GEOL 104 Dinosaurs: A Natural History

Fall Semester 2017
Theropoda II, Coelurosauria: Tyrant Kings and Lesser Royals

The tyrannosaurid Tarbosaurus pursuing two individuals of the ornithomimid Gallimimus in Late Cretaceous Mongolia, by John Conway

Key Points:
•Coelurosaurs are the most diverse clade of theropods (or dinosaurs, for that matter). Coelurosaurs began as small-bodied agile hunters, but quickly diversified into many distinct subgroups. All groups are known to have some form of fuzzy or feathery body covering.
•Tyrannosauroids were a clade with enhanced bite and specialized teeth. Initially mid-sized predators, they culminated in the gigantic, short-armed, two-fingered, long legged, bone-crushing Tyrannosauridae.
•More derived forms typically had smaller skulls, long necks, and phyllodont dentition, showing a shift away from flesh-eating.
•Ornithomimosauria had long arms with clamping hands. This clade includes toothless forms, such as the large-to-gigantic Deinocheiridae and the slender-footed Ornithomimidae.
•Therizinosauria had long arms with large clawed hands. The derived Therizinosauroidea within it have expanded guts, retroverted pubes, and shortened metatarsi, showing that they had evolved into slow-moving herbivores.
•Alvarezsauria were small-bodied insectivorous coelurosaurs. Derived forms (Alvarezsauridae) had highly transformed forelimbs that had become short but powerful picks.
•The remaining coelurosaurs formed the clade Pennaraptora, characterized by sideways-oriented shoulder joints, long arms with a specialized folding wrist, and broad pennaceous feathers on the arms and tail.
•Among the pennaraptorans were the omnivorous short-skulled Oviraptorosauria (including the toothless Caenagnathoidea) and the tiny gliding Scansoriopterygidae. (The Eumaniraptora, the remaining group, are covered in the next lecture).

Simplified cladogram of Coelurosauria

More detailed phylogeny of Coelurosauria


Coelurosaurs are the sister group to Carnosauria within the avetheropods. The coelurosaurs differ from other theropods by possessing:

Additionally, where known, all coelurosaurs preserved in the appropriate-style sediment show at least some protofeathers or true feathers. However, as discussed previously, the discovery of the megalosauroid Sciurumimus pulls the origin of protofeathers much deeper into theropod (or dinosaur, or ornithodiran) history. At least some of the protofeathers of primitive coelurosaurs seem to be pennaceous (having a central shaft), rather than simply plumulose tufts.

Among the most primitive and oldest known coelurosaurs are the basal tyrannosauroids Proceratosaurus of the Middle Jurassic of England and Kileskus of Russia. Only the skull of the former, and skull, hand, and foot bones of the latter, are known at present. However, the most primitive known coelurosaur is actual a relatively late one: Bicentenaria of the mid-Cretaceous of Argentina. It shares with basal tyrannosauroids and basal maniraptoriforms the same general body plan: relatively small (2-4 m) slender animals with skulls full of small ziphodont teeth. Their narrow grasping hands suggest they adapted to catching small prey; their light build, slender limbs, and narrow dynamic stabilizing tail suggests relatively agile animals (useful both in chasing prey and in avoiding predators).

Recent studies find the Late Jurassic western North American Coeluridae (Coelurus and Tanycolagreus) are basal members of Tyrannosauroidea and their neighbor Ornitholestes is a basal member of Maniraptoriformes. However, these do not show the derived features of their relative clades which will be discussed below (their position based on other skeletal traits not discussed in this course), so we won't address them there.

The megaraptorans (discussed in the previous lectures) fall out as basal coelurosaurs in some analyses, and even as tyrannosauroids in others.

Another important group of small primitive theropods is the Compsognathidae. This group ranges from the 1 m long Compsognathus of the Late Jurassic of Europe and Sinosauropteryx of the Early Cretaceous of China to 1.75 m long Huaxiagnathus of the Early Cretaceous of China to the "giant" Sinocalliopteryx of the Early Cretaceous of China at 2.5 m long. Compsognathids are also known from Early Cretaceous Europe and South America, and represented a minor radiation of small-bodied dinosaurs. Gut contents show that they ate lizards and small mammals. Being primitive and of generalized form, these dinosaurs show up in the phylogeny sometimes as basal coelurosaurs outside Tyrannoraptora (the tyrannosauroid-maniraptoriform clade); sometimes as basal maniraptoriforms (as shown here); and sometimes as basal maniraptorans.

