Modeling "Modern" Mantle Composition

- Models for the BSE (bulk silicate Earth) and the "upper" & "lower" mantle
- Uncertainty in models
- model of "lower" mantle composition
- Mass balance and implications for the composition of the BSE

Rick Arevalo (NASA/Goddard) Bill McDonough (Univ of Maryland)

Why study the composition of MORB

- Insights into the composition of the bulk Earth
- Understand differentiation of the BSE (BSE : Bulk Silicate Earth = crust + mantle)
- Identify the distribution of elements in the Earth

Divergent Plate Boundary

The Mantle: it is the source of basalts

- 2900 km deep
- Surfaced by ~40km Continental or ~7km Oceanic Crust
- Surface potential temperature ~1550 K
- Core-Mantle Boundary (CMB) temperature 4000-5000 K

MORB Mantle

- Depth/Volume ?
- Top of mantle
- Residua from production of Continental Crust
- Recorder of convection efficiency

Convectional perspective

Non-layered model

U content of BSE models

- Nucelosynthesis: U/Si and Th/Si production probability
- Solar photosphere: matches C1 carbonaceous chondrites
- Estimate from Chondrites: ~11ppb planet (16 ppb in BSE)
- Heat flow: secular cooling vs radiogenic contribution...?
- Modeling composition: which chondrite should we use?

A brief (albeit biased) history of U estimates in BSE:

•Urey (56) 16 ppb	Turcotte & Schubert (82; 03) <mark>31</mark> ppb
•Wasserburg et al (63) 33 ppb	Hart & Zindler (86) 20.8 ppb
•Ganapathy & Anders (74) 18 ppb	McDonough & Sun (95) 20 ppb ± 20%
•Ringwood (75) 20 ppb	Allegre et al (95) 21 ppb
•Jagoutz et al (79) 26 ppb	Palme & O'Neill (03) 22 ppb ± 15%
•Schubert et al (80) <mark>31</mark> ppb	Lyubetskaya & Korenaga (05) 17 ppb ± 17%
•Davies (80) 12-23 ppb	O'Neill & Palme (08) 10 ppb
•Wanke (81) 21 ppb	Javoy et al (10) <mark>12</mark> ppb

Disagreement with "chondritic" Earth Models

<u>Murakami et al</u> (May - 2012, *Nature*): "...the lower mantle is enriched in silicon ... consistent with the [CI] **chondritic Earth model**."

<u>Campbell and O'Neill (March - 2012, Nature)</u>: "Evidence against a chondritic Earth"

Zhang et al (March - 2012, *Nature Geoscience*): The Ti isotopic composition of the **Earth and Moon overlaps that of enstatite chondrites**.

<u>Fitoussi and Bourdon</u> (March - 2012, *Science*): "Si isotopes support the conclusion that **Earth was not built solely from enstatite chondrites**."

Warren (Nov - 2011, EPSL): "Among known chondrite groups, EH yields a relatively close fit to the stable-isotopic composition of Earth."

- Compositional models differ widely, implying a factor of three difference in the U & Th abundances of the Earth

U in the Earth:

"Differentiation"

~13 ng/g U in the Earth

Metallic sphere (core) <<<1 ng/g U

Silicate sphere 20* ng/g U

*O'Neill & Palme (2008) <u>10 ng/g</u> *Turcotte & Schubert (2002) <u>31 ng/g</u>

Continental Crust 1300 ng/g U

Mantle

~12 ng/g U

Chromatographic separation Mantle melting & crust formation

MORB: Distribution of ages at ridges

Spreading rate and structure

Fast East Pacific Rise

Slow Mid-Atlantic Ridge

- Thermal structure warmer
- Crust is thicker, lithosphere is thinner
- Higher degrees of melting
- Sustained magma chambers and volcanism
- LESS COMPOSITIONAL DIVERSITY

- Thermal structure cooler
- <u>Crust</u> is thinner, <u>lithosphere</u> is **thicker**
- lower degrees of melting
- Episodic volcanism
- GREATER COMPOSITIONAL
 DIVERSITY

Figures from WHOI : Deeper Discovery News

Highly incompatible elements in MORB

- MORB : active melting of the upper mantle
- production 20-25 km³·yr⁻¹ (Crisp, 1984)
 ³⁄₄ of all magma are intruded sills
- Negligible (crustal) contamination

pubs.usgs.gov

Highly incompatible elements

- Highly incompatible elements provide particularly sensitive tracers
 - Effectively removed from mantle sources at only minor degrees of partial melting
 - "See through" melting and crystallization
 - E.g., high-field strength elements (HFSE) and large-ion lithophile elements (LILE)

Data compilation from Arevalo et al. (2010)

Mantle heterogeneity

Complementary compositional nature of Continental Crust and MORB (and OIB)

Proportionally both should be added to make a flat REE pattern for the BSE

Modeling "Upper" Mantle Composition Defining chemical composition for the upper mantle

N-MORB (normal-type): also referred as "depleted" type Often defined by $(La/Sm)_N \le 1.00$ or other chemical signature

Peridotite-derived models (melt residues)

Modeling "Lower" Mantle Composition

- Ocean Island Basalts (OIBs) represent melting of deeper mantle sources
- Variable compositions reflect long-lived chemical heterogeneities, diverse melting conditions and rates of entrainment
- Enriched relative to MORB based on mass balance of elemental inventories and radiogenic heat production

Data compiled by Stracke et al. (2013) G^3

A Case Study: The Cook-Australs

Cook-Australs represent archetypal HIMU OIB

- Th is the most incompatible element (peridotite melting) that is neither fluid mobile (e.g., K or Rb) nor redoxsensitive (e.g., W or U)
- MgO maps the evolution of parental melt derivatives

We can calculate the abundance of Th in the near-primary parental melt(s) of the Cook-Australs through linear regression statistics (details forthcoming...).

Universal Trends in Th versus MgO

OIB Parental Melt Composition(s)

 Near-primary (or parental) melt compositions can be estimated by adding *ol* and *cpx* in constant proportions, dictated by CaO/Al₂O₃ relations, to equilibrate each individual lava with Fo₉₀ olivine

OIB Source Composition(s)

- Assuming 5 10% partial melting of the source of the parental melts modeled here, consistent with studies of alkali OIB basalt petrogenesis
 - Corroborated via inverse modeling of Th/Nd and U/Sm

- For comparison, MORB estimated to represent 8–15% melting

The OIB source region characterized by the samples considered here contains an average of: (≥) 160 ± 60 (± 20, 2σ_m) ng/g Th.

Assumptions include:

Ditcairn

Lavas from each locality are cogenetic/representative of source;
 The bulk partition coefficient of Th is constant/well-constrained;
 Dilutional effects from entrainment not considered (for bounding);
 The source of melting is dominantly peridotitic (for bounding).

Size of the OIB Source(s)

Our "preferred" model suggests the OIB source region constitutes (\leq)19⁺³-2 ($2\sigma_m$)% of the mantle by mass.

Radiogenic Heat in the OIB Source(s)

- Our compositional model suggests the OIB source region produces:
 - $(\geq)9.5 \text{ pW/kg}$ rate of heat generation
 - For comparison:
 - MORB source: <2 pW/kg
- The preferred mass balance curve (green) indicates the OIB source contributes:
 - $(\leq)7.3$ TW radiogenic heat

