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Geologic map and cross section of Santa Catalina Island. The red star
represents the locality where samples were collected.

Adapted from Penniston-Dorland et al. (2018)

- Material is broken off from subducting slab and overriding plate
during subduction and carried further down into the subduction zone
- Material is subducted and uplifted, having recorded some information
in the form of metamorphic changes about the convoluted path it took
« Grade of metamorphism experienced depends on how deep
material was subducted
- Paleosubduction zones provide a chance to analyze samples that have
been uplifted in old subduction zones.

Samples
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amphibolite

- Catalina Schist is an exhumed paleosubduction zone
located on Santa Catalina Island, California
| « A previous study from a several kilometers-wide amphibolite
facies mélange zone of the Catalina Schist supports the idea that
= blocks move independently of each other during subduction
-5 (Penniston-Dorland et al. 2018)
Epidote-Amphibolite 5 33207« QOllas fault zone is narrower than the amphibolite mélange of
the Catalina Schist with an upper estimated width of 138 meters

Block-in-matrix structure of Ollas fault zone.
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The location of the samples from above and within the fault zones, represented by photomicrographs in plane polarized light with 10x magnification
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Hypothesis

- Two possible models for block movement: everything
moves togeher or blocks experience differential transport

- If everything moves together, blocks could have similar
peak temperatures, indicating all samples were
metamorphosed at the same depth

- If blocks experience differential transport, blocks could have
different peak temperatures, indicating that blocks
reached different depths

- | predict tectonic mixing occurred with samples experiencing
differential transport; therefore, different temperatures will be recorded

Flowing Stiffer
W, Sheet %ﬁ% chain
= silicates silicates

A model of mixing in a fault zone
Adapted from Penniston-Dorland et al. (2018)

Methods

- Used EPMA to analyze samples with rutile (coherent amphibolite, actinolite schist, biotite amphibolite,

garnet amphibolite, talc biotite schist)

- Coherent amphibolite, quartzite, and grayschist samples did not contain rutile

Zr-in-Rutile Thermometer (Tomkins et al. 2007)
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The calibration of the Zirconium-in-Rutile geothermometer by Tomkins et al. 2007. The geothermometer

has a pressure dependence of about 4 degrees C per 0.1 GPa (Penniston-Dorland et al. 2018).

Results
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Grain Analyzed

Graph with concentrations of zirconium for each grain plotted. Horizontal bars indicate the mean-maximum zirconium concetration for each sample.

Error bars represent 2 sigma uncertainty.
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Box and whisker plot displaying the range of zirconium-in-rutile concentrations for each sample. Circles
represent the mean-maximum zirconium concentration for each sample with 2 sigma uncertainty.

Discussion
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The scale of mixing between two samples from the Ollas fault zone displaying a difference in peak metamorphic temperatures of 74°C, assuming a

subduction angle of approximately 20 degrees (Penniston-Dorland 2018), a temperature gradient of 20 Celsius per kilometer (Sorensen and Barton 1987),
and a pressure of 1 GPa.

- In the km-scale mélange zone the scale of mixing was 11.7 kilometers (Penniston-Dorland et al. 2018)
- The Ollas fault zone is an order of magnitude smaller, but still displays a similar scale of mixing
- The samples experienced differential transport, supporting my hypothesis
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