The Department of Geology at the University of Maryland has focused its research efforts in the applications of geochemistry and geophysics to studies of the solid earth and earth surface processes. This focused approach enables participation in various threads of modern and future Earth System Science, as well as developing areas within the Department, which include planetary geology and forensics.Our particular strengths are as follows:
Geochemistry, which involves investigations of low- to high-temperature processes operating from Earth’s surface to it’s core and within the Solar System;
Solid Earth Science, which is the study of the minerals, rocks, and structures that constitute Earth, and the tectonic and other processes by which they are formed and altered
Surficial Processes and Environments, which involves the study of active and past fluxes (and reservoirs) of water, dissolved components, and sediment on Earth’s surface and the interactions of these fluxes with the biosphere and atmosphere; and,
Geophysics, which includes investigations of Earth’s interior structure and dynamics, as well as planetary physics.
These areas are not mutually exclusive, and students are encouraged to develop a program that suits their interests.
Ricardo Arévalo, Jr., Professor | Ph.D. University of Maryland, 2010
As a hybrid between a classically trained geochemist and a mission-oriented planetary scientist, my research ambitions are multifaceted. I continue to be interested in refining our understanding of the architecture of the Earth’s mantle, both today and in the geological past, but I also attempt to constrain other planetary processes through the exploitation of well-defined geochemical systems/proxies.
More specifically, my laboratory research relies on the development of innovative analytical protocols and the advancement of pioneering technologies/instrumentation to: 1) characterize the organic content in planetary materials (natural, synthetic, and analog samples); 2) quantify ultratrace element abundances (down to sub-ppb levels); and, 3) measure non-traditional stable isotopes, via highly precise and accurate laser ablation mass spectrometry. I have become deeply invested in the development of miniaturized pulsed laser systems as well as a variety of game-changing mass analyzers that promise to revolutionize our understanding of our planetary neighborhood.
LinkedIn Google Scholar ResearchGate OrcID Curriculum Vitae M-CLASS LaboratoryRichard Ash, Research Scientist | Ph.D. Open University, 1990
My own research interests are in the origin and early evolution of planets and planetary systems. For me this is largely based on the analysis of chondritic meteorites; partially digested leftovers from the formation of the planets in our Solar System.
Homepage Google Scholar ResearchGate Curriculum Vitae Plasma LaboratoryHannes Bernhardt, Assistant Research Scientist | Ph.D. University of Münster, 2017
My main research interests include remote sensing investigations of the terrestrial planetary bodies, i.e., Mercury, Venus, Earth, the Moon, and Mars, in conjunction with analog studies on Earth. Datasets come from a broad variety of space missions, some of which I participated in such as Mars Express and the Lunar Reconnaissance Orbiter and include passive observations in visible and infrared light as well as active sensing using laser altimeters and radar.
Compiling these data into map projects using a Geospatial Information System (GIS) then enables holistic investigations at local, regional, or global scales. This can lead to the production of geologic maps, which are a powerful tool to expand, synthesize, and communicate geological knowledge about an area and to identify new localities for science and guide exploration, e.g., for upcoming landed assets on the Moon and Mars.
Google Scholar ResearchGate OrcID GithubMichael Brown, Professor | Ph.D. University of Keele, U.K., 1975
Metamorphic geology, with an emphasis on granulites, eclogites and crustal melting; orogenic processes, particularly heat and mass transfer; and, secular change and global tectonics.
Google Scholar Curriculum Vitae Laboratory for Crustal PetrologyPhilip Candela, Professor Emeritus | Ph.D. Harvard University, 1982
Thermodynamics and mass transfer dynamics of magmatic-hydrothermal systems; mineral and resource economics; the role of markets in society; the geology and physical chemistry of shale gas and shale oil extraction; experimental studies of geological materials in the Earth’s upper crust; asbestos geology; mineral deposits in the Appalachians; the formation of granites
Tracey Centorbi, Lecturer | Ph.D.
Constraining the origin and history of enigmatic ultramafic bodies in the Western Piedmont region of North Carolina using Re-Os systematics of chromite and whole rock powders, phenocryst and whole rock Oxygen isotopes, and petrography.
