

- Two models for subduction zones are illustrated
- Rocks can move as a coherent package (left) or as a mixed package (right)
- Using zirconium in rutile geothermometer to approximate temperatures of formation for rocks to support endmember model

### **Primary Goals**

- Determining peak zirconium concentrations in rutile
- Calculating peak temperatures of formation based off of the zirconium concentrations in rutile
- Comparing zirconium concentrations between rock samples to determine if there is differences in zirconium concentrations outside of uncertainty

# Hypothesis:

• Zirconium content of samples will be significantly different from each other (outside of uncertainty)



Location of samples in the Catalina Schist marked by a star. (Dr. Sarah Penniston-Dorland)

# **Zirconium in Rutile Geothermometry: Peak Temperature Determination in the Catalina Schist**

Geol 394

By Steven Noll

# Methods

- Used petrographic microscope to map rutiles •
- Used Electron Probe Microanalyzer to determine zirconium concentrations lacksquareUsed zirconium in rutile geothermometer as calibrated by Tomkins et al (2007) Used 10 kbar calibration for temperature calculations

# **Data and Results**





#### Garnet Amphibolite- Crystal F 350 300 200 100 50 70.00 Distance across Crystal (micrometers)

Representative charts depicting zirconium content in a crystal from each sample. The error bars indicate 2 sigma uncertainty due to counting statistics of the electron probe microanalyzer, the blue line indicates the average zirconium content based off of usable data (within uncertainty and less than 300 ppm silicon content), and the red lines indicate 2 sigma uncertainty from standard deviation of mean (SDOM).

| Garnet Quartzite A |                               | Garnet Amphibolite |                                | Garnet Mica Schist |                    |             |         | Garnet Quartzite B |             |
|--------------------|-------------------------------|--------------------|--------------------------------|--------------------|--------------------|-------------|---------|--------------------|-------------|
|                    | AverageZr Content Uncertainty | Crystal            | Average Zr Content Uncertainty | Crystal            | Average Zr Content | Uncertainty | Crystal | Average Zr Content | Uncertainty |
| А                  | 468 49                        | В                  | 338 37                         | A                  | 328                | 40          | A       | 357                | 56          |
| В                  | 457 46                        | с                  | 280 89                         | В                  | 351                | 50          | B       | 289                | 56          |
| С                  | 465 11                        | F                  | 249 26                         | C                  | 305                | 97          | 6       |                    |             |
| D                  | 458 76                        | Average            |                                | D                  | 185                | 49          | C       | 314                | 62          |
| E                  | 4/3 36                        | Average            | 289                            | E                  | 400                | 70          | D       | 379                | 31          |
| F                  | 453 40                        | SDOM               | 91                             | Average            | 346                |             | E       | 387                | 45          |
| Average            | 462                           |                    |                                | SDOM               | 81                 |             | Average | 345                |             |
| Uncertainty        | 86                            |                    |                                | 000111             |                    |             | SDOM    | 84                 |             |

All temperatures are in °C and zirconium content is in ppm

Advisors: Dr. Sarah Penniston-Dorland and Dr. Phil Piccoli







### Summary

| ample              | Zirconium Content | SDOM  | Temperature | SDOM |
|--------------------|-------------------|-------|-------------|------|
| Garnet Mica Schist | 346               | 81    | 661         | 19   |
| Garnet Quartzite A | 462               | 86    | 686         | 19   |
| Garnet Amphibolite | 289               | 91    | 646         | 25   |
| Garnet Quartzite B | 345               | 84    | 661         | 18   |
| A 11 .             |                   | ~ 1 • | •           |      |

All temperatures are in °C and zirconium content is in ppm



Final temperatures range from 646 to 686 °C All temperatures fall within uncertainty of each other

Zirconium content is the same within uncertainty

Does not support my hypothesis of

significantly different zirconium contents

Supports single package end member theory

## **Comparison to Other Results**

• Temperatures calculated by McBride (2013) were 630-708 °C



PT diagram illustrating P-T conditions specific to the amphibolite facies rocks, labeled AM, of the Catalina Schist (Bebout, 2007). Yellow star indicates T calculated from this study. References

Bebout, G. E., Metamorphic chemical geodynamics of subduction zones, Earth and Planetary Science Letters 260, 2007, p 373-393 McBride, H., 2013, Zirconium in Rutile Thermometry: Temperature Estimates for Metamorphic Rocks of the Catalina Schist Tomkins, H.S., Powell, R., Ellis, D.J., 2007, The pressure dependence of the zirconium-inrutile thermometer, J. metamorphic Geol., 2007, 25, 703–713