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[1] The mantle components that represent the source region of ocean island basalts (OIB) and feed
hotspot volcanism are predicted to contain 160 =20 (20,,) ng/g Th, a heat-producing element. This
critical model composition indicates that the OIB source region (OSR) comprises a significant amount of
recycled oceanic crust and constitutes 197 _, (20,,)% of the mantle by mass. The mass fraction of this
reservoir supports a mantle architecture with a basal thermochemical layering at an average depth of
2000 =100 (20,,) km or two thermochemical piles that extend up to midmantle levels. The hotspot
source described here generates 10 pW/kg of radiogenic heat and supplies 7.3 TW to the planet’s total
surface heat flux. Given that the silicate portion of the Earth produces some 20.4 TW of radiogenic
power, with 7.2 TW derived from the continental crust, the mantle source responsible for mid-ocean
ridge volcanism provides only 5.9 TW of radiogenic power (or <2 pW/kg). As a result, the source of
hotspots generates >5x more radiogenic heat than the source of mid-ocean ridges, thus contributing to
the energetics that drive mantle convection and potentially the formation of long-lived plumes via bottom
heating of the modern mantle. The potential for a sequestered or unsampled mantle reservoir would
impact the relative mass fractions of the source regions of OIB and mid-ocean ridge volcanism but not
the compositional model of the OSR presented here.

Components: 10,963 words, 7 figures, 6 tables.
Keywords: OIB; mantle; hotspot; source; radiogenic heat; mass balance.

Index Terms: 1025 Composition of the mantle: Geochemistry; 1038 Mantle processes: Geochemistry; 1065 Major and
trace element geochemistry: Geochemistry; 1009 Geochemical modeling: Geochemistry; 3610 Geochemical modeling:
Mineralogy and Petrology; 3621 Mantle processes: Mineralogy and Petrology; 8410 Geochemical modeling: Volcanology.

Received 17 January 2013 ; Revised 10 April 2013; Accepted 12 April 2013 ; Published 29 July 2013.

© 2013. American Geophysical Union. All Rights Reserved. 2265



(gt~ Geochemistry :j
_ " Geophysics | .
Ly AREVALO ET AL.: MANTLE ARCHITECTURE AND RADIOGENIC POWER

_ Geosystems

10.1002/ggge.20152

Arevalo, R., Jr., W. F. McDonough, A. Stracke, M. Willbold, T. J. Ireland, and R. J. Walker (2013), Simplified mantle archi-
tecture and distribution of radiogenic power, Geochem. Geophys. Geosyst., 14, 2265-2285, doi:10.1002/ggge.20152.

1. Introduction

[2] The silicate portion of the Earth may be quan-
titatively defined by the continental crust (CC) and
subcontinental lithospheric mantle, the mantle res-
ervoir that produces mid-ocean ridge basalts
(MORB), and the mantle source(s) that contribute
to the generation of intraplate ocean island basalts
(OIB). However, our understanding of the man-
tle’s architecture remains poorly constrained. Geo-
chemical and geophysical perspectives of mantle
structure differ due to the inherent inconsistencies
between what is measured in samples collected at
the surface and what is modeled in the planet’s in-
terior. Geochemical studies require a multicompo-
nent mantle and have traditionally favored a
compositionally layered mantle structure in order
to account for:

[3] (1) The scale of elemental and isotopic hetero-
geneity observed in oceanic basalts and the dis-
tinct compositional characteristics associated with
basalts derived from mid-ocean ridges versus
those from intraplate hotspot sources [e.g.,
DePaolo and Wasserburg, 1976; O’Nions et al.,
1979; Allegre et al., 1979];

[4] (2) Noble gas isotopic compositions, including
He, Ne, Ar, and Xe, as measured in intraplate vol-
canics [e.g., Kurz et al., 1982; Allegre et al.,
1983; Honda et al., 1991];

[5] (3) Geochemical and cosmochemical evidence
for a “hidden” or unsampled mantle reservoir
from trace element abundances [e.g., Rudnick et
al., 2000], '*°Sm-"**Nd isotopes [e.g., Boyet and
Carlson, 2005] and rare gas systematics [e.g., Tol-
stikhin and Hofmann, 2005];

[¢] (4) The mass balance of radiogenic heat pro-
duction in the silicate portion of the Earth [e.g.,
Turcotte et al., 2001 ; van Keken et al., 2002 ; Jau-
part et al., 2007 ; Arevalo et al., 2009].

[7] Conversely, geophysical models implicate a
well-mixed mantle based on seismic evidence for
mass flux/exchange across the transition zone and
as deep as the core-mantle boundary [e.g., Grand,
1994; van der Hilst et al., 1997 ; Ritsema et al.,
1999; Zhao, 2001 ; Montelli et al., 2004]. Obser-
vations based on mantle seismicity also suggest

significant lower mantle structure, as manifested
by slow seismic anomalies identified beneath the
central Pacific Ocean and southern Africa [e.g., Su
et al., 1994; Breger and Romanowicz, 1998;
Wang and Wen, 2004]; ubiquitous compositional
and/or thermal heterogeneity in the deepest 1000
km of the mantle [e.g., van der Hilst and Karason,
1999; Garnero, 2000; Trampert et al., 2004]; and
a variety of slab behaviors across the global transi-
tion zone [e.g., Karason and van der Hilst, 2000;
Fukao et al., 2001 ; Grand, 2002], including litho-
spheric slabs that appear to be locally inhibited
from penetrating the 660 km discontinuity [e.g.,
Zhou and Clayton, 1990; Van der Hilst et al.,
1991; Fukao et al., 1992] or lose resolution at
midmantle depths [e.g., Wen and Anderson, 1995;
van der Hilst et al., 1997; Ritsema et al., 2004].
As a result, traditional models of a strictly layered
or uniform mantle architecture do not adequately
satisfy all multidisciplinary requirements, and thus
an alternative model of mantle structure is needed
to reconcile all of the above observations.

[s] Based on seismological, dynamical, and chem-
ical arguments, a number of hybrid models of
mantle structure have been proposed in an attempt
to unite both geochemical and geophysical obser-
vations. Notably, several studies [e.g., Wen and
Anderson, 1995; Kellogg et al., 1999; van der
Hilst and Karason, 1999 ; Anderson, 2002] have
invoked a rendition of the stratified mantle para-
digm, but with a diffuse, midmantle (e.g., >1000
km average depth) chemical boundary layer with
substantial surface topography, a feature that is
consistent with laboratory experiments of thermo-
chemical convection in a fluid with stratified den-
sity and viscosity [e.g., Davaille, 1999 ; Davaille
et al., 2003] and could explain the lack of unequiv-
ocal seismic evidence for this layering. The exis-
tence of large, low-shear velocity provinces in the
lower mantle, commonly termed ““superswells” or
“superplumes,” beneath the central Pacific Ocean
and southern Africa [e.g., Su et al., 1994; Breger
and Romanowicz, 1998; Wang and Wen, 2004],
may represent the manifestation of this midmantle
chemical boundary layer in the form of isolated
thermochemical “piles” of material that may
extend up to ~1500 km from the core-mantle
boundary [e.g., Tackley, 1998; Ni et al., 2002;
McNamara and Zhong, 2005]. However, direct
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evidence for this proposed midmantle thermo-
chemical boundary layer has yet to be unambigu-
ously identified [e.g., Masters et al., 2000; Vidale
etal., 2001]

