

Systematics of Fine Detail Fossil Preservation

An Elemental Analysis of the Mazon Creek Lagerstatte

Brendan Shimizu (394)

Advisors: Dr. Ash, Dr. Holtz

Introduction

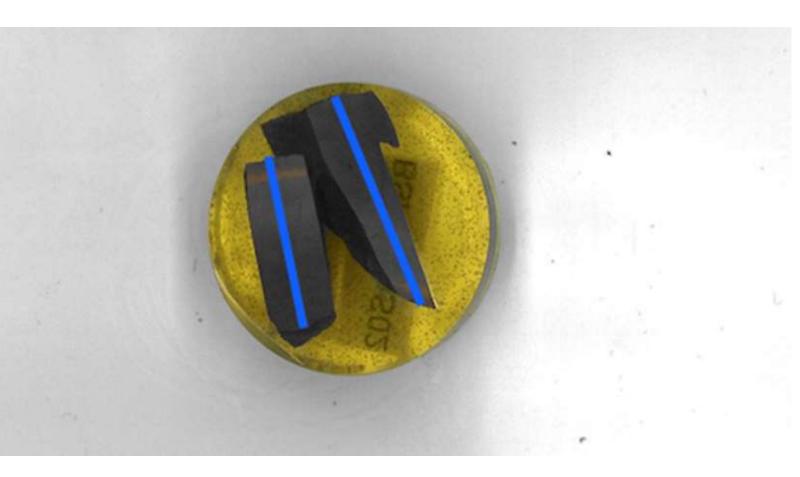
The Mazon Creek Lagerstatte is a world famous fossil locality that has yielded exceptionally preserved fossils housed in siderite nodules. Some of the siderite nodules from the Mazon Creek Lagerstatte do not contain fossils. In order for siderite to form at surface pressures and temperatures, the environment must be reducing. The formation of the Mazon Creek nodules is hypothesized to be the result of bacterial sulfate reduction (BSR) which provided the requisite reducing agents. It has been hypothesized that the non-fossiliferous nodules precipitated from organic debris, in contrast to the fossiliferous nodules that precipitated from macroscopic organic material.

Figure 1: Fossiliferous Sample, Mazon Creek siderite nodule, Pectopteris sp., provided by the University of Maryland Geology Department.

Figure 2: Non-fossiliferous Sample, Mazon Creek siderite nodule, provided by the University of Maryland Geology

Hypothesis

Siderite nodules with fossils will be more enriched in reduced elemental markers relative to the non-fossiliferous nodules due to higher rates of BSR.


Methods

Fossiliferous and non-fossiliferous nodules were analyzed for reduced elemental markers using LA-ICP-MS. Samples were tested for Eu*, V/Sc, V/Cr, Th/U. Individual samples were ablated 10-13 times along a line. Ablation spots were separated by 150 microns. Samples were analyzed for weight percent oxide using EPMA to determine compositional variation.

context

Figure 3: Example of sample in Figure 4: Samples after preparation, with line of sampling highlighted in blue

Figure 5: Summary of two sample T-test comparing concentrations of redox sensitive ratios

