Multi-collector ICP-MS

Nu Plasma
Inductively Coupled Plasma - Mass Spectrometer

High precision isotope analyses:
- cosmochemistry
- environmental chemistry
- geochemistry
- geochronology

Element detection limits are a function of spot size, mass of the isotope, and the element’s 1st ionization potential (ip). Ca, La, and Ta have similar 1st ip, while Os and Ta have similar masses.

Innovative Collector Assembly:
- 12 faraday cups in a fixed assembly
- 17% mass dispersion (e.g., simultaneous 6Li - 7Li)
- zoom optics to separate out masses
- multi-multiplier for simultaneous ion counting

Zoom Lens ("L1")

Collector Assembly

2 Deep UV lasers: excimer & Nd:YAG
- DUV wavelength couples effectively with most materials
- for in situ analyses of solids & liquids
- for use in: cosmochemistry, environmental chemistry, geochemistry and geochronology

Solid state Nd:YAG laser
- 5th harmonic of Nd:YAG
- $\lambda = 213 \text{ nm}$,
- $E = 5.83 \text{ eV}$

Element detection limits
- Ca, La, and Ta have similar 1st ip, while Os and Ta have similar masses.

Rapid scanning & high sensitivity:
- abundance determinations for most elements, excepting noble gases, from Li to U
- solution analyses of waters, sludges, airborne particulates, dissolved rocks and metals, etc.
- in situ laser ablation analyses of solids or liquids (including fluid inclusions)
- low detection limits: e.g., U in solution has a detection limit of <1 ppq (i.e., $1 \times 10^{-15} \text{g/g}$)
- high resolving power to avoid interfering ionsbars

Fast scanning magnet - needed for time resolved analyses

Time resolved spectrum - analyses of a basaltic glass

The instruments in this facility have been jointly funded by the University of Maryland and the National Science Foundation.