The most long-lived and ecologically significant group of primitive coelurosaurs was Tyrannosauroidea, the tyrant dinosaurs. Best known from the later Late Cretaceous Asia and North American Tyrannosauridae, recent discoveries reveal a long history of tyrant dinosaurs going back into the Middle Jurassic.

Basal tyrannosauroid specializations include:

The oldest and most primitive (other than the coelurids) are the Proceratosauridae. The oldest known are Middle Jurassic English Proceratosaurus and equally old Siberian Kileskus. Slightly younger (and far more completely known) is Guanlong of the Middle-Late Jurassic boundary of China: a 3 m or longer crested proceratosaurid. Like other early coelurosaurs, the arms were fairly long. Long arms with tridactyl manus were likely found in all proceratosaurids, but we do not yet have the arms for Proceratosaurus, Kileskus, or Early Cretaceous (and possibly 8 m long!) Sinotyrannus, is one of the youngest known proceratosaurids. Of similar age (and possibly the same genus) is Yutyrannus of Early Cretaceous of China. Known from three nearly-complete fossils, this is a 9 m long predator. It still retained the tridactyl manus with long claws of typical tetanurines. Because they were preserved in fine-grained ash-based sediments, the remains of long protofeathers were found over its body, indicating that even giant theropods had a fuzzy coat!

Dilong of the Early Cretaceous of China represents the next phase of tyrannosauroid evolution. It was the first tyrannosauroid found with protofeathers. At 1.5 m length, it still indicated that some basal tyrannosauroids were small members of the predatory community.

More robustly-built are the "stokesosaurs", including Jurassic tyrannosauroids such as Stokesaurus of North America, and Juratyrant (formerly considered a species of Stokesosaurus) of Europe, and Aviatyrannis of both. A later "stokesosaur" is Early Cretaceous Eotyrannus of Europe, with an adult size of possibly 4.5 m or more. It was dwarfed by other theropods in its community: the carnosaur Neovenator and the spinosaurid Baryonyx.

Even larger is 6 m or more longer Dryptosaurus, a late-suriving primitive tyrannosauroid of eastern North America. The arms of Eotyrannus are primitively long; in Dryptosaurus the arm is very short but has a very large claw. It is confirmed as having an arctometatarsus. As with more derived tyrannosauroids, the distal hindlimbs (tibia, metatarsi) are elongated: an indication of cursorial (running) ability. Similar but older is Xiongguanlong of late Early Cretaceous China and Timurlengia of early Late Cretaceous Uzbekistan.

Tyrannosauroids increase size again with the 6 m or longer Appalachiosaurus of the Late Cretaceous of eastern North America and deep-skulled Bistahieversor of the Late Cretaceous of the American Southwest, and again with the Tyrannosauridae proper.

Tyrannosaurids proper are one of the last groups of large bodied theropods to evolve, showing up only in the last 20 million years or so of the Late Cretaceous of North America and Asia. (Consequently they have a similar range distribution to coronosaur ceratopsians, pachycephalosaurs, corythosaur-line lambeosaurines, and club-tailed ankylosaurines). Although for most of their history tyrannosauroids were minor predators in their habitats, tyrannosaurids were by far the largest flesh-eaters in their environments. Small tyrannosaurids were about 8 m long; most reached at least 10 m; and at least one genus reached 13 m.

Tyrannosaurids were specialized relative to their ancestors by possessing:

Tyrannosaurids include the relatively slender Albertosaurus and Gorgosaurus of western North America; slender long-snouted Alioramus and Qianzhousaurus of Asia; and more heavily built Lythronax, Daspletosaurus, and Teratophoneus of western North America and Tarbosaurus and Zhuchengtyrannus of Asia; and giant 13 m long, 8-10 ton Tyrannosaurus of western North America. Tyrannosaurus rivals the biggest carcharodontosaurs and spinosaurids in mass.

Tyrannosaurids seem to have relied solely on their jaws to kill their food. Their long legs meant that they were faster than their potential prey (hadrosaurids, ceratopsids), although adults of the 2 ton or greater size range may not have been fast runners. (Juvenile tyrannosaurids, though, would have been among the fastest dinosaurs). At least some tyrannosaurids have been found in groups of different ages: possibly family associations.