ResearchGateMichael Evans, Professor | Ph.D. Columbia University, 1999
paleoclimate observations and modeling, global environmental change
Homepage Google Scholar OrcID Curriculum Vitae Stable Isotope LaboratoryJames Farquhar, Distinguished University Professor and Chair | Ph.D. University of Alberta, 1995
Dr. Farquhar’s current research focuses on methane isotopologues (isotopic varieties of methane molecules) to study atmospheric methane today. This change is a result of the need to develop ways to understand factors that contribute to the rise of methane today (in the context of the recent past) and that control its concentration in the future – including developing and applying techniques to monitor society’s efforts to stem and reverse its rise. The reason for this change is simply that methane is one of the targets that has the potential, if controlled, to impact the way Earth’s greenhouse contributes to global temperature rise and climate change. This is a new direction and draws on the recently acquired UMD Panorama (https://www.geol.umd.edu/facilities/mdpanolab/).
Dr. Farquhar is currently seeking students in the area of methane isotopologue research as it relates to the atmosphere today.
Homepage Panorama LaboratoryThomas Holtz, Jr., Principal Lecturer | Ph.D. Yale University, 1992
Thomas R. Holtz, Jr.'s research focuses on the origin, evolution, adaptations, and behavior of carnivorous dinosaurs, and especially of tyrannosauroids (Tyrannosaurus rex and its kin). More broadly, he has been involved in investigations of functional morphology and ichnology of feeding and locomotion, the role of ontogeny in dinosaur paleoecology, and Mesozoic paleobiogeography. He is also the creator and Faculty Director of the College Park Scholars-Science & Global Change program.
Homepage LinkedIn Google Scholar ResearchGate OrcIDMong-Han Huang, Associate Professor | Ph.D. University of California, Berkeley, 2014
My research focuses on using geodesy (measurement of Earth’s geometric shape, orientation in space, and gravitational field) and seismology to study crustal deformation related to active plate tectonics. In the Active Tectonics Laboratory, we use the techniques called Interferometric Synthetic Aperture Radar (InSAR) and GPS to measure Earth’s surface position and movement through time. We can use this technique to monitor surface movement before, during, and after earthquakes, which can tell us about Earth’s interior properties. We can also apply the same technique to monitor surface deformation related to volcanic activities, hydrologic cycles, landslide hazards, and land subsidence due to anthropogenic activities. We attempt to understand the processes behind tectonic uplift, weathering and erosion, and how different components can shape our landscape and make Earth the way we see it today.
Homepage Google Scholar ResearchGate Active Tectonics LaboratoryAlan Kaufman, Distinguished University Professor | Ph.D. University of Indiana, 1990
My research has focused on the determination of changes in the isotopic composition of the oceans through time, by the analysis of stragraphic suites of little-altered carbonate rocks. Thus far, most of these studies have centered around Neoproterozoic (ca. 1000-544 million-year-old) sedimentary successions in Svalbard/East Greenland, Namibia, arctic Canada and Alaska, India, and the western USA. Temporal variations in C and Sr isotopes can be used as stratigraphic tools within and between basins, and through detailed correlations allow us to order key tectonic, biogeochemical, and paleoenvironmental events in Earth history.
Homepage Google Scholar Curriculum Vitae Stable Isotope LaboratorySujay Kaushal, Professor | Ph.D. University of Colorado, 2003
Land use and climate impacts on water resources, increased salinization and alkalinization of fresh water, urban watershed continuum approach, urban evolution, watershed restoration, and applications of geochemical tracers to ecology
Google Scholar ResearchGate Biogeochemistry LaboratoryDaniel Lathrop, Professor | Ph.D. University of Texas at Austin, 1991
Turbulence, Geophysical & Astrophysical Magnetic Fields
Google Scholar Nonlinear Dynamics LaboratoryVedran Lekić, Professor | Ph.D. University of California, Berkeley, 2009
At the broadest level, I seek to understand the state, dynamics, and dominant processes of the solid Earth, as well as those of other planets and satellites. Accurate seismic imaging is a crucial first step toward this goal. I believe that we stand at a threshold of a transformation in seismology, one enabled by the concomitant proliferation of high-quality array data and the development of accurate wave propagation techniques capable of capturing the effects of realistic Earth structure. For the first time, we have in place the theoretical, computational, and observational infrastructure necessary to constrain Earth structure simultaneously using multiple approaches, and to do so in a self-consistent fashion. My continuing efforts have therefore focused on: 1. Developing and implementing new techniques for imaging structures within the Earth’s mantle, including full waveform modeling; 2. Describing and quantifying the relationship between deep processes and structures and surface tectonics on global and regional scales.