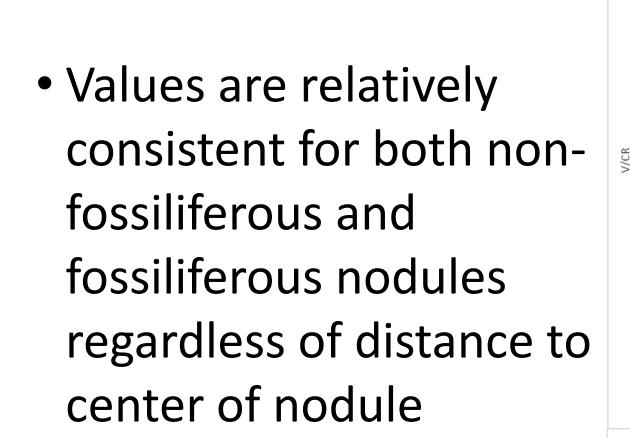
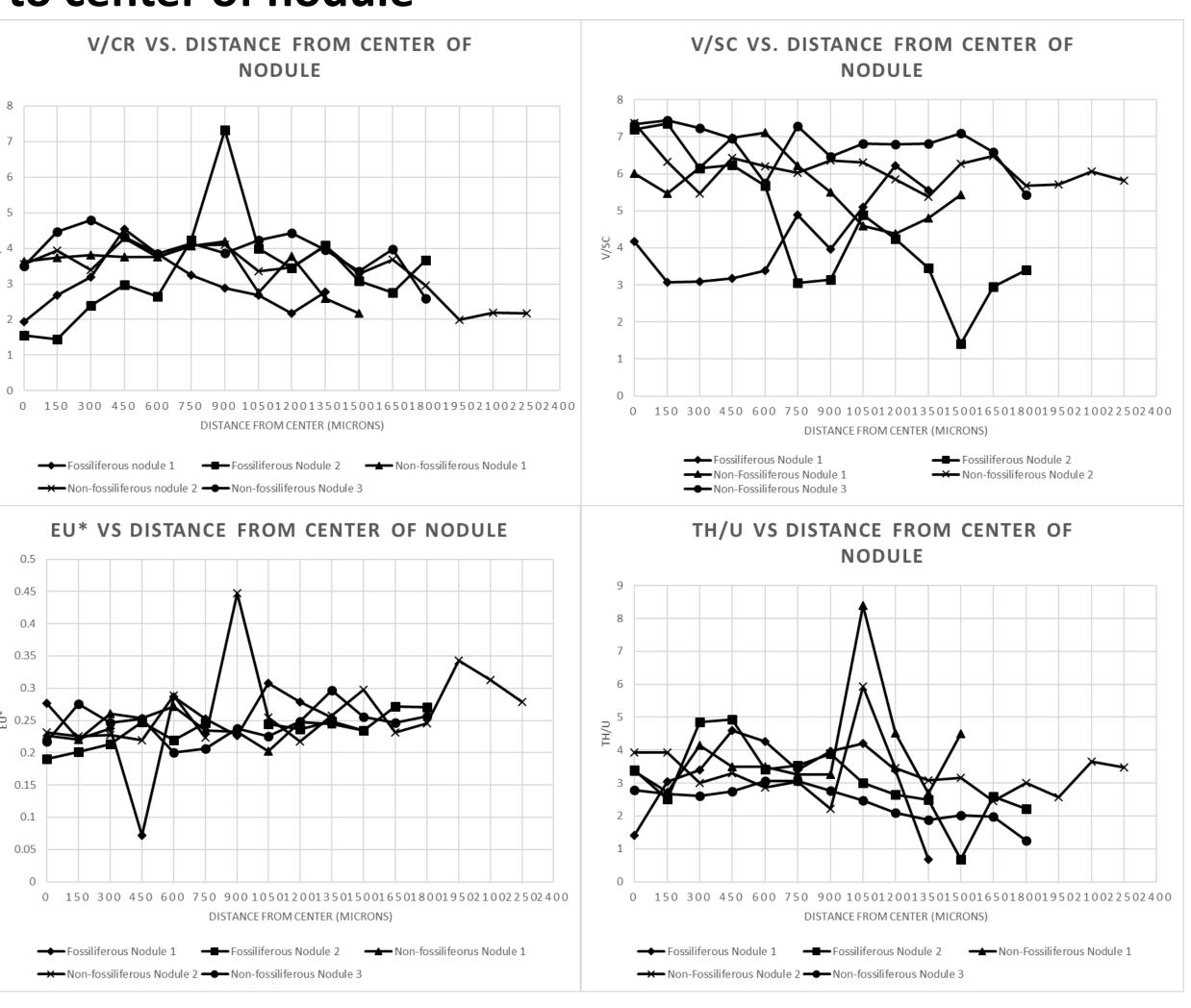

	Eu*		V/Cr		Th/U		V/Sc	
	Fossil	No Fossil						
Mean	0.27	0.25	3.06	3.60	3.23	3.20	4.44	6.21
Variance	0.02	0.00	0.67	0.49	1.27	1.43	2.51	0.61
df	23.00		36.00		46.00		27.00	
t Stat	0.39		-2.54		0.09		-4.93	
P(T<=t) one-tail	0.35		0.01		0.47		0.00	
t Critical one-tail	1.71		1.69		1.68		1.70	
P(T<=t) two-tail	0.70		0.02		0.93		0.00	
t Critical two-tail	2.07		2.03		2.01		2.05	
Significant Difference?	No		Yes		No		Yes	

Figure 6: Summary of interpretation of redox indicator values


	Th/U		V/Cr		Eu*		V/Sc
	Oxic	Anoxic	Oxic	Anoxic	Oxic	Anoxic	Relative, X>Y
	>2	<2	<2	>2	<1	>1	
Fossil	Oxic		Anoxic		Oxic		
No Fossil	Oxic		Anoxc		Oxic		
More Reduced?	No Difference		No Fossil		No Diffe	rence	No Fossil

