A 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 
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Figure C6: Hierarchy corresponding to Table C6. 
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Table C7: Parameter and 
2 values for the F11N3 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to 
be obtained. The noise level is random-walk only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 9.5±0.041 30±0.070    196 

Logarithmic 36±0.037 11±0.023    180 

Logarithmic 
and Linear 

25±0.11 6.8±0.043 13±0.13   130 

Exponential  -0.81±0.079 45±0.11 2.2±0.015   92 

Lomnitz 2.7±0.12 19±0.12 8.6±0.17   99 

Lomnitz and 
Linear 

-0.63±0.099 71±2.8 1.9±0.072 -35±1.8  92 

GRL -0.41±0.09 92±0.88 0.55±0.012 1.9±0.021  92 

Exponential 
and Linear 

-0.54±0.088 51±0.97 1.9±0.039 -3.5±0.57  92 

Modified 
Omori 

-0.81±0.079 45±0.11 5.6E-8±0.0031 3.8E7±2.1E12  92 

Power -2.1±0.10 130±1.3 0.20±0.0026   96 

Power and 
Linear 

N/A N/A N/A N/A  N/A 

Burgers N/A N/A N/A N/A N/A N/A 

Modified 
Omori and 
Linear 

-0.54±0.12 51±9.8 5.1E-3±0.31 380±2.3E4 -3.6±4.1 92 

GRL and 
Linear 

N/A N/A N/A N/A N/A N/A 
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Figure C7: Hierarchy corresponding to Table C7. 
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Table C8: Parameter and 
2 values for the F11N4 synthetic time-series. It was created with similar total displacement amplitude 

to FAIR of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit was able to 
be obtained. The noise level is normal noise only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear -2.0±0.22 -49±0.36    10 

Logarithmic 38±0.19 14±0.12    28 

Logarithmic 
and Linear 

-4.7±0.60 -1.2±0.24 53±0.70   10 

Exponential  20±0.13 -8.6E-9±3.7E-8 -14±-2.7   50 

Lomnitz N/A N/A N/A   N/A 

Lomnitz and 
Linear 

N/A N/A N/A N/A  N/A 

GRL N/A N/A N/A N/A  N/A 

Exponential 
and Linear 

N/A N/A N/A N/A  N/A 

Modified 
Omori 

N/A N/A N/A N/A  N/A 

Power N/A N/A N/A   N/A 

Power and 
Linear 

-2.1±0.23 50±-22 -3.3E13±1.4E13 -0.23±21  11 

Burgers N/A N/A N/A N/A N/A N/A 

Modified 
Omori and 
Linear 

N/A N/A N/A N/A N/A N/A 

GRL and 
Linear 

N/A N/A N/A N/A N/A N
/ 
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Figure C8: Hierarchy corresponding to Table C8. 
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Table C9: Parameter and 
2 values for the M10N1 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was 
able to be obtained. The noise level is zero.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 34±0.051 101±0.087    1.0E3 