MANIRAPTORIFORMES: Plant-Eating "Carnivorous" Dinosaurs
The remaining coelurosaurs (Maniraptoriformes) all have brains that are twice again as large or larger (based on skull size) as the more basal coelurosaurs. They also share a suite of unusual features that strongly suggest a move away from the strictly carnivorous diet of their ancestors and relatives. In particular, they typically:

This suggests a move away from strict meat-eating and incorporation of at least some plant matter, insects and other invertebrates, and the like into their diet. (This scenario is complicated depending on the position of meat-eating Ornitholestes and Compsognathidae.). There are a few groups of predators among these advanced coelurosaurs, but by and large they were non-meat eaters.

A new discovery of broad pennaceous feathers (i.e., feathers with a shaft, branches off of that, subbranches off of that, etc.) in ornithomimosaurs seem to place this trait at the same part of the tree as this shift to non-carnivory. However, at present they are only known on the arms of ornithomimosaurs: the spread to other parts of the body seems to be further up the tree.

With the possible exceptions of Ornitholestes and Compsognathidae, the basalmost lineage of the maniraptoriforms are the Ornithomimosauria, the ostrich dinosaurs. Ornithomimosaurs differ from the ancestral state by:

Their adaptations suggest a move away from predation towards a more omnivorous or even herbivorous lifestyle.

Primitive ornithomimosaurs are known from the Early Cretaceous of Africa (Nqwebasaurus: currently the oldest and most primitive known ornithomimosaur, and the only one from the Southern Continents), Europe (Pelecanimimus), and Asia (Harpymimus, Shenzhousaurus, and Hexing). The remaining ornithomimosaurs fall into two clades: Deinocheiridae and Ornithomimidae. Both of these are dinosaurs larger than the basal members, and possess toothless beaks.

Deinocheirids are currently only known from Asia. They include large of the Early Cretaceous Beishanlong), Late Cretaceous of Asia (Garudimimus, and truly gigantic Deinocheirus, long known only from its arms and a few isolated bones (but new discoveries give us a better sense of the animal), is a Tyrannosaurus-sized primitive ornithomimosaur (lacking an arctometatarsus). The new discoveries show that Deinocheirus had a spinosaur-like sail over the hip region, an expanded blunt snout, a deep jaw, highly reduced supratemporal fenestrae, and oddly blunt toes. Deinocheirids retain the ancestral limb proportions of most theropods. The belly contents of Deinocheirus include numerous fish bones and scales, so it was probably omnivorous. At 6.4 tonnes, it was among the very largest theropods.

The Ornithomimidae did not produce any forms this large (although the largest rival Beishanlong). At present they are only known from the Late Cretaceous of Asia and North America. Ornithomimids are characterized by arctometatarsus (convergently evolved with Tyrannosauridae). Early Cretaceous Kinnareemimus of Thailand shows an incipient arctometatarsus form and may turn out to be the basalmost ornithomimid. Otherwise, the lodes and most primitive is Sinornithomimus of the early Late Cretaceous of China. Other ornithomimids include western North American Struthiomimus, Dromiceiomimus, and Ornithomimus, and Asian Gallimimus and Anserimimus. These dinosaurs were among the most cursorial of all theropods.

At least some ornithomimosaurs lived in herds/flocks. Recent discoveries reveal that adult ornithomimosaurs had pennaceous feathers on the arms and tail, but juveniles do not seem to have this.

The remaining theropods form the clade Maniraptora ("hand grabbers"). Maniraptorans show numerous specializations:

One possible problematic shared derived feature of Maniraptora is a backwards-pointing pubis. Most coelurosaurs (and saurischians in generally) have a vertically-oriented or anteriorly-oriented pubis. In therizinosauroids, alvarezsaurids, the basal troodontid Sinovenator and the derived troodontid Latenivenatrix, dromaeosaurids, Archaeopteryx, and avialians the pubis points backwards; in the basal therizinosaur Falcarius, the basal alvarezsauroid Haplocheirus, oviraptorosaurs, most troodontids, and the basalmost avialian Anchiornis it points vertically or anteriorly. So it is difficult to say which condition is found in the concestor of Maniraptora. (Regardless of the answer, there is a LOT of convergence going on!!)

Changes in the muscle attachments in the hindlimbs of maniraptorans show a switch from the femur-and-tail power stroke found in other dinosaurs (inherited from the early diapsids) to one where the flexion of the knee is more important.