- No consistent interpretation of redox conditions
- No difference in redox conditions or non-fossiliferous nodules more reduced
- Ranges for Eu* and Th/U must be incorrect, or paleo-redox indicator not applicable (Eu*, Th/U)

Figure 7: Paleo-redox indicator as a function of distance to center of nodule

 Excursions likely the result of inclusions of quartz or kaolinite

Results

Figure 8: Line of best fit summary for redox sensitive ratios

$\mathbf{D} \mathbf{A} \mathbf{O}$		2	3	1	2
R^2	0.0051	0.0277	0.6569	0.3538	0.0016
Slope	0	-0.0002	-0.0007	-0.0012	-0.0001
R^2	0.0045	0.0971	0.0883	0.0761	0.6363
Slope	0	0	0	0	0
R^2	0.3878	0.5312	0.2568	0.0012	0.398
Slope	-0.0008	-0.0007	-0.0005	0	0.0011
R^2	0.3322	0.2031	0.7181	0.2834	0.6195
Slope	-0.0001	-0.0003	-0.0027	-0.0005	0.002
	R^2 Slope R^2 Slope R^2	R^2 0.0045 Slope 0 R^2 0.3878 Slope -0.0008 R^2 0.3322	R^2 0.0045 0.0971 Slope 0 0 R^2 0.3878 0.5312 Slope -0.0008 -0.0007 R^2 0.3322 0.2031	R^2 0.0045 0.0971 0.0883 Slope 0 0 0 R^2 0.3878 0.5312 0.2568 Slope -0.0008 -0.0007 -0.0005 R^2 0.3322 0.2031 0.7181	R^2 0.0045 0.0971 0.0883 0.0761 Slope 0 0 0 0 R^2 0.3878 0.5312 0.2568 0.0012 Slope -0.0008 -0.0007 -0.0005 0 R^2 0.3322 0.2031 0.7181 0.2834

- Slope near or equal to 0 for all indicators
- No significant correlation between distance and redox indicator values. When correlation is moderate (>0.5), slope is still close to 0

Figure 9: Bulk composition of major elements compared to end members

	Fe0 (wt%oxide)	CaO (wt%oxide)	MnO (wt%oxide)	SiO (wt%oxide)
Average of Samples (all samples)	$42.3 \pm 7.6 (1\sigma)$	$2.3 \pm 0.3 (1\sigma)$	$0.5 \pm 0.1 (1\sigma)$	$13.2 \pm 11 (1\sigma)$
Average for Massive Crust, Mn-Rich	43.5	1.6	12.8	1.95
Average for Massive Crust, colomorphous siderite	51	3.85	4.5	2.4
Average for Massive Crust, crystalline	56.7	0.87	1	2.4

Conclusion

- No significant difference between fossiliferous nodules and non-fossiliferous nodules except for redox indicators V/Cr and V/Sc.
- Eu* and Th/U paleo-redox proxies are either not applicable to siderite, or Eu* and Th/U not sensitive enough to detect difference in paleo-redox conditions
- V/Cr and V/Sc indicate non-fossiliferous nodule more reduced
- Could be an indication that decomposition in non-fossiliferous nodules went to completion
 - --Difference can be attributed to redox conditions because t-stat of -2.54 and -4.93 (t_{crit} =2.03, 2.05) difficult to reconcile
- Redox indicators consistent regardless of sampling location. Indication that nodules formed pervasively (radially) at once, rather than concentrically over time.
- Bulk composition shows prevalence of inclusions, consistent inter-sample redox indicator values indicate limited effect on overall trends
- Future research can further hone in strength and direction of redox signal, more paleo-redox systems can be tested (Ni/Co, Ni/V, (Cu+Mo)/Zn, and Mo/U)

Acknowledgments and References

I would like to acknowledge and extend my gratitude to Dr. Ash, Dr. Holtz, Dr. Piccoli, Dr. Kaufman, and Dr. Penniston-Dorland.

(1991). Lithofacies and geochemical facies profiles from nuclear wire-line logs: New subsurface templates for sedimentary modeling. Kansas Geological Survey Bulletin, 233, 101-110. Jones, B. and Manning, D.A.C. (1994) Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111, 111-129. Lemos, V. P., Costa, M. L. D., Lemos, R. L., & Faria, M. S. G. D. (2007). Vivianite and siderite in lateritic iron crust: an example of bioreduction. Química Nova, 30(1). https://doi.org/10.1590/s0100

Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1), 70–78. https://doi.org/10.1016/0012-821x(84)90039-6