Logarithmic 120±0.045 39±0.032    220 

Logarithmic 
and Linear 

97±0.15 29±0.063 33±0.17   45 

Exponential  2.3±0.097 150±0.16 1.9±0.0052   49 

Lomnitz -11±0.18 58±0.14 10.4±0.088   1.0E-3 

Lomnitz and 
Linear 

-12±0.23 58±0.52 11±0.19 0.52±0.51  0.010 

GRL -11±0.26 590±7.9 0.10±0.0028 0.019±0.0093  0.028 

Exponential 
and Linear 

-5.1±0.13 93±0.29 3.9±0.023 43±0.28  4.7 

Modified 
Omori 

-11±0.25 1.5E3±300 8.9±0.31 1.0±0.010  0.098 

Power 5.7±0.13 430±1.6 0.20±0.001   5.8 

Power and 
Linear 

-9.5±0.19 510±3.6 0.14±0.0017 17±0.44  0.27 

Burgers -9.1±0.21 50±0.75 7.2±0.14 150±0.53 0.93±0.017 0.15 

Modified 
Omori and 
Linear 

-11±0.32 380±92 6.9±0.72 1.2±0.067 8.4±2.4 0.091 

GRL and 
Linear 

-11±0.33 550±14 0.12±0.0057 0.17±0.045 8.8±2.4 0.068 
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Figure C9: Corresponding hierarchy for Table C9. 
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Table C10: Parameter and 
2 values for the M10N2 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was 
able to be obtained. The noise level is normal noise and random walk.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 24±0.081 93±0.14    200 

Logarithmic 110±0.074 34±0.048    120 

Logarithmic 
and Linear 

74±0.23 22±0.094 40.2±0.26   32 

Exponential  1.7±0.14 150±0.34 1.5±0.0074   19 

Lomnitz -5.0±0.20 65±0.32 5.4±0.068   17 

Lomnitz and 
Linear 

-3.7±0.24 78±2.0 4.2±0.14 -8.9±1.3  17 

GRL -4.4±0.27 340±5.8 0.21±0.0089 0.052±0.024  17 

Exponential 
and Linear 

16±0.11 8.2E-5±0.0020 -6.3±15 120±0.33  282 

Modified 
Omori 

-4.6±0.28 2.1E3±1.4E3 4.9±0.33 1.0±0.025  18 

Power -2.2±0.16 290±1.6 0.32±0.0028   17 

Power and 
Linear 

-2.7±0.21 290±2.2 0.29±0.0079 4.5±1.2  17 

Burgers -19±1.1 30±1.0 26±1.2 150±0.47 1.2±0.011 13 

Modified 
Omori and 
Linear 

-3.7±0.36 8.4E3±1.8E05 4.2±1.2 1.0±0.21 -8.5±11 17 

GRL and 
Linear 

-11±9.3 1.3E3±2E4 8.2E-3±0.044 -3.6±0.95 -210±55 15 
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Figure C10: Corresponding hierarchy for Table C10.  
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Table C11: Parameter and 
2 values for the M10N3 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was 
able to be obtained. The noise level is random walk only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 36±0.051 99±0.087    1.1E3 

Logarithmic 130±0.045 38±0.032    330 

Logarithmic 
and Linear 

97±0.15 28±0.063 34±0.17   150 

Exponential  5.1±0.097 150±0.16 1.9±0.0052   140 

Lomnitz -7.5±0.17 59±0.14 9.8±0.082   98 

Lomnitz and 
Linear 

-6.7±0.21 62±0.59 8.9±0.16 -3.3±0.55  98 

GRL -6.2±0.23 530±6.2 0.12±0.0030 0.076±0.0097  98 

Exponential 
and Linear 

-1.8±0.13 93±0.31 3.7±0.023 42±0.29  99 

Modified 
Omori 

-6.2±0.23 850±98 7.4±0.26 1.1±0.011  98 

Power -2.4±0.13 420±1.6 0.21±0.0011   101 

Power and 
Linear 

-5.2±0.18 470±3.2 0.15±0.0019 14.5±0.46  98 

Burgers -3.7±0.19 60±1.3 5.4±0.12 150±1.2 0.71±0.027 97 

Modified 
Omori and 
Linear 

-4.3±0.24 140±8.0 2.5±0.27 2.2±0.17 24±1.7 98 

GRL and 
Linear 

-4.3±0.24 430±7.5 0.18±0.0057 0.54±0.035 25±1.7 98 
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Figure C11: Corresponding hierarchy for Table C11. 
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Table C12: Parameter and 
2 values for the M10N4 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Lomnitz relation. “N/A” here means that no reasonable fit was 
able to be obtained. The noise level is normal noise only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 36±0.21 94±0.35    76 