[v] The existence of multiple distinct mantle source
regions has important mass balance implications for
paradigms of modern mantle structure. Mid-ocean
ridge basalts, which are derived from an upper man-
tle source (i.e., <200 km depth) [e.g., Forsyth et al.,
1998], exhibit only limited ranges in radiogenic iso-
topic signatures (e.g., *’St/*°Sr, 'Nd/'*'Nd, etc.)
and are largely depleted in incompatible elements
(i.e., D9 <1, where D is approximated by the
concentration ratio of element 7 in the solid to the lig-
uid). Intraplate OIB, on the other hand, commonly
sample one or more discrete deep-rooted hotspot
sources (i.e., >660 km depth) [e.g., Montelli et al.,
2004], span a significantly wider range of radiogenic
isotopic signatures [e.g., Zindler and Hart, 1986],
and tend to be enriched in incompatible elements
[e.g., Sun and McDonough, 1989]. Although models
inevitably vary due to sampling biases and differen-
ces 1n the statistical treatment of data, the chemical
composition of the MORB source region has been
well characterized due to the extensive number of
submarine and dredge basalts available for analysis.
In comparison, the source regions of OIB remain rel-
atively unconstrained due to fewer samples available
for chemical analysis at many OIB localities, greater
diversity in trace element and isotopic signatures
compared to MORB, and challenges/uncertainties in
establishing near-primary (or parental) melt
compositions.

[10] Mass balance in the silicate portion of the
Earth obeys the following relationship:

MBSE)(I'BSE _ MCL)(I'CL _,’_MDMMX'iDMM + MOSRI)(iOSRl
+MOSR2Ax'iOSR2+

(1)

where M represents the mass (in g) and .X; the abun-
dance (in pg/g) of element i in the bulk silicate
earth (BSE), continental lithosphere (CL; includ-
ing the crust and subcontinental lithospheric man-
tle), depleted MORB mantle (DMM), and discrete
OIB source regions (OSR1, OSR2, etc.). There are
a variety of compositional models of the BSE, CL,
and DMM, but representative compositions of OSR
have never been established. Further, although the
masses of the BSE and CL are well constrained
[e.g., Yoder, 1995], the relative fractions of the
modern mantle that are represented by the DMM
and OSR(s) remain poorly constrained. Here, we

present a geochemical model that estimates the
chemical enrichment of the sources of a collection
of OIB (Figure 1), including alkalic lavas derived
from  both  high n (HIMU; where
= (*%U/**Pb),_y) and enriched mantle (EM)
“end-member”’-type sources [e.g., Zindler and
Hart, 1986], and we explore the implications of this
model mantle composition with regard to the mass
balance of highly incompatible elements (i.e., D;**”
4 - < 1), including heat-producing K, Th, and U.

[11] The model presented here is based on deter-
mining the abundances of Th in near-primary pa-
rental melts from a variety of OIB end-member
localities, including HIMU-type Cook-Austral and
St. Helena islands; EM(I)-type Heard, Tristan da
Cunha, Gough, and Pitcairn islands; EM(II)-type
Marquesas, Azores, Society, and Samoa islands;
and for comparison, Hawaii, Galapagos, and Ice-
land, which produce dominantly tholeiitic volcanic
products and generally do not record extreme radio-
genic isotopic signatures (Figure 1). With regard to
incompatible elements, the parental melt composi-
tions established here are based on bivariate linear
regression trends between the MgO contents of the
lavas considered and their respective abundances of
Th, the most highly incompatible element that is
neither fluid mobile, such as the large-ion lithophile
elements (e.g., K, Rb, Cs, Ba), nor sensitive to re-
dox conditions, as for example multivalent W and
U. The abundances of highly incompatible ele-
ments, particularly those with radioactive isotopes
such as K, Th and U, in the sources of these hotspot
basalts provide a unique geochemical window into
the spatial and compositional characteristics of a
potentially common OSR, including its size, chemi-
cal enrichment, and rate of radiogenic heat
production.

2. OIB Source Characteristics

[12] The degree of heterogeneity observed in
global OIB (Figure 1) has traditionally been inter-
preted to represent mixing between a finite number
of mantle “end-members,” as defined by isotopic
distinctions [e.g., White, 1985; Zindler and Hart,
1986] and trace element signatures [e.g., Sun and
McDonough, 1989; Weaver, 1991]. However,
some geochemical attributes are shared between
the different flavors of OIB. Although exceptions
occur, OIB are characterized commonly by (1)
superprimitive (i.e., enriched relative to the
unfractionated BSE) U/Pb, Th/Pb, and U/Th, and
subprimitive Rb/Sr and Nd/Sm ratios [e.g., Gast et
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Figure 1. Published isotopic compositions of lavas derived

from the OIB localities examined in this study. Data compiled
by Stracke et al. [2003]. The degree of heterogeneity observed
in the radiogenic isotopic compositions of global OIB has his-
torically been interpreted to represent mixing between a finite
number of mantle components, including HIMU- (where
1= (*U"Pb),_y) and EM-type “end-members” [e.g.,
White, 1985; Zindler and Hart, 1986]. Volcanics derived
from EM-type sources are often categorized into EMI- and
EMII-type lavas (as shown above), though this division is
rather arbitrary and unsupported by trace element systematics
[Willbold and Stracke, 2006].

al., 1964; Gast, 1968; Schilling, 1973; DePaolo
and Wasserberg, 1976; Tatsumoto, 1978]; (2)
superprimitive Nb/U and Ce/Pb ratios, similar to
MORB but opposite the subprimitive values
observed in the continental crust [e.g., Hofmann et
al., 1986]; (3) more highly radiogenic Pb than the
BSE [e.g., Gast et al., 1964 ; Allegre, 1968 ; Tatsu-
moto, 1978]; (4) systematically higher ®’Sr/*°Sr
and *He/*He, lower **Nd/'**Nd and '7SHf/!""HI,
and more extreme values in 2°°Pb/**Pb,
207pp/294ph. and 2°®Pb/2*Pb compared to MORB
[e.g., Allegre et al., 1983; Zindler et al., 1982;
Zindler and Hart, 1986; Hofmann, 2003 ; Stracke
et al., 2005 and references therein]; and (5)
observed abundances of incompatible elements
that are too enriched to be accounted for by con-
ventional melting of an undifferentiated source

without requiring unrealistically small degrees of
partial melting (e.g., F<1%) [Hofmann and
White, 1982; Hofmann, 1988; Sun and McDo-
nough, 1989].