Homepage Google Scholar ResearchGate Seismology LaboratoryCédric Magen, Associate Research Scientist | Ph.D. McGill University, 2008
I was trained as a biologist/ecologist, and have drifted towards marine biogeochemistry over the years. I am now a sediment biogeochemist, and am interested in investigating chemical reactions in sediments that involve the degradation of organic matter. I have always used stable isotopes in my work, which eventually led me to be the lab manager in James Farquhar’s lab. My research interests focus on understanding what controls the production and consumption of methane in and out of sediments, wetlands, or various water bodies. My research has recently taken me to the Arctic Ocean, to add to the dearth of knowledge on methane dynamics. I am also interested in monitoring other greenhouse gases and have started to work more locally in the Chesapeake Bay monitoring ocean acidification.
William McDonough, Professor | Ph.D. Australian National University, 1988
Understanding the composition, structure and evolution of the Earth and the other terrestrial planets are dominant themes of my research. The differentiation of the Earth has created 3 separate and distinct reservoirs (i.e., the core, the mantle-crust system, and the atmosphere-hydrosphere system). These reservoirs are in turn themselves internally differentiated and powered in part by radioactively produced energy. Chemical and isotopic studies of terrestrial and meteoritic samples provide insights into the timing and details of the various differentiation processes occurring in these planetary domains.
My expertise is in analytical instrumentation and neutrino geoscience. Using laser ablation systems and plasma mass spectrometers for the chemical and isotopic analyses of samples I work with geologists, biologist, chemists, physicists and members of the US intelligence community. I am developing and improving upon methods of modeling and detecting the Earth’s geoneutrino (electron antineutrino) flux and anti-neutrino detection for nuclear monitoring. With my students we provide chemical and isotopic data that constrain geological processes and data for forensics, nuclear chemistry and archaeology.
Homepage Google Scholar ResearchGate OrcID Curriculum Vitae Plasma LaboratoryJohn Merck, Jr., Principal Lecturer | Ph.D. The University of Texas at Austin, 1997
The phylogeny and evolutionary history of the euryapsids, primarily marine reptiles of the Mesozoic Era, including ichthyosaurs, placodonts, and sauropterygians, the empirical testing of cladistic methods of phylogeny reconstruction using digitally simulated phylogenies, and the incorporation of data from CT scans of fossil specimens in the morphological description of fossil taxa.
Laurent Montési, Professor | Ph.D. Massachusetts Institute of Technology, 2002
My research focuses principally on understanding the patterns of deformation that we see at the surface of the planets of the solar system. I focus mainly on the formation of mountain belts, but rifting is fine too. I am interested in structures found on Earth, Mars, Venus, and the satellites of Jupiter, Ganymede and Europa.
More specifically, I study how these patterns are influenced by the formation of faults, by the localization of deformation on narrow shear zones. I have developed a model that produces regularly-spaced faults in the lithosphere of terrestrial planets and applied to different environments.
Homepage Google Scholar ResearchGate Geodynamics LaboratoryMegan Newcombe, Assistant Professor | Ph.D. California Institute of Technology, 2016
I am an experimental petrologist and volcanologist. My research is focused on understanding the controls on volcanic eruptive style on Earth and on other planets. I am also interested in quantifying the sources and fluxes of volatiles in planetary interiors.
