Radiogenic heating and geo-neutrinos from mantle

Courtesy of NASA/JPL-Caltech

- --Continental crust extracted from the upper mantle by melting processes.
- --The upper mantle is *depleted* in elements (like U, Th and K) that prefer to be in the melt relative to the solid mantle.
- --Heat budget of the planet is **47 terawatts**:
- a.) 20 TW radioactive: 7 TW from crust + 13 TW from mantle
- b.) 27 TW primordial

God's mortar and pestle

- We don't know the composition of the Earth because the planet is so heterogeneous: Crust (continental & oceanic), mantle (upper and lower), core
- We need a proxy for the bulk composition of the Earth
- Such a proxy for the bulk Earth must be easily obtained and its constituent elemental abundances easily measured (the sun, clearly, is not a candidate!).
- Proxy = Carbonaceous chondrites

Starting composition of the Earth—Chondritic?

Comparison of solar-system abundances (relative to silicon) determined by solar spectroscopy and by analysis of carbonaceous chondrites (after Ringwood, 1979)

- Carbonaceous (C) chondrites ≈ Sun
 (Sun >99.9% of solar system's mass)
- 2.) C-chondrites and Earth came from the solar nebula.
- 3.) C-chondrites≈Earth (for ratios of the non-volatile, lithophile elements, e.g. Sm,Nd)
- 4.) 147 Sm \rightarrow 143 Nd + 4 He ($t_{1/2}$ =106 **Gyr**) 146 Sm \rightarrow 142 Nd + 4 He ($t_{1/2}$ =68 **Myr**)
- 5.) If the Earth is a C-chondrite, then Earth and chondrites have the same Sm/Nd & ¹⁴³Nd/¹⁴⁴Nd & ¹⁴²Nd/¹⁴⁴Nd.

Standard Model (Earth is 'Chondritic')

 147 Sm \rightarrow 143 Nd + 4 He (t_{1/2}=106 Ga)

Isochrons 101:

- 1. Earth and chondrites should have the same Sm/Nd.
- 2. Earth and chondrites started with the same ¹⁴²Nd/¹⁴⁴Nd and ¹⁴³Nd/¹⁴⁴Nd.
- 3. Therefore, Earth and chondrites should have the same present-day ¹⁴³Nd/¹⁴⁴Nd and ¹⁴²Nd/¹⁴⁴Nd.
- 4. But 142 Nd/ 144 Nd not the same!

147Sm/144Nd

Implications from Neodymium-142

- Discovery: ¹⁴²Nd/¹⁴⁴Nd ratios in accessible modern terrestrial lavas are 18±5 ppm higher than O chondrites (Boyet & Carlson, '05)
- There are two interpretations of the new data:
- 1. ¹⁴²Nd variation due to incomplete mixing of nucleosynthetic products. ¹⁴²Nd variation has nothing to due with ¹⁴⁶Sm decay. Earth has chondritic *Sm/Nd and* ¹⁴³Nd/¹⁴⁴Nd.

OR....

2. ¹⁴²Nd variation due to ¹⁴⁶Sm decay. Accessible terrestrial mantle evolved from a reservoir with Sm/Nd ~6% higher than chondrites, resulting in <u>higher</u> ¹⁴³Nd/¹⁴⁴Nd!

(Boyet and Carlson, Science, 2005)

What does ¹⁴²Nd/¹⁴⁴Nd discovery mean for ¹⁴³Nd/¹⁴⁴Nd?

Dealing with the "fallout" from ¹⁴²Nd.... How to preserve the chondrite model?

Hidden Enriched Reservoir: Has 30-48% of the budget of the planet's radioactive (heat-producing) elements

Survival of a "hidden" early enriched reservoir?

Hidden reservoir paradox #1:

A hidden reservoir is constrained (from ¹⁴⁶Sm-¹⁴²Nd and ¹⁸²W-¹⁸²Hf systematics) to have formed before the moonforming giant impact.

How would a "hidden" reservoir remain completely hidden at the bottom of the mantle during a giant impact event?

Paradox #2: How to keep a hidden enriched (U-Th-K) reservoir hidden?

¹⁴²Nd/¹⁴⁴Nd in lavas sampling fed by putative mantle plumes:

There's no direct evidence for a hidden reservoir (with low ¹⁴²Nd/¹⁴⁴Nd in the deep mantle

Accessible Earth (EDR)

Paradox #3: 142Nd/144Nd in continental unchanged over 2.5 Ga: No evidence of hidden enriched reservoir

- → If the hidden enriched reservoir is in the mantle, it is likely expressed as partially molten regions of the deep mantle called LLSVP's.
- →If the enriched reservoir cools and solidifies over Earth history (Labrosse et al, '07), it becomes "entrainable", and the ¹⁴²Nd/¹⁴⁴Nd of the mantle (and continents) should decrease over time.
- → It is possible to keep a deep reservoir hidden if it is molten (high viscosity contrast).... But if the molten reservoir solidifies, viscosity contrast decreases and entrainment is more likely.

Labrosse et al. (2007)

Summary

• It seems unlikely that a hidden enriched reservoir remains hidden in the deep mantle, and has not participated in mantle convection or geochemical evolution of the Earth for 4.5 Ga.

.....but I can't prove the "hidden" reservoir isn't there.

Non-chondritic Earth model

NO HIDDEN RESERVOIR

Impact erosion (and loss to space) of enriched early enriched crustal reservoir

If enriched reservoir was a crust located at the Earth's surface (instead of the bottom of the mantle). "Hit and run" collisions might erode the crust, leaving behind depleted (non-chondritic) mantle (O'Neill and Palme, 2008).

The bulk composition of a planet can evolve as enriched crust and depleted mantle are stripped from the planet in various proportions during giant impact events.

Fundamental question:

Was the enriched reservoir (with low ¹⁴²Nd/¹⁴⁴Nd)

1.) hidden at the bottom of the mantle for all of geologic time, or2.) was it lost to space?

How to detect this enriched reservoir if it is still in the Earth?

→ Its U-Th-K budget is similar to the modern continents, and it will generate 6-9.5 TW of radioactive power

(Note: U-Th-K generate 99% of radioactive power in the Earth)

Put 6-9 terawatts (TW) into perspective: It is 30-45% of radioactive power of planet

- Total surface heat flux from the planet is 47±2 TW.
- →If the Earth has a composition tied to carbonaceous chondrites, then the radioactive power of the Earth is 20 TW. The remaining 27 TW is "primordial".
- →Of the 20 TW of radioactive power:

The continents generate: 5.6 to 7.5 TW

The depleted mantle (if whole mantle): 2.8 to 5.3 TW

± Hidden enriched reservoir: 6 to 9.5 TW.

Is the "hidden enriched reservoir" at the bottom of the mantle, or lost to space? 6-9 TW of radioactive power are at stake!

Radioactive power of planet is 10.5-14 TW

Radioactive power of planet is **20 TW**

OR

Hidden reservoir at the bottom of the mantle

(30-48% of radioactive power focused at bottom of mantle)

Hidden reservoir lost to space

Dave Stegman wants ~35 TW!

Geo-neutrinos

If there is a "hidden"
 enriched reservoir at the
 bottom of the mantle, it will
 be enriched in U and Th (30
 48% of planet's budget)

• 10-year deployment of a submerged, mobile geoneutrino detector is \$300 million.

Sramek et al. (2012)

Deep-mantle shear velocities