[13] Further, HIMU-type (e.g., St. Helena) and EM-
type (e.g., Gough Island) OIB exhibit a number of
robust compositional similarities [Willbold and
Stracke, 2006], including enrichments in light rare
earth element (LREE) abundances relative to aver-
age chondritic meteorites (CI) and the BSE; deple-
tions in heavy rare earth elements relative to LREE
concentrations; and comparable ratios of La/Th, Sr/
Nd and alkali-to-alkaline earth elements (e.g., Rb/K,
Ba/K, etc.). These mutual geochemical attributes
likely reflect similar source compositions and/or a
common source component, most likely recycled
oceanic lithosphere. However, a number of alterna-
tive models have also been postulated for the origin
of OIB, including (1) linear mixing of four end-
member components in the deep mantle [e.g., Hart,
1988]; (2) partial or complete melting of deep, meta-
somatized portions of oceanic peridotite [Niu and
O’Hara, 2003]; and/or (3) deep melting of small
amounts of recycled mafic crust [e.g., Prytulak and
Elliott, 2007]. Here, we attempt to model the incom-
patible trace element budget of OIB sources by esti-
mating near-primary parental melt compositions
based on systematic geochemical variations (i.e., Th
versus MgO) in basalts from several key OIB local-
ities, namely, HIMU-type Cook-Austral and St. Hel-
ena islands; EM(I)-type Heard, Tristan da Cunha,
Gough, and Pitcairn islands; EM(II)-type Marque-
sas, Azores, Society, and Samoa islands; and for
comparison, Hawaii, Galapagos, and Iceland.

3. Estimating OIB Near-Primary
Parental Melt Compositions

[14] Here we evaluate major element and incom-
patible trace element abundances for OIB derived
from the hotspot localities listed above, including
a new high-quality data set for the HIMU-type
Cook-Austral Islands (Table 1); see Willbold and
Jochum [2005] and Willbold and Stracke [2006]
for details on the specific methodology, including
procedures, analyses of reference materials, and
measurements of accuracy and reproducibility.
Representative published data sets have also been
compiled for HIMU-type St. Helena; EM(I)-type
Heard, Tristan da Cunha, Gough, and Pitcairn
islands; EM(II)-type Marquesas, Azores, Society,
and Samoa islands; and, Hawaii, Galapagos, and
Iceland. Only data sets derived from single
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Table 1. Major (in wt.%) and Incompatible Trace Element (in pg/g) Abundances Measured in Oceanic Basalts from the HIMU-
Type Cook-Austral Islands

Sample Sio? Al,O; Fe;033 FeO MnO MgO CaO Na,O K,O TiO, P,0s5 Total Mg# Th U Nd Sm Refs
Mangaia

MGAO02 436 112 221 11.3 0.18 108 11.5 207 070 286 045 96.8 63.1 328 0931 33.1 6.67 [1]
MGA10 44.0 10.1 2.10 10.7 0.19 127 11.8 149 045 267 042 96,6 679 438 1.169 37.8 7.39 [1]
MGA103 434 133 2.15 109 021 9.0 120 232 0.84 288 053 975 594 433 1.162 40.1 7.82 [1]
MGA105 43.0 135 244 124 022 6.1 123 2.69 0.81 3.0 039 968 466 3.05 0875 33.7 7.15 [1]
MGA106 445 7.4 2.01 102 0.19 195 109 1.13 0.19 1.74 022 98.1 772 147 0437 17.5 3.77 [1]
MGA108 447 11.2 1.95 10.0 0.19 9.6 144 250 0.60 252 036 980 633 273 0.774 303 6.28 [1]
MGAI1l 440 9.6 1.94 99 0.19 11.7 145 195 060 246 039 972 679 3.07 0.862 38.5 6.19 [1]
MGA113 434 84 2.12 10.8 021 17.6 112 1.67 048 198 033 982 744 256 0.734 253 5.02 [1]
MGA116 442 129 1.97 10.0 021 7.1 135 2.65 0.75 270 049 96.5 559 383 1.095 382 7.42 [1]
MGAI117 444 106 2.02 103 020 12,7 122 274 0.67 2.18 040 984 68.8 3.08 0.829 26.5 528 [1]
Tubuai

TB15 43.0 6.6 2.01 103 020 230 10.0 132 040 144 0.19 984 80.0 2.58 0.579 33.6 594 [3]
TB35 415 123 230 11.7 026 8.2 92 610 1.51 283 1.05 97.0 555 3.67 0930 31.8 6.31 [2]
TBAO1 427 7.1 2.02 103 0.18 193 122 0.65 0.18 1.88 026 96.7 769 235 0476 229 451 [2]
TBA0O9 429 102 251 128 022 179 88 028 0.19 292 023 989 714 425 1.143 402 743 [1]
TBAI1 46.5 162  2.62 134 027 93 3.8 030 034 307 023 959 553 6.28 0.856 524 9.57 [1]
TBA16 415 11.0 222 113 0.19 116 11.9 258 077 2.88 0.58 96.5 64.6 6.52 1.553 444 8.11 [4]
TBA33 434 122 217 11.0 021 102 12.0 247 086 265 038 97.7 623 459 1237 379 7.00 [3]
TBA36 443 9.8 1.98 10.1 0.18 13.8 11.7 1.51 0.70 222 041 96.7 709 343 0955 31.6 628 [2]
TBA102 43.1 103 2.08 10.6 020 11.8 13.1 2.07 050 258 047 968 664 435 1.028 37.6 7.12 [2]
TBA109 440 120 2.19 11.2 021 100 12.0 222 072 276 042 97.8 61.5 3.54 0941 342 6.82 [4]
Raivavae

RVV02 46.8 14.0 1.85 94 015 7.7 106 294 0.87 280 048 97.6 592 3.67 0963 359 722 [1]
RVVIO8 509 14.7 1.84 94 0.14 52 94 3,00 055 226 033 977 498 193 0.539 228 580 [5]
RVVI114 455 153  2.06 10.5 0.17 5.6 9.7 284 1.10 3.10 046 964 488 4.50 1.044 38.1 7.40 [3]
RVVI23 476 11.6 1.93 9.8 0.15 132 89 235 046 219 031 985 704 2.00 0402 233 531 [1]
RVVI24 474 113 1.90 9.7 014 140 81 239 063 196 032 97.8 72.1 196 0470 20.2 450 [2]
RVVI39 449 103 2.02 103 0.16 157 10.0 220 0.65 2.13 037 98.6 732 333 0.739 31.0 588 [2]
Rapa

RAO7 452 125 1.89 9.7 0.15 112 88 224 1.10 346 076 969 673 3.39 1.188 385 7.69 [2]
RA24 442 144 207 106 0.15 7.2 8.1 356 197 4.18 097 97.5 549 528 1.398 543 1037 [2]
RAS7 417 152 201 103 020 7.4 9.3 457 197 339 083 969 562 4.64 1309 40.0 7.57 [6]
RPA02 440 117 2.03 104 0.16 13.1 10.0 246 1.07 3.58 0.59 99.0 69.3 3.18 0.814 353 7.13 [1]
RPA14 439 122 1.90 9.7 0.16 11.6 10.0 241 1.18 337 0.71 97.1 68.1 3.64 1.134 40.5 8.05 [2]
RPA21 443 129 1.90 9.7 0.15 103 10.6 263 121 3.62 0.72 98.0 655 3.80 1.064 42.6 833 [4]
RPA31 441 11.0 1.91 9.7 0.15 147 102 185 0.87 288 048 979 728 2.58 0.685 288 582 [2]
RPA71 442 118 1.95 100 0.16 127 95 206 1.10 322 0.62 972 694 323 0.870 357 7.10 [2]
Marotiri