Homepage Google Scholar Curriculum Vitae Planetary Volcanism LaboratorySarah Penniston-Dorland, Professor | Ph.D. Johns Hopkins University, 2005
I am interested in learning about fluid flow in Earth's crust through the study of the record fluids leave behind in metamorphic and igneous rocks. I collect field data along with mineralogical, chemical, isotopic and textural data, and apply the concepts of equilibrium thermodynamics and mass transport.
Homepage Google Scholar ResearchGatePhilip Piccoli, Research Scientist | Ph.D. University of Maryland at College Park, 1992
Field studies of silicic igneous rocks; role of accessory phases in granitic systems; microanalysis of rock-forming minerals; geochemistry of fluids associated with plutonic and volcanic systems
Homepage Google Scholar Curriculum Vitae Laboratory for Mineral Deposits ResearchKaren Prestegaard, Associate Professor | Ph.D. University of California, Berkeley, 1982
Sediment transport and depositional processes in mountain gravel-bed streams; mechanisms of streamflow generation and their variations with watershed scale, geology, and land use; hydrologic behavior of frozen ground; hydrologic consequences of climate change; hydrology of coastal and riparian wetlands.
Igor Puchtel, Research Scientist | Ph.D. Russian Academy of Sciences, Moscow 1992
My research interests center around chemical and thermal evolution of deep Earth and terrestrial planets. I study radiogenic isotope systems, including Sm-Nd, Re-Os, Pt-Os, Lu-Hf, and Hf-W, and lithophile and highly siderophile element abundances in various types of terrestrial and extraterrestrial materials using thermal ionization mass-spectrometry (TIMS) and inductively coupled plasma mass-spectrometry (ICP-MS).
Google Scholar ResearchGate Curriculum Vitae Isotope Geochemistry LaboratoryCecilia Sanders, Assistant Professor (as of July 1, 2025) | Ph.D. California Institute of Technology, 2022
Nicholas Schmerr, Associate Professor | Ph.D. Arizona State University, 2008
Solid earth geophysics, planetary seismology, field and array seismology, seismic instrumentation, planetary geology, cryospheric processes, numerical modeling of elastic wave propagation, geodynamics, mineral and rock physics (including numerical modeling of melt and ices), the structure, evolution, and dynamics of the crusts, mantles, and cores of terrestrial objects.
My primary research focus lies in deciphering the formation, dynamics, and evolution of planetary surfaces and interiors using the remote sensing tools of seismology. I am extremely interested in how the physical and chemical properties of rocks, ices, and minerals are related to the evolution and dynamics of planetary interiors. My research projects span the Solar System, with current studies investigating seismic problems on Earth, the Moon, Venus, Mars, asteroids, Jupiter's satellites Europa and Io, and Saturn's satellites Enceladus and Titan.
Homepage Google Scholar OrcIDJessica Sunshine, Professor | Ph.D. Brown University, 1994
My research focuses on the use of spectroscopy and morphologic context to determine the composition and origin of various Solar System objects including: comets, asteroids, meteorites, and the Moon.
Homepage Google Scholar OrcIDRichard Walker, Distinguished University Professor | Ph.D. S.U.N.Y. Stony Brook, 1984
Application of radiogenic isotopes and trace elements, with emphasis on siderophile elements, to conduct research in several areas of geo- and cosmo-chemistry including the chemical evolution of Earth’s mantle, the formation and crystallization histories of early Solar System planetesimals, and the accretional and differentiation histories of the Earth, Moon and Mars.
Homepage Google Scholar Curriculum Vitae Isotope Geochemistry LaboratoryAnn Wylie, Professor Emerita | Ph.D. Columbia University, 1972
Economic geology of Appalachian metal and industrial deposits; mineralogy and human health; the study of ore minerals as petrogenetic indicators; geology and tectonic history of the central Appalachian Piedmont.
Google Scholar ResearchGate Curriculum Vitae Laboratory for Mineral Deposits ResearchWenlu Zhu, Professor | Ph.D. Stony Brook University, 1996
Experimental rock physics; laboratory and theoretical studies on deformation and percolation of crustal rocks; transport properties of hydrothermal vent deposits; submarine geomorphology.
Google Scholar ResearchGate Laboratory for Rock Physics