On the mechanical origin of two-wavelength tectonics on Ganymede Laurent G.J. Montési Woods Hole Oceanographic Institution Geoffrey C. Collins Wheaton College

Overview

Tectonic Wavelengths Fault spacing Topographic undulations Necking Requires residual strengths Faulting Localization instability Graben morphology Alternative origin for undulations

High strained area Fault spacing: 1 to 2 km Undulation wavelength: 5 to 10 km Collins et al., 1997 Patel et al., 1999

Low strain area Fault spacing: 1 to 2 km Graben spacing: ~10 km

Necking on Ganymede

- Fink and Fletcher LPSC 1981
 - Necking can produce topographic undulations with wavelength ~20 km
- Herrick and Stevenson, 1990
 - Growth rate of necking is too low to develop over reasonable time scale
- Dombard and McKinnon, 2001
 - Growth rate is OK if updated rheologies and lower surface temperature are used

Necking primer

- Layered structure
- Power law rheologies
- Requires strength contrast
- Wavelength scales with depth to brittleductile transition
- Growth rate depends on strength contrast

Pseudo-plastic layer n₁=+∞,η₁

Ductile substratum

n₂, ղ₂[<]ղ₁

Fletcher, 1974; Smith 1977; Fletcher and Hallet, 1983

Necking: Growth Spectrum

Deformation pattern of the necking instability

Necking revisited

- Classical models use constant strength brittle layer
- Growth rate decreases with strength at the surface
- Necking requires residual near-surface strength

Localization instability

- Requires contrast in material properties with strain rate weakening in brittle layer
- Wavelength scales with depth to brittleductile transition
 - Depends on rate of weakening
- Infinite growth rate

Montési and Zuber, 2003

Growth spectrum with localization

- Localization produces infinite growth rate peaks
- Wavelength of peaks depends on rate of weakening
- Question: What is the expression of this instability?

Numerical model

- Finite Elements Code LAYER (Neumann and Zuber, 1995)
- 45x9 km box
- 300x40 elements 150 m wide, variable height
- Ice rheology
 - Brittle law (Beeman et al., 1988) with strain-rate weakening
 - Ductile laws from Goldsby and Kohlstedt 2001
- Exponential thermal profile
- Extension rate: 10⁻¹⁵s⁻¹
- Instantaneous solution, stretched 5%

6

8

- σ=σ₀[1-C ln(ἐ/ἐ₀)]
- C=0.15
- Thermal structure:
 - 110 K at the surface
 - Geotherm 6 K/km
- Wavelengths
 - Faulting: 1.8 km
 - Graben spacing influenced by model size (here 15 km)

Structure morphology

- Brittle law
 - σ=σ₀[1-C ln(ε/ε₀)]
 - C=0.15
 - Various graben morphology for fault spacing between 1 and 2 km
- Uruk Sulcus low strain area displays complex grabens
 - Surface temperature between 100 and 115K
 - Geotherm between 5 and 7 K/km
 - Heat flow between 30 and 40 mW/m²

Thermal structure

Conclusions

- Faulting occurs with regular spacing
 - Several graben morphologies observed in numerical simulations
 - Complex grabens with 1-2 km fault spacing obtained for surface temperature above 100 K with surface geotherm around 6 K/km (heat flow ~ 35 mW/m²)
- Long wavelength undulations have separate origin
 - Necking if there exists a residual near-surface strength
 - Long range fault interaction if there is a detachment
 - Finite strain effect

Highly strained area Fault spacing: 1 to 2 km; Undulation wavelength: 5 to 10 km

Thermal structure

- Geotherm around 7±1 K/km
 - Heat flow ~35 mW/m²
- Surface temperature depends
 on rate of weakening, but close
 to current temperature
 - Warning, colder conditions may be needed if less intense localization (but shear zones less diffuse)
- Additional variables
 - Strain rate
 - Thickness of the model

Conclusions

- Necking can produce long-wavelength undulations only if there exist a residual nearsurface strength
- Faulting can develop at two wavelengths
 - Fault spacing controlled by localization instability
 - Graben spacing controlled by long-range fault interaction

 2 km fault spacing and 10 km topographic undulatons obtained for surface temperature around 110 to 120 K with surface geotherm around 7 K/km (heat flow ~ 35 mW/m²)