MRTO002 43.0 16.2 1.81 92 0.16 49 10.0 3.50 1.60 3.68 086 949 48.6 549 159 44.7 850 [7]
MRT003 455 16.7 1.70 87 0.16 3.6 87 293 220 3.16 1.00 943 426 6.68 1367 58.0 11.09 [5]
MRTO004 42.6 104 1.91 9.7 0.16 162 10.6 1.82 081 256 0.55 972 748 2.79 0.649 27.8 596 [2]
MRT006 463 17.1 1.72 87 0.16 3.6 84 302 210 320 1.01 953 420 6.54 1701 62.3 11.99 [4]
MRT203  41.5 10.1 1.89 9.7 0.18 129 124 225 075 3.06 125 959 704 286 2.136 31.5 636 [2]
MRT204 375 9.6 1.90 9.7 0.16 148 13.1 1.67 052 296 143 932 73.1 255 1497 281 570 [3]
Atiu

ATU104 459 153 1.76 9.0 020 5.1 10.2 3.17 128 325 0.62 958 50.5 5.12 1365 44.1 856 [1]
ATU113 455 15.6 1.71 87 0.18 52 11.0 332 1.53 3.10 0.63 964 514 567 1428 399 7.74 [1]
ATU114 439 8.6 1.98 10.1 0.19 183 93 1.87 074 216 040 974 764 345 0.885 28.0 547 [1]
ATU115 452 15.1 1.89 9.6 0.18 53 10.7 330 1.50 3.17 0.60 96.5 494 6.12 1.606 48.1 9.12 [1]
ATU123 445 10.1 1.89 9.6 0.17 142 103 198 0.85 219 036 96.1 724 329 0.832 289 6.02 [1]
ATU128 449 104 1.89 9.6 0.17 151 93 241 090 235 037 974 73.6 346 0.883 28.1 552 [1]
ATUI132 450 145 1.85 94 0.18 6.1 112 320 134 289 056 962 536 6.14 1510 442 829 [1]
ATU133 439 95 2.13 109 020 160 10.5 204 070 2.15 037 983 725 335 0.870 299 6.02 [1]
Rarotonga

RTG103 429 95 1.88 9.6 0.16 142 124 156 1.11 298 038 96.7 72.6 4.06 0.967 353 7.16 [3]
RTG104 448 9.2 1.80 92 0.17 152 11.6 1.05 1.04 237 034 967 746 3.59 0.785 30.8 640 [4]
RTG107 432 134 217 11.0 020 7.9 11.0 3.87 0.65 396 084 982 56.1 9.68 1.842 59.5 10.76 [4]
RTGI110 444 144 1.96 10.0 0.17 6.4 10.8 2.59 2.00 344 0.58 967 53.1 6.08 1428 474 9.12 [3]
RTG114 454 117 224 114 0.17 116 114 1.61 091 344 034 1002 644 244 0.522 287 628 [4]
RTGI115 44.1 9.0 1.96 10.0 0.17 154 12,1 146 0.89 255 034 98.0 733 3.72 1.088 32.5 6.57 [3]
RTG132 43.8 11.1 2.02 103 0.18 122 109 1.78 146 290 044 97.1 679 4.11 1.014 38.0 7.73 [3]
RTG141 44.6 12.7 1.97 10.1 0.18 8.4 11.6 247 182 324 056 974 59.7 583 1378 442 892 [3]
RTG147 434 10.0 1.95 10.0 0.16 128 127 1.11 1.16 3.18 0.35 96.7 69.5 3.14 0.734 337 7.04 [3]
RTGI161 441 12.1 1.90 9.7 0.18 9.7 112 262 173 3.14 056 97.0 640 622 1373 452 8.60 [3]
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Table 1. (continued)

Sample Si0? ALO; Fe,033 FeO MnO MgO CaO Na,O K,O0 TiO, P,05 Total Mg# Th U Nd Sm Refs
Rururtu

RRT45 440 145 238 12.1 024 438 80 394 140 336 132 960 41.1 7.78 1.821 83.8 14.81 [3]
RRT60 459 148 222 11.3 020 55 73 437 135 340 091 973 465 6.16 1.659 61.5 11.40 [1]
RRTI13 436 144 221 11.2 020 7.0 88 433 130 331 120 975 527 581 1.597 68.8 13.24 [2]
RRTI10 435 142 227 11.5 022 6.7 87 459 142 327 122 977 508 567 1537 663 12.58 [3]
RRTI15 420 146 239 122 0.19 6.9 83 453 155 410 0.83 97.6 504 531 1486 58.0 11.04 [1]
RRT56 414 146 244 124 020 7.3 85 423 156 447 086 979 51.1 509 1433 559 11.20 [3]
RRTI112B 474 15.1 1.36 69 011 39 11.5 3.03 0.87 389 070 947 500 445 1528 503 10.28 [3]
RRTI130 43.7 102 2.04 104 0.18 124 120 170 0.60 2.74 042 964 68.0 3.13 0912 333 6.79 [2]
McDonald seamount

MCDI110 42.8 134 2.06 10.5 0.17 9.8 104 354 136 384 0.69 985 626 496 1348 487 937 [2]
MCDI117 428 113 2.13 109 0.17 129 11.5 256 094 352 042 99.1 68.0 3.32 0918 346 7.08 [3]
MCD206 414 152 1.99 10.2 0.17 6.5 103 3.76  1.05 434 0.60 954 532 4.63 1.055 453 9.06 [3]
MCD72 428 113 207 105 0.17 121 11.2 285 097 346 054 979 67.1 348 1.012 369 7.31 [1]
MCD79 424 103  2.09 10.7 0.17 149 107 247 093 350 042 985 713 296 0.859 34.1 7.14 [3]

References that provided the major element data presented here: [1] Dupuy et al. [1989]; [2] Dupuy et al. [1988]; [3] data original to this study
collected at the Max-Planck-Institut fiir Chemie, Uni Mainz; [4] Kalfoun [2001]; [5] Liotard et al. [1990]; [6] Maury et al. [1978]; [7] Liotard

and Barsczus [1985].

published works, and by extension single analyti-
cal methods, are presented here in an attempt to
minimize interlaboratory biases; the data and their
respective references are provided in the support-
ing information. Of particular relevance to the cu-
mulative data set compiled here are the
abundances of K, U, and Th, as these three ele-
ments are primarily responsible for the planet’s
radiogenic heat budget. Thorium abundances in
each local suite of OIB, including the individual
volcanic centers that constitute the Austral-Cook
ocean island chain, are negatively correlated with
MgO (Figures 2 and 3). The systematic variations
in Th concentrations as a function of MgO likely
represent the effects of variable degrees of frac-
tional crystallization and/or olivine accumulation
of the near-primary parental melt, although the
role of different degrees of partial melting from
the same (albeit heterogeneous) source cannot be
discounted.