Maniraptorans are the most diverse clade of dinosaurs. None retain a basal theropod form: indeed, very few retain the ancestral carnivorous condition. Major groups include the Therizinosauria, Alvarezsauria, Oviraptorosauria, and Eumaniraptora (which get their own lecture).

The oldest maniraptorans are some possibly Middle Jurassic eumaniraptorans, and definitely this clade is present by the Late Jurassic. A therizinosaur dentary possibly from the Early Jurassic (but may be as young as the Early Cretaceous!) of China is considered by some authors to be a therizinosaur: however, it might simply be a derived sauropodomorph.

This group and the Oviraptorosauria were once thought to form their own clade (Oviraptoriformes). However, discovery of the primitive members of both Therizinosauria and Oviraptorosauria shows that many of the similarities between the derived members of these clades are convergences. More recent studies typically place therizinosaurs as the most basal branch of Maniraptora.

Therizinosauria ("scythe reptiles") have been considered sauropodomorphs and late surviving proto-ornithischians, but are in fact coelurosaurian theropods. Prior to the 1990s, they were often called the "segnosaurs." Similar to the ornithomimosaurs, this group is characterized by:

but unlike ornithomimosaurs, they had: And the rest of the skeleton demonstrates that they are maniraptoran.

Other than the jaw Eshanosaurus, this group is known only from the Cretaceous, and only from Asia and North America at present. The basalmost form is Early Cretaceous Falcarius of western North America. It retains a relatively elongate metatarsus and a vertically-oriented pubis. The derived therizinosaurs form the clade Therizinosauroidea, and are characterized by shortened metatarsi in which all four toes touch the ground and backwards-pointing pubes. (In this case, like the ornithischians, this is almost certainly to accommodate a large gut for digesting plants.

Therizinosaurs seem to have been primarily, if not strictly, herbivores. Their stumpy feet and short legs show them to have been among the slowest theropods. To defend themselves (and possibly to help them feed) they had huge claws. They ranged from bear-sized taxa such as Erlikosaurus and Beipiaosaurus through Nothronychus to Tyrannosaurus-sized Therizinosaurus with 1 m long claws.

Alvarezsauria (sometimes called "Alvarezsauroidea") is a recently discovered, highly specialized group of maniraptoran theropods. Haplocheirus is the oldest known form, from the early part of the Late Jurassic of China; otherwise, the remaining alvarezsaurs (collectively the Alvarezsauridae) are from the Late Cretaceous. Alvarezsaurids are known from South and North America, Europe, and Asia. They have numerous bird-like features, and were once thought to have been specialized flightless birds. Alvarezsaurids range in the chicken-to-rhea sizes.

Alvarezsaurids have small beaky skulls with tiny teeth and hands in which the thumb is much more powerful than the other fingers.

In the Cretaceous Alvarezsauridae, the forelimbs are further transformed into bizarrely powerful arms with a huge thumb claw and exceedingly small digits II and III. The alvarezsaurids have a backwards pointing pubis. Unlike the therizinosauroid and ornithischian situation, this backwards position of the pubis is more likely associated with changes in the locomotory muscles towards knee-driven power from the ancestral tail-and-femur driven power.

Only a little is known of Alvarezsaurus itself (the basalmost form); somewhat more is known for the more derived Patagonykus and Achillesaurus (all from South America). Only a foot is known of rhea-sized Kol of Asia.

The highly derived Parvicursorinae (also called "Mononykinae"), in contrast, are known from many excellent specimens. The best studied are the Asian taxa Mononykus, Parvicursor, and Shuvuuia. More fragmentary Asian parvicursorines include tiny Albinykus, Linhenykus (in which digits II and III had entirely vanished), and Xixianykus. (However, North American forms such as Albertonykus are known). Parvicursorines have an extreme version of the arctometatarsus, in which the upper portion of metatarsal III is entirely missing.

The parvicursorines show numerous cursorial adaptations, but these were almost certainly defensive. They seem to have been insectivores, and their forelimbs may have been used to batter into ant and termite nests. They have been found from deserts to well-watered environments.

