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m a block in the Franciscan Complex, California
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The release and transport of fluids in a subduction zone affects essential earth processes such as magma generation, seismicity WA L T TG, e IS o e sl T AT R, e (WDS) ANALYSIS T
(earthquakes) helps to drive plate tectonics by making the downgoing plate more dense R . et ' - S —— - SO A\ o
Many questions relate to the study of subduction zones such as: " '
o How fluids move through the subduction zone 2R3
Sources of the fluids
How are elements distributed
Degree of material alteration
Material staying in the mantle
o How the inputs into a subduction zone compare to the outputs of the subduction zone and arc volcanic rocks

Penniston-Dorland et al. (2010) demonstrated an association between altered parts of subduction zone rocks (rinds) with

altered whole-rock Li concentrations and isotopic compositions, compared to associated relatively unaltered rocks :L LASER ABLATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER (LA-ICP-MS)

This association suggests that Li can be used as a tracer of subduction zone fluids MR Mt. Hamilton Block Li Concentrations L A single collector ICP-MS (Element 2, Thermo Electron Corp) was coupled to a laser ablation system
In this study, Li concentrations of chlorites, amphiboles and phengites in subduction zone amphibolites and blueschists are O wntigal —_—— ~ ., + Output wavelength of 213 nm (UP213, New Wave Research)
used to decipher the mineral-scale record of fluid-rock interactions experienced by the block ; ' —4—Amphibole Operated at 2.01 J/cm? -

5 Hi0 Phengite §Y¥ + Laser ablation was done with 80um laser spots
g 1 ; “—Chlorite 7 Hz flash rate
PROBLEM B o . N .
. - . . . . (s fi Ay ; e Data were collected for the following masses: °Li, ’Li, '°B, "B, #’Al, #°Si, and **Ca
A_rteh thel:r)il systematlc céllff.edre;\ces in Li concentrations related with parts of rocks and minerals that have interacted ' 3 Data was processed with LAMTRACE (Achterbergh et al., 2006)
with subduction zone fluids "Li concentrations : _ A " Standard reference materials (SRM): BCR2g and NIST610 are silicate glasses with known concentrations of Ca, Li, Si, Al and

(ppm) other trace elements (GeoReM)

/1! ELECTRON PROBE MICROANALYZER (EPMA) WAVELENGTH DISPERSIVE SPECTROMETRY (i

Accelerating potential of 15 kV

Cup current of 20 nA

Beam diameter of 10 um

Raw X-ray intensities were corrected with the ZAF algorithm

Standards used for all minerals: Kakanui hornblende, Engels hornblende, rhodonite

Additional standards used: for amphiboles - Lake County plagioclase; for chlorites - albite, staurolite, and orthoclase;
for phengites - albite, orthoclase, and hypersthene

HYPOTHESIS

« Li concentrations of each mineral will be lower in the fluid-altered part of the rock (rind) than in the less altered part of the rock (block core) __ e\ a7 NN T at ' AN Sl o U A SN 2
o Based on: measurements in Penniston-Dorland et al. (2010) where bulk rock Li concentrations in block cores were higher " ' | X
than in block rinds () ;i& ; LITHIUM
Within single minerals Li concentrations will be lower in mineral rims than in the mineral cores : : o _ _ _
o Based on: previous bulk rock studies and observations of retrograde mineral textures .. Lithium Exchange Reactions in Minerals

_ R I R B [ N Rind Transition Core Vein SR . . Y . . . . . . .
& g I E“%\\ AN SR AT S NGy P T AT ST N e e RN - 2 Bl T e SR\ Li occupies the octahedral (6-fold) sites in most silicate minerals, including amphibole, chlorite and phengite,
;-1_"‘};'22} “}:H‘} e~ (O N0 e S o e PR 0- - OV BB oomee (i o W7 1 el VIR TN Li concentrations for block rinds, blueschist transition zone, block core, and vein. e replacing Al or Mg (Wunder et al., 2007) - | | o
S S o A The bars show the range of concentrations. poh" Li has a valence state of +1, and incorporation of Li into a mineral usually involves coupled substitution
SANE Examples include; in muscovite [6]Li* [6]Fe*_ [4]Si**,, [4]Al**_ and [6]Li* [6]AI°*[6]Fe?*_, (Brigatti et al., 2001).