3.1. Cook-Austral Islands

[15] Bivariate linear regression trend lines (i.e.,
those that take into account uncertainties in both
the x and y axes) plotting Th versus MgO abun-
dances for lavas derived from the different vol-
canic centers in the Austral-Cook island chain,
regardless of the age of eruption, have similar
slopes and span a narrow range in y intercepts,
indicating the progressive crystallization of a simi-
lar assemblage of minerals during the genesis of
these rocks. Accordingly, samples with low MgO
contents likely represent melts that have experi-
enced subtraction of olivine * clinopyroxene (*
oxide) relative to the parental melt, whereas sam-
ples with high MgO contents have accumulated

early-crystallizing phases, similar to the olivine
subtraction/ addition trends identified in Hawaiian

12 Cook-Austral Lavas (this study)
Tubai Trend Atiu Trend
A Mangaia (15-20 Ma) ¥  Atiu (5-10 Ma)
10 + V¥ Tubuai ) Young Rurutu
X | @ Raivavae "":f{;ig;g (0-5 Ma)
@ Rapa age Rarotonga Trend
8t - < Marotiri % Rarotonga
© McDonald (0 Ma) (0-5 Ma)

Parental Meit
= Composition

Th Abundance (ug/g)
[=)]

== Best-Fit Bivariate Linear Regression (All Lavas)
[ 95% Confidence Envelope
L L

0

0 5 10 15 20 25
MgO Content (wt.%)

Figure 2. Thorium abundances (in pg/g) and MgO contents
(in wt %) of the Cook-Austral lavas analyzed here. Thorium
represents the most highly incompatible element that is nei-
ther fluid-mobile nor sensitive to redox conditions, and MgO
acts as a proxy to fractional crystallization. Whether consider-
ing each volcanic center individually or evaluating the Cook-
Austral data set as a whole, negative trends between Th and
MgO are preserved and show similar bivariate linear regres-
sion statistics (Table 4). The age of each volcanic center has
no significant influence on the regression statistics. Bivariate
linear regression trend lines are provided for each volcanic
center and follow the same color scheme provided in the key.
Statistical scatter observed in low-MgO samples (particularly
Rarotonga lavas) may represent: (1) contamination and/or
assimilation of small quantities of pelagic sediment; (2) late
crystallization of a phase in which Th is compatible; or (3)
instability of a Th-rich phase at low MgO. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Figure 3. Thorium abundances (in pg/g) and MgO contents (in wt %) of the new and published OIB data compiled in this

study. All OIB localities show negative correlations between Th and MgO, following the trend observed in
Cook-Austral lavas (Figure 2). Samples with lower MgO contents than their respective parental melts likely
represent lavas that have experienced subtraction of olivine * clinopyroxene (= oxide), whereas samples
with higher MgO contents have accumulated early-crystallizing phases. Note the different scales on the ordi-
nate axis of each plot; samples derived from Hawaii, Galapagos, and Iceland exhibit significantly lower Th
abundances than HIMU- and EM-type lavas. The bivariate linear regression statistics for each OIB suite are
provided in Table 4. The sources for the published data plotted above are as follows: Heard/Kerguelen [Barl-
ing et al., 1994]; Tristan da Cunha and Gough [Willbold and Stracke, 2006]; Pitcairn [Caroff et al., 1993];
Marquesas [Caroff et al., 1999]; Azores [Beier et al., 2007]; Society [Hemond et al., 1994]; Samoa [Work-
man et al., 2004]; Hawaii (basalts; Huang and Frey [2003], EPSL; picrites: Ireland et al. [2009]); Galapagos
[Geist et al., 2003]; Iceland [Stracke et al., 2003]; and St. Helena [Willbold and Stracke, 2006]. These data
can be downloaded from the supporting information. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

picrites [e.g., Ireland et al., 2009]. In order to
determine the composition of the parental melts
more precisely from each volcanic center, we do
not attempt to determine the exact fractionation
path for each volcanic center, but rather correct
the composition of each individual lava with 7.5—
16 wt % MgO from each volcanic center to bring
them into equilibrium with olivine of Fo090,
assuming  (Fe?"/Mg)o/(Fe*T/Mg)w: =0.3  [e.g.,
Roeder and Emslie, 1970; Putirka, 2005] and
Fe?t/Fe o = 0.88 [e.g., Bezos and Humler, 2005 ;

Rhodes and Vollinger, 2005]. Similar to the
method employed by Dasgupta et al. [2010], we
add stoichiometrically pure olivine [i.e., (Fe,Mg),.
Si04] and clinopyroxene with a fixed composition
(i.e., representative of intraplate alkali basalts)
[Nisbet and Pierce, 1977] in constant (but not nec-
essarily equal) proportions in order to reproduce
the slope of the CaO/Al,O5 versus MgO plot for
each volcanic center (see supporting information).
Of note, the parental melt compositions derived
from each volcanic center and the average parental

2271


wileyonlinelibrary.com

y

“Geochemistry

Table 2. Near-Primary Melt Model Compositions®® (in wt.%) for Different Volcanic Centers in the Cook-Austral Ocean Island Chain
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Figure 4. Comparison of the MgO contents of the parental
melt compositions determined here versus those estimated by
Dasgupta et al. [2010] for sample suites derived from HIMU-,
EM(I)-, and EM(II)-type localities, as well as Hawaii, Galapa-
gos, and Iceland. The uncertainties reported by Dasgupta et
al. [2010] represent 2o statistical deviations measured in inde-
pendent collections of samples from the same OIB localities
as those investigated here. In this study, we report 20, devia-
tions by assuming the lavas from each locality are cogenetic.
Our calculations correct the composition of each individual
lava with 7.5-16 wt % MgO from each volcanic center to
bring them into equilibrium with olivine of Fo90, assuming
(Fe*"/Mg)o//(Fe* T /Mg)w; = 0.3 and Fe®/Fe,m = 0.88 (see
text for discussion); the numbers of lavas with 7.5-16 wt %
MgO from each OIB locality are given in parentheses. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Hawaii, Galapagos, and Iceland lavas; or (5)
some combination of these. The distinct slope for
each Th versus MgO trend line, regardless of
absolute enrichment, indicates the fractionation
of different proportions and/or compositions of
early-crystallizing phases (namely, olivine =
clinopyroxene * oxide).

[18] For the purpose of our model, we have deter-
mined the parental melt composition from the
lavas from each hotspot locality considered here
(Table 3). Without exception, the parental melts
from each end-member-type locality (i.e., HIMU
and EM sources) center around 17-19 wt % MgO.
Conversely, lavas from Hawaii, Iceland, and Gala-
pagos have parental melt compositions between 15
and 17 wt % MgO, similar to previous studies of
near-primary melts derived from Hawaii [Norman
and Garcia, 1999; Ireland et al., 2009]. A com-
parison of the MgO contents of our model parental
melt compositions relative to the “reference”
near-primary compositions determined by Das-
gupta et al. [2010] is provided in Figure 4.