PENNARAPTORA: Fully Feathered Dinosaus
The remaining maniraptorans form the clade Pennaraptora ("feathered raptors"). These comprise the oviraptorosaurs, the scansoriopterygids, and the eumaniraptorans. These groups are united by several important characteristics:

Oviraptorosauria is characterized by

The basalmost oviraptorosaurs are toothy Incisivosaurus, Protarchaeopteryx, and the Caudipteridae (sometimes spelled "Caudipterygidae": Similicaudipteryx, and Caudipteryx), all from the Early Cretaceous of China. (If the scansoriopterygids turn out to be oviraptorosaurs, they represent the Jurassic members of this clade).

Other early branches of the oviraptorosaurs are Microvenator (probably a caenagnathid) of the Early Cretaceous of western North America and specialized Avimimus (with an arctometatarsus) of the Late Cretaceous of Asia. (The latter seems to have dwelt in herds/flocks/whatever).

These basal branches of Oviraptorosauria are relatively small (chicken-to-turkey sized). The more derived Caenagnathoidea contain forms that range from turkey to human to tyrannosaur size. Caenagnathoids are derived by loss of all teeth as well as other specializations. Most (but not all) phylogenetic studies divide the Late Cretaceous caenagnathoids into two branches: the Caenagnathidae (sometimes called the "Elmisauridae" or "Elmisaurinae": taxonomy on this remains in flux) which had elongate hindlimbs and sometimes even an arctometatarsus, and the stout-footed Oviraptoridae. However, other studies mix and match the components of these groups. Oviraptoridae proper seems to be limited to Asia, while Caenagnathidae is found in both Asia and North America. Examples of oviraptorids include crested Oviraptor, Citipati and Rinchenia, crestless Khaan, and headless (okay, we don't have the head yet...) Nomingia. Caenagnathids include tiny Asian Elmisaurus and Caenagnathasia, and larger North American forms such as Chirostenotes, Leptorhynchos, Epichirostenotes, Apatoraptor, Hagryphus, and Anzu. By far the largest oviraptorosaur is the recently discovered caenagnathid Gigantoraptor of Asia: as large as an Albertosaurus or other smaller tyrannosaurid. Egg evidence points to the existence of Gigantoraptor-sized oviraptorosaurs in early Late Cretaceous North America.

The life habits of oviraptorosaurs are confusing. While the ancestral ones seem to be convincingly herbivorous, there are lizards in the gut contents of some oviraptorids: perhaps they were omnivorous? Many oviraptorosaurs have been found in desert environments, but others in forested regions.

An unusual clade of small pennaraptorans are Scansoriopterygidae. Known from Middle-early Late Jurassic Epidendrosaurus (also known as "Scansoriopteryx") and Epidexipteryx (which may just be the adult form of Epidendrosaurus!), and spectacular Yi these are among the smallest Mesozoic dinosaurs (pigeon-sized). (Early Cretaceous Zhongornis was once thought to be scansoripterygid, but is most likely a basal avialian.) As they are small enough, and have the distally-placed pedal digit I, it may be that they may have spent some time up in the trees. The skull shape and tiny teeth of the scansoriopterygids suggest that they might have been insect eaters or omnivores. Many recent studies place these dinosaurs as the basalmost members of Avialae, but newer analyses place them outside Eumaniraptora proper, and some even place them as basal members of Oviraptorosauria (which would solve the problem of the lack of pre-mid-Cretaceous oviraptorosaurs.) Most specimens are juveniles, but Yi seems to be from an adult.

Very bizarrely, Yi shows an extra bone projecting from its wrist, and a membrane attached to this. Such accessory bones attached to membranes have evolved conversantly in some gliding and flying mammals. This suggests that Yi (and maybe other scansoriopterygids) were flying squirrel-like gliders.

Feeding adaptation transformations:

Locomotory adaptations:

Gigantism and Miniaturization:

Niche partitioning:
Basal coelurosaurs represented the minor predators of many Jurassic and Early Cretaceous environments. Diversification into non-predatory modes allowed coelurosaurs to diversify into niches previously unoccupied by theropods. (In Late Cretaceous Asia, small non-predatory coelurosaurs are very common, while small ornithopods are absent.) In contrast, tyrannosauroids evolve into giant top predators in the Late Cretaceous of Asia and North America after the disappearance of carcharodontosaurids and spinosaurids.

To Next Lecture.
To Previous Lecture.
To Lecture Schedule.

Last modified: 19 August 2017

Detail of a family of Late Cretaceous Mongolian Therizinosaurus by Damir Martin