Logarithmic 120±0.19 38±0.13    11 

Logarithmic 
and Linear 

110±0.60 34±0.25 14±0.69   9.3 

Exponential  -5.3±0.41 140±0.51 2.6±0.025   2.0 

Lomnitz -22±0.98 49±0.44 20.0±0.87   4.7 

Lomnitz and 
Linear 

-9.9±0.66 110±4.2 5.1±0.28 -55±3.0  2.1 

GRL -7.5±0.58 410±8.8 0.3±0.013 0.80±0.031  1.9 

Exponential 
and Linear 

-6.9±0.48 130±1.9 3.0±0.068 12±1.5  1.8 

Modified 
Omori 

-7.5±0.58 160±2.2 0.66±0.13 5.0±0.76  1.9 

Power -14±0.6 590±10.3 0.13±0.0027   2.9 

Power and 
Linear 

-9.2±0.6 490±8.0 0.23±0.010 -29±2.5  2.0 

Burgers -6.9±0.0 130±0.0 3.0±0.0 4.3E6±0.0 2.1E-6±0.0 2.7 

Modified 
Omori and 
Linear 

-6.9±0.64 130±8.6 7.9E-7±0.27 3.8E06±1.3E12 12±4.5 1.8 

GRL and 
Linear 

-5.9±0.62 360±12 0.38±0.023 1.2±0.075 19±2.6 1.8 
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Figure C12: Corresponding hierarchy for Table C12. 
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Table C13: Parameter and 
2 values for the M11N4 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit 
was able to be obtained. The noise level is normal noise.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 23±0.10 87±0.17    230 

Logarithmic 100±0.093 33±0.06    81 

Logarithmic 
and Linear 

84±0.29 27±0.12 23±0.33   59 

Exponential  -9.4±0.18 130±0.27 2.2±0.012   15 

Lomnitz -18±0.33 51±0.27 11±0.19   30 

Lomnitz and 
Linear 

-10.2±0.25 160±4.8 2.5±0.081 -76.7±2.5  16 

GRL -9.3±0.23 290±2.6 0.47±0.0098 1.0±0.018  14 

Exponential 
and Linear 

-9.7±0.22 130±1.7 2.3±0.035 2.7±1.1  15 

Modified 
Omori 

-9.4±0.2 130±0.47 3.5E-7±0.021 6.3E6±3.8E11  15 

Power 23±0.10 87±0.17 4.2E13±2.3E12   232 

Power and 
Linear 

N/A N/A N/A N/A N/A N/A 

Burgers -9.7±0.21 129±0.0 2.3±0.0 1.9E7±0.0 1.5E-7±0.0 15 

Modified 
Omori and 
Linear 

-9.7±0.22 130±1.6 1.5E7±0 1.5E7±0.0 2.9±1.1 15 

GRL and 
Linear 

-8.3±0.26 250±6.1 0.54±0.017 1.4±0.060 20.0±3.0 0.03 
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Figure C13: Corresponding hierarchy for Table C13. 
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Table C14: Parameter and 
2 values for the M11N3 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit 
was able to be obtained. The noise level is random walk only.  

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 31±0.051 110±0.087    1.6E3 