[19] The best fit linear regression of Th versus
MgO for the Tristan da Cunha lavas indicates
that either the crystallizing assemblage of min-
erals in these samples changed (i.e., a cotectic
point was reached) as the lavas approached ~10
wt % MgO, or the parental melt of these sam-
ples must have had a lower MgO content (i.e.,
<14 wt %) than the lavas from the other local-
ities considered here; the lack of high MgO
samples from Tristan da Cunha (only one sam-
ple with >10 wt % MgO) makes extrapolation
to the parental melt composition tenuous, and
therefore, this locality is not considered in the
OIB source model presented here.

[20] Using the bivariate linear regression statistics
provided in Table 4, we infer the abundances of
Th in the parental melts of the various OIB local-
ities explored here. The results of these calcula-
tions, which are also provided in Table 4, serve to
illustrate that the parental melts of all end-mem-
ber-type localities share similar enrichments in Th.
All near-primary melt model compositions derived
from the end-member-type localities considered
here, with the exception of Tristan da Cunha
which is discussed above, contain 1.0-4.4 pg/g
Th, with an average composition of 2.1 =0.3
(20,,; n=29 localities) ug/g Th. Alternatively, the
near-primary model compositions of lavas derived
from Hawaii, Galapagos, and Iceland contain only
0.04—0.62 pg/g Th, with an average composition
of 0.39 £0.16 (20,,; n=4) pg/g Th that is more
than five times lower than the mean composition
of the end-member-type parental melts.

4. Determining OIB Source
Compositions Via Inverse Modeling

[21] We can estimate the incompatible element
budget of the Cook-Austral source region, as well
as the sources of the other OIB localities consid-
ered here, by inverse modeling following a simpli-
fied model of partial melting. Generally, MORB
are thought to form by large degrees of melting
(e, F ~ 815%) [e.g., Klein and Langmuir,
1987; McKenzie and Bickle, 1988; Niu, 1997,
Salters and Stracke, 2004]. In comparison, intra-
plate alkali basalts, such as the OIB samples ana-
lyzed here, reflect lower degrees of partial
melting, as inferred from elevated incompatible
element abundances [e.g., Hofmann, 1988; Sun
and McDonough, 1989], silica undersaturation
[e.g., Green and Ringwood, 1967; Gast, 1968;
Green, 1970], and trace element fractionations
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[e.g., Sims et al., 1995]. Both MORB and OIB
trace element compositions can be approximated
by dynamic, near-fractional melting [e.g., Lang-
muir et al., 1977; Johnson et al., 1990; Spiegel-
man and Kenyon, 1992]; consequently, we adapt a
simplified model of accumulated fractional melt-
ing [Shaw, 1970], whereby the composition of the
OSRs with respect to element i (i.e.,CO® ) may be
defined by only three variables (assuming modal
melting): the composition of the near-primary pa-
rental melt with respect to element i (CP™®); the
partition coefficient of element i between the solid
and liquid (D;°""9); and the fraction of melting
(F), according to the relationship:
COB x F
1= (1= p)/Pr
[22] This oversimplification allows us to estimate
the source composition by defining only one inten-
. : sol/lid :

sive property (i.e., D, ), one extensive property
(CP™B), and a single unknown variable (F). How-
ever, a number of fundamental assumptions are

required for the inversion calculations employed
here to apply to OIB source melting:

COSR —

(2)

(1) Melting occurs as imperfect fractional melting
of an invariant proportion of minerals consti-
tuting the source lithology, thereby allowing
for the application of modal accumulated par-
tial melting equations [Shaw, 1970];

(2) The bulk partition coefficients of the elements
involved (i.e., D7,"°""9) are constant and well
constrained during melting;

(3) Lavas from each OIB locality are cogenetic
(derived from a common source region);

(4) The degree of heterogeneity of the investi-
gated mantle sources is adequately reflected in
the OIB sample suites analyzed here [Stracke
and Bourdon, 2009].

[23] Further, because there is no well-defined
method for estimating a representative or average
degree of melting of an OSR without assuming a
source lithology/composition, absolute abundance
of trace elements in the mantle source, or con-
stancy of source ratios of incompatible elements,
we are forced to account for a range of F values.

[24] As mentioned earlier, the degrees of melting
represented by alkali OIB are generally believed
to be less than the 8-15% melting that produces
tholeiitic MORB [Klein and Langmuir, 1987;
McKenzie and Bickle, 1988, Niu, 1997]. Petroge-
netic models of melting/crystallization relations
[Gast, 1968; Sun and Hanson, 1975], composi-

tional variations observed in mantle peridotites
[Frey et al., 1978] and OIB [Sims et al., 1999;
Putirka, 2008], and anhydrous peridotite melting
experiments [Jaques and Green, 1980] suggest
that alkali basalts are derived from <10% partial
melting of their respective sources. This has been
corroborated by multiple studies of Hawaiian al-
kali basalts, which have been estimated to reflect
between 3 and 12% accumulated incremental
melting according to: major element lava compo-
sitions and peridotite melting experiments [Chen,
1988]; trace element systematics in lavas [ Norman
and Garcia, 1999; Feigenson et al., 2003 ; Maaloe
and Pedersen, 2003] and olivine-hosted melt
inclusions [Norman et al., 2002]; dynamic melting
models that incorporate phase-equilibria con-
straints and variable partition coefficients [Eggins,
1992]; and numerical modeling of the Hawaiian
swell [Watson and McKenzie, 1991].

[25] We assume 5-10% melting of the OIB sour-
ces considered here based on the constraints listed
above, as well as trace element modeling of Th/Nd
and U/Sm systematics following the protocols
established by Treuil and Joron [1975], Minster
and Allegre [1978], and Maaloe and Pederson
[2003]; these trace element models, which can be
found in the supporting information, not only
serve to illustrate the difficulty in establishing
degrees of partial melting but also verify that our
5-10% melting model is consistent with trace ele-
ment trends observed and extrapolated in the sam-
ples analyzed here. We then inversely model the
composition of the source of each OIB locality
based on the model parental melt compositions
determined in Table 4 and a bulk partition coeffi-
cient of D*"(Th) =0.003 + 0.001 (20,,) derived
from experimental melting experiments of garnet
peridotite between 1.0 and 3.4 GPa [Salters and
Longhi, 1999; Salters et al., 2002; Salters and
Stracke, 2004].

[26] In order to consider the impact of a pyroxe-
netic source lithology, we can derive a bulk parti-
tion coefficient of D*"9(Th)=0.005 = 0.002
(20,,) based on melting experiments of MORB-
like pyroxenite and eclogite at 2.9-3.1 GPa
[Klemme et al., 2002; Pertermann et al., 2004]
(see supporting information). This exercise yields
a minor deviation from our baseline that trivially
affects our inverse source model and corroborates
other studies that have shown that the bulk parti-
tioning behavior of Th (and U) does not vary sig-
nificantly between peridotitic and pyroxenitic
sources [e.g., Stracke et al., 2006; Prytulak and
Elliott, 2009; Koornneef et al., 2012]. However,

2276



@ Geochemistry 7
_ | | Geophysics ! AREVALO ET AL.: MANTLE ARCHITECTURE AND RADIOGENIC POWER
_ Geosystems \ .

10.1002/ggge.20152

pyroxentic source components have been shown to
melt with a much higher production rate and at
greater pressures/depths than ambient mantle peri-
dotite [Yaxley, 2000; Hirschmann et al., 2003;
Pertermann and Hirschmann, 2003]. Thus, 5-10%
partial melting of the OIB sources considered here
may actually be an underestimation of the true
degree of melting experienced by each volcanic
center, should pyroxenitic components play a sig-
nificant role in the source lithologies of our OIB
sample suites. As a result, our baseline model may
actually represent a lower bound on the enrich-
ment of the investigated OIB sources.

5. Implications and Discussion

5.1. Minimum Enrichment of OIB
Sources, as Observed in HIMU- and
EM-Type Lavas

[27] Despite uncertainties in the exact mineralogy/
petrology of the sources of the lavas analyzed here,
our model constrains the relative enrichment of
end-member-type OIB sources; this is accom-
plished by assuming a peridotitic source lithology
and a suitable range of degrees of melting required
to produce the near-primary parental melt composi-
tions determined here. Moreover, the estimated
OIB source concentrations derived here represent
average source compositions; the degree of hetero-
geneity of the investigated OSR that is reflected in
the lavas analyzed here is dependent on the effec-
tiveness of melt mixing during melting and melt
extraction as well as source and melting-induced
compositional variability. Individual components
in these heterogeneous OIB sources may be more
or less enriched than the average composition esti-
mated here. For example, if OIB lavas originate
from mantle plumes that entrain significant
amounts of depleted upper mantle materials upon
ascent and emplacement, as has been suggested by
experimental and numerical simulations [e.g., Grif-
fiths and Campbell, 1990; Neavel and Johnson,
1991; van Keken, 1997 ; Davaille, 1999 ; Kumagai,
2002; Lin and van Keken, 2006], then our modeled
average OIB source compositions certainly repre-
sents only a lower bound on the enrichment (and
thus an upper limit on the volume) of this reservoir.

[28] According to the parental melt compositions
modeled in Table 4 and following 5-10% accumu-
lated fractional melting of the sources of these mag-
mas, we estimate that the sources of these OIB end-
member lavas contain between 70 and 330 ng/g Th,

with a mean composition of 160 =20 (20,,) ng/g
Th. The average model composition of the HIMU-
and EM-type OIB sources reconstructed here is
coincidentally similar to that of global MORB,
which are characterized by a representative compo-
sition of ~240 ng/g Th (Table 5). The BSE quanti-
tatively comprises the CC and mantle and contains
79 ng/g Th according to traditional geochemical
models (Table 6); therefore, the enrichment of Th
in the OSR defined here is twice that of the BSE,
implying a source with a significant amount of
recycled oceanic crust [Hofimann and White, 1982].

[20] Conversely, the sources of the lavas from
Hawaii, Iceland, and the Galapagos are modeled
to contain between 3 and 47 ng/g Th, significantly
more depleted in highly incompatible elements
than the BSE and the sources of end-member-type
OIB. In order to reconcile the compositions of the
sources of Hawaii, Iceland, and the Galapagos
with those of end-member-type OIB, the parental
melts of the lavas analyzed here would need to
represent >30% partial melting in the case of
Hawaii, >40% for the Galapagos, and a numeri-
cally impossible solution (i.e., £ > 100%) for Ice-
land. Thus, this discrepancy in  model
compositions likely reflects melting of distinct
source components and/or the entrainment of a
larger fraction of depleted mantle materials.

5.2. Size and Radiogenic Heat Production
of the OSR

[30] The degree of enrichment of the OSR(s) has
important implications for mass balance and the
chemical structure of the modern mantle as well as
the radiogenic heat budget of the planet. Tempo-
rarily ignoring evidence for an enriched, early-
formed, and/or unsampled mantle reservoir, as
suggested by several geochemical studies [e.g.,
Rudnick et al., 2000; Boyet and Carlson, 2005;
Tolstikhin and Hofimann, 2005], we can simplify
the modern mantle into two fundamental chemical
units: the source of MORB (DMM); and a more
enriched OSR. Regardless of the architecture of
these two mantle components, whether they are
preserved by a uniform or undulating thermo-
chemical boundary layer [e.g., Kellogg et al.,
1999; van der Hilst and Karason, 1999], or
enriched blobs [e.g., Becker et al., 1999] and/or
streaks [e.g., Allégre and Turcotte, 1986; Morgan
and Morgan, 1999] of OIB source material sus-
pended in a matrix of DMM, mass balance (see
equation (1)) dictates that the larger the mass of
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Figure 5. Relationship between the mass fraction and
chemical enrichment of the OSR, which is dependent
on the composition of the continental lithosphere (CL), source
of MORB (or DMM) and the BSE following mass balance:
MPBSEXBSE — )CLYXCL 4 \fDMM YDMME | \fOSRYOSR  The
different mass balance curves consider three different flavors
of DMM and BSE compositions, as listed in Tables 5 and 6,
respectively. Curves that levy traditional geochemical models
of the BSE are labeled as GEO and those that rely on cosmo-
chemical and dynamical models are labeled as COS and
DYN, respectively. The negative asymptotic trend lines (spe-
cifically COS+NMORB and COS+GMORB) indicate that
these particular models require an OSR that is depleted in Th
compared to the source of MORB in order to satisfy mass bal-
ance. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

the MORB source region, the smaller and more
enriched the OSR must be (Figure 5).

[31] Despite the large degree of a chemical vari-
ability observed in MORB derived from the Atlan-
tic, Pacific, and Indian Ocean basins, the large
quantity of accessible samples and abundance of
data available publicly allow for a comprehensive
evaluation of the composition of global MORB
[e.g., Arevalo and McDonough, 2010; Jenner and
O’Neill, 2012; Gale et al., 2013 ; White and Klein,
2013], and thus the DMM through inverse model-
ing. Alternative models of DMM composition that
can be found in the literature are also reported in
Table 5, including models based on the composi-
tion of lavas only with (La/Sm)y < 1.0 (commonly
deemed normal-type MORB, or N-MORB) [e.g.,
Hofmann, 1988 ; Sun and McDonough, 1989; Salt-
ers and Stracke, 2004] as well as those centered
on the composition of abyssal peridotites, the resi-
dues of MORB source melting [Workman and
Hart, 2005].

[32] Similarly, as shown in Table 6, there are mul-
tiple paradigms for the composition of the BSE.

Traditional geochemical models assume that the
BSE follows CI chondritic relative proportions of
refractory elements, with absolute abundances
constrained by terrestrial samples [e.g., Jagoutz et
al., 1979; Hofmann, 1988 ; Sun and McDonough,
1989; McDonough and Sun, 1995; Javoy, 1999;
Palme and O’Neill, 2003 ; Lyubetskaya and Kore-
naga, 2007]. Alternative BSE models that rely on
cosmochemical constraints include model compo-
sitions based on (1) enstatite chondrites, the only
chondrite group with an O isotopic composition
identical to the Earth [e.g., Javoy, 1999] and (2)
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-
o
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Figure 6. Interplay between the mass fraction of and radio-

genic heat production within the OSR, which is dependent on
the composition of the CL, DMM, and BSE, as described in
Figure 5. Reference lines for the continental crust (CC) [Rud-
nick and Gao, 2003], DMM (based on the G-MORB model
presented in Table 5), and BSE (based on the mean geochemi-
cal model presented in Table 6) are provided for comparison.
The reference line for the total global heat loss (46 =6 TW,
20) is determined by Jaupart et al. [2007] and includes heat
flux contributions from secular cooling, the planet’s core, tidal
dissipation, and gravitational energy. The negative asymptotic
trend lines (specifically COS +NMORB and
COS + GMORB) again indicate that these particular models
require an OSR that is depleted in Th, and by extension radio-
genic heat production, compared to the source of MORB in
order to satisfy mass balance. [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com.]
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Schematic representation of plausible paradigms of mantle architecture, assuming only two distinct mantle source

regions: the DMM and model OSR developed here. Regardless of whether the distinction between these two
mantle reservoirs are preserved as a thermochemical stratification or blobs/blocks/streaks of OSR material
suspended in a matrix of DMM, the preferred OIB source composition derived here indicates that the OSR
represents approximately <19% of the mass of the modern mantle, and contributes some 10 pW /kg of radio-
genic heat (equating to 7.4 TW) to the planet’s total surface heat loss. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

net collisional erosion of approximately 10% sili-
cate relative to metal during the Earth’s accretion,
and thus varying degrees of depletion of elements
in the BSE according to their geochemical incom-
patibility [O’Neill and Palme, 2008]. Dynamical
models require a BSE that is significantly more
enriched in radioactive elements in order to satisfy
calculations of the energetics of mantle convec-
tion, observed surface heat loss, and parameterized
models of thermal evolution [e.g., Turcotte and
Schubert, 1982, 2002 ; Turcotte et al., 2001].

[33] Despite the uncertainties introduced by these
different models, we derive a range of prospective
compositions/mass fractions of the OSR that sat-
isfy the simple mass balance equation (equation
(1)) described in section 1. As shown in Figure 5,
our preferred model calculations take into account
a DMM composition derived from a global
MORB model (see Table 5) and a BSE composi-
tion averaged from a selection of traditional geo-
chemical models (see Table 6). Our calculations

indicate that the OIB sources of the HIMU- and
EM-type lavas analyzed here represents <197°_,
(20,,)% of the modern mantle by mass, with the
remaining >81% of the mantle represented by the
DMM. If the mantle is described appropriately by
a layered, two-component architecture (i.e.,
DMM + OSR), our model suggests that a thermo-
chemical boundary layer exists at an average depth
of >2000 = 100 (20,,) km (assuming an incom-
pressible mantle) or two thermochemical piles that
extend up to midmantle levels. The potential for a
sequestered or unsampled mantle reservoir, as
inferred from trace element abundances [e.g., Rud-
nick et al., 2000], '**Sm-'**Nd isotopes [e.g.,
Boyet and Carlson, 2005], and rare gas system-
atics [e.g., Tolstikhin and Hofmann, 2005], would
not change the compositional OIB source model
presented here; rather, a tertiary mantle reservoir
(such as an early enriched reservoir, or EER)
would implicate a smaller (by mass) OSR and a
larger DMM, according to the relationship:
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MBSE)(iBSE _ MCL)(I_CL + MDMM)([DMM

+ MOSR )(l_OSR + MEER /Y,'EER ; (3)

where the mass and chemical enrichment of an
EER with respect to element i are represented by
MFER and X;FER respectively. For reference,
MPSE and MC© are determined by Yoder [1995],
X is derived by Rudnick and Gao [2003],
X,-BSE and X°™M are defined in Tables 5 and 6,
and M° SRX,-OSR 1s modeled here.

[34] The model calculations and uncertainties pre-
sented here take into account errors in the bivariate
linear regression statistics in the Th versus MgO
trends shown in Figures 2 and 3 ; these errors have
been propagated into our estimated OIB parental
melt and source compositions (see Table 4). Our
preferred model also relies on a traditional geo-
chemical model for the composition of the BSE
with 79 =8 (20) ng/g Th (see Table 6), an esti-
mated 24 *= 1 ng/g Th (20,,) in the DMM (see Ta-
ble 5), and 5600 = 1700 ng/g (20) Th in the CC
[Rudnick and Gao, 2003].

[35] Regardless of whether or not the mantle is
stratified, the OIB source compositions determined
here have implications for the planet’s radiogenic
heat budget. As shown in Figures 6 and 7, our pre-
ferred model indicates that the rate of radiogenic
heat produced within the OSR is on the order of
10 pW /kg, equating to some 7.3 TW of radiogenic
heat produced in this mantle reservoir, assuming
COSR(Th)/CO}(U) ~ 4.0 and COSKK)/COS}U)
~ 10,400 (average Th/U and K/U of lavas exam-
ined here, respectively). According to the tradi-
tional geochemical models reviewed here, 20.4
TW of radiogenic heat is produced by the BSE;
therefore, approximately 5.9 TW of heat must be
produced by the DMM, following mass balance
and subtracting the 7.3 TW of radiogenic heat pro-
duced by the OIB source proposed here and the
7.2 TW of heat generated within the CL [Rudnick
and Gao, 2003].

6. Conclusions

[36] Lavas from HIMU-type Cook-Austral and St.
Helena islands, and EM-type Heard, Gough and
Pitcairn Islands, Marquesas, Azores, Society and
Samoa islands, all share similar parental melt com-
positions between 17 and 19 wt % MgO and aver-
aging 2.1 £0.3 (20,) pg/g Th. Assuming the
parental melts of the lavas examined here repre-
sent 5-10% partial melting of a peridotite, our
model calculations suggest that these OIB are

derived from a hotspot source region with an aver-
age of 160 =20 (20,,) ng/g Th. The model OIB
source composition determined here may represent
a lower limit on the chemical enrichment and an
upper limit on the mass fraction of the investigated
end-member-type OIB sources, as we have
assumed: melting of a dominantly peridotitic
source lithology, and thus a lower production rate
compared to melting of pyroxenite; and negligible
dilution from the entrainment of depleted upper
mantle materials during the ascent and emplace-
ment of the lavas analyzed here. The potential for
a tertiary “hidden” or unsampled mantle reservoir
would only impact the relative mass fractions of
the OSR and DMM and not the compositional
model of the OSR presented here.

[37] Our calculations indicate that the mantle res-
ervoir that serves as the source of the investigated
end-member-type OIB must: (1) constitute some
197, (20,,)% of the mantle by mass, equating
to a potential thermochemical layering with an
average depth of 2000 = 100 (20,,) km (assuming
an incompressible mantle) or two thermochemical
piles that extend up to midmantle depths; and (2)
contribute some 7.3 TW of radiogenic heat to the
planet’s total surface heat loss. Taking into
account the 7.2 TW of radiogenic heat produced
within the CL, the remaining 5.9 TW (equal to
<2 pW /kg) of heat produced within the BSE
must be supplied by the DMM. Thus, the hotspot
source region that generates end-member OIB
produces >5 times more radiogenic heat than the
source of mid-ocean ridge volcanism, providing
basal heating to the mantle, contributing to the
energetics that drive mantle convection, and
potentially supporting the formation of long-lived
mantle plumes.
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