Y S Li* may also substitute for K* in the interlayers (Brigatti et al., 2001). In amphiboles Li can substitute into the
Average Lithium Concentrations and Ranges dnts A or B site (Deer et al., 1991)

P Variations in Li concentrations in minerals may reflect variations in Li concentrations in the fluid, however, since

. . . more than one element is involved in the incorporation of Li into the mineral structure, these variations might also
- Amph|b0|e Range Chlorite Range Phenglte Range e reflect the activity of other fluid species, such as Si or Al

+ : ¥ : + : Vs . .
Rind | 22402 | 05114 | 461453 |35.1-58.1] 538433 |36.8-629| N

« Liis a fluid mobile element
« Experimental evidence suggests that Li can partition strongly into aqueous fluids at a high pressure and high

11.6 0.8 220114 114.9-25.71 40.6 2.5 |17.4-60.2 L temperature (Brenan et al., 1998)

« What controls the Li concentrations and isotopic compositions of subduction zone metamorphic rocks?:

148 +1.1 37.1+2.7 119.2-6241 359422 112.2-51.6 i o role of dehydration reactions (Zack et al., 2003)

Mount ' ¥ N o role of diffusion (Marschall et al., 2007)
San Francisco Hamilton - Sosaliie. All concentrations and ranges are in ppm. Each mineral is shown with its respective ) Lo o role of fluid infiltration (Penniston-Dorland et al., 2010)
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I Central Belt //Iithologic contact Pressure Range. 10.5 +1.5 kbar
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1Giaramita and Sorensen 1994 1 p e = NS ,". LT, e A i e — B LSRR 145 AP R e 3 a0 * 20 uncertainty from the EPM
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' mphibole : :
P , DIOCK Lore Amphibole, Vein
b

A (average of spotx2xaverage of uncertainty)
' 100

Ty

\/.025><number seconds of ablationXcounts given from laser

Error Propagation
F A « To propagate EPMA uncertainties the relative variance equation from Potts (1987) was used
s Heterogeneous Homogeneous 02 S EZECT ) s
BLOCK FLU'D EV'DENCE ThAL: ¢ e . \/(E“) + (Fb) + (?C , Where (Z“‘L)2 Is the uncertainty from the EPMA, (E“')2 Is the Poisson counting
8i Ln . W4  HETEROGENEITY LN
ol SR e i b Determined by comparing average Li concentrations, standard deviations, and uncertainties
(Li: 21-30 ppm) PR * ) )
PROGRADE AND RETROGRADE FLUID FEATURES i B ST A | f standard deviation > uncertainty = heterogeneous
f standard deviation < uncertainty = homogeneous
44 heterogeneous and 13 homogenous

Of 44 heterogeneous grains: 18 are amphiboles, 6 are chlorites, and 20 are phengites
Of 13 homogenous grains: 3 are amphiboles, 8 are chlorites, and 2 are phengites

statistic from the LA-ICP-MS, and (‘%‘f)2 Is the standard deviation of the standard reference material,

« Evidence for fluids during peak of subduction zone metamorphism:
o Prograde textures:
X fluid inclusions in peak metamorphic minerals
X hydrous peak metamorphic minerals (phengite)
X veins filled with peak metamorphic minerals
These features are exhibited by the block core and vein

CONCLUSIONS

' " Veins
0 Retrograde textures: Core (Li: 13-20 ppm) (Li: 21-30 ppm)

X chlorite replacing garnet TR I\ AT PR e Y RS = A AR [ o oy R e . . . . .

X lower-T amphibole rimming a higher-T amphibole AV o\ : WA SN0 L7 DL AN Ve 3 A0 *.., A i ) \ L concen_tratlon of the mo.st apundant mmeral n the bloc?k, amphlbolle, decreases from block core (11.6 ppm)

K low-T hydrous minerals associated with metasomatism in outer part of block Schematic of Mt. Hamilton block. A b | Yo Y [Qangir X 2y GF ) R [ Zir=ho fo bloc}k rind -(2'2 ppm), mirroring the trend in bulk rock L. cqncentratlon :

These features are exhibited by the block rind and blueschist transition zone Bulk rock Li concentrations +10% RO AR RN AL N e e L (W R e W B e il Bl Amph'F’O'e_'—' values generally lower than those of the Chlorlte (22'0_' 46.1 ppm) or phe_nglte (35.9 — 53'_8 ppm)
. M AL ‘\ Vi G Y, PR AN o B N e YRR T oK o s i S Phengites in all parts of the block are heterogeneous, with overlapping concentrations in the core (ranging from

(Penniston-Dorland et al.,2010). Block R R 7 4 [ 7 i e = - ik A et ORI - :
core is a relatively unaltered garnet ST AR TR Y e LR T RT T e RV T T (L ke 17.4 - 60.2 ppm) and the rind (from 36.8 —62.9 ppm)
amphibolite. Blueschist transition zone e | . . mm b K. | f e | | e— |~ Chlorite in the block rind, has a hi.gh?f (35.1-58.1 ppm) Conp entration Of_ Li than chlorites in the core :
reflects blueschist overprint. Block rind Lok S . AR MG AR e\ A e e [ Y ; (14.9 — 25.7 ppm), however the significance of these results in unclear, given that there was only one grain
is a later product of metasomatism. n‘ B A Y 4 LA R Nl MYV R e e T e TR ol T measured in the block rind.
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