Logarithmic 130±0.045 43±0.032    520 

Logarithmic 
and Linear 

100±0.15 33±0.062 34±0.17   330 

Exponential  -7.4±0.099 170±0.15 2.0±0.0047   90 

Lomnitz -18±0.17 68±0.15 9.2±0.068   160 

Lomnitz and 
Linear 

-8.5±0.13 210±2.7 2.2±0.030 -99±1.4  90 

GRL -7.2±0.12 340±1.2 0.51±0.0043 1.0±0.0078  90 

Exponential 
and Linear 

4.5±0.096 2.3E7±2.2E8 2.7E-3±0.014 6.3E4±3.1E5  192 

Modified 
Omori 

-7.5±0.092 170±0.0 4.6E-7±0.0 4.5E6±0.0  90 

Power -14±0.13 480±1.6 0.21±9.1E-4   120 

Power and 
Linear 

-8.2±0.13 430±0.80 0.46±5.2E-3 -64±1.1  88 

Burgers -7.3±0.11 170±1.0 2.0±0.014 1.8E7±0.0 -7.9E-8±0.0 89 

Modified 
Omori and 
Linear 

-7.3±0.11 170±3.0 1.1E-6±0.029 1.9E6±0.029 1.6±1.3 89 

GRL and 
Linear 

N/A N/A  N/A N/A N/A N/A 
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Figure C14: Corresponding hierarchy for Table C14. 
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Table C15: Parameter and 
2 values for the M11N2 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit 
was able to be obtained. The noise is random walk and normal. 

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 27±0.047 98±0.077    1100 

Logarithmic 120±0.043 38±0.027    320 

Logarithmic 
and Linear 

98±0.13 31±0.053 24±0.15   216 

Exponential  -8.3±0.084 150±0.13 2.1±0.0047   34 

Lomnitz -18±0.15 57±0.13 11±0.087   90 

Lomnitz and 
Linear 

-8.5±0.11 220±2.9 2.1±0.028 -105±1.3  32 

GRL -7.1±0.098 310±1.0 0.55±0.044 1.2±0.0075  34 

Exponential 
and Linear 

-7.3±0.094 170±1.2 1.8±0.013 -13±0.68  34 

Modified 
Omori 

-8.3±0.20 150±0.99 1.2E-7±0.045 1.6E7±0.045 1.6E7±6.0E12 34 

Power -14±0.11 470±1.6 0.18±8.0E-4   61 

Power and 
Linear 

-8.1±0.11 404±0.65 0.51±0.0059 -75.8±1.2  33 

Burgers -7.1±0.13 210±93 1.7±0.26 -86±58 0.57±0.85 34 

Modified 
Omori and 
Linear 

-8.2±0.16 940±670 1.5±0.31 1.3±0.25 -86±15 33 

GRL and 
Linear 

-8.5±0.17 490±30.7 0.51±0.0085 -0.42±0.26 -150±27 33 
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Figure C15: Corresponding hierarchy for Table C15. 
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Table C16: Parameter and 
2 values for the M11N1 synthetic time-series. It was created with similar total displacement 

amplitude to MENT of the Denali network and produced from the Exponential relation. “N/A” here means that no reasonable fit 
was able to be obtained. There is zero noise here. 

Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 2  

Linear 31±0.051 110±0.087    1500 

Logarithmic 130±0.045 43±0.032    440 

Logarithmic 
and Linear 

100±0.15 32±0.062 36±0.17   230 

Exponential  -6.9±0.098 170±0.15 2.0±4.6E-3   0.0045 

Lomnitz -17±0.16 69±0.15 8.8±0.063   61 

Lomnitz and 
Linear 

-8.2±0.13 210±2.8 2.2±0.030 -95.4±  0.56 

GRL -6.9±0.12 340±1.3 0.50±0.044 1.0±0.0081  0.016 

Exponential 
and Linear 

-7.0±0.11 170±1.1 2.0±0.014 1.3±0.65  0.040 

Modified 
Omori 

-7.3±0.12 170±0.54 0.074±0.018 28±6.4  0.098 

Power -13±0.13 47±1.6 0.21±9.3E-3   28 

Power and 
Linear 

-7.9±0.13 420±0.80 0.46±0.0052 -62±1.1  0.34 

Burgers -6.9±0.15 170±17 2±0.11 21±4.5E5 0.0046±98 0.025 

Modified 
Omori and 
Linear 

-7.3±0.16 230±23 0.46±0.15 4.5±1.4 19±6.3 0.087 

GRL and 
Linear 

-6.6±0.15 320±4.8 0.52±0.0072 1.1±0.041 11±2.9 0.093 
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Figure C16: Corresponding hierarchy for Table